6Li, 15N, and 13C NMR spectra of 0.10 M $[^{6}$Li,15N]$LiHMDS with added Me$_3$N: (A) 6Li NMR spectrum with 0.3 equiv. of added Me$_3$N in pentane at -115 °C; (B) 6Li NMR spectrum with 5.0 equiv. of added Me$_3$N in toluene-d$_8$ at -100 °C; (C) 15N(1H) NMR spectrum with 5.0 equiv. of added Me$_3$N in toluene-d$_8$ at -100 °C; (D) 13C(1H) NMR spectrum with 0.7 equiv. of added Me$_3$N in toluene-d$_8$ at -100 °C; (E) 13C(1H) NMR spectrum with 2.0 equiv. of added Me$_3$N in toluene-d$_8$ at -100 °C.
II. 6Li, 15N, and 13C NMR spectra of 0.10 M $[^6\text{Li},^{15}\text{N}]\text{LiHMDS}$ with added Me_2NET: (A) ^6Li NMR spectrum with 0.3 equiv. of added Me_2NET in pentane at -115 °C; (B) ^6Li NMR spectrum with 20 equiv. of added Me_2NET in pentane at -80 °C; (C) $^{15}\text{N}[\text{^1H}]$ NMR spectrum with 20 equiv. of added Me_2NET in pentane at -80 °C; (D) $^{13}\text{C}[\text{^1H}]$ NMR spectrum with 0.7 equiv. of added Me_2NET in toluene-$_d_8$ at -100 °C; (E) $^{13}\text{C}[\text{^1H}]$ NMR spectrum with 2.0 equiv. of added Me_2NET in toluene-$_d_8$ at -100 °C.
III. 6Li and 15N NMR spectra of 0.10 M $[^6\text{Li},^{15}\text{N}]$LiHMDS at -80 °C: (A) 6Li NMR spectrum with 20 equiv. of added Et$_3$N in pentane; (B) 6Li NMR spectrum with 20 equiv. of added Et$_3$N in toluene; (C) 6Li NMR spectrum with 20 equiv. of added Me$_2$N-n-Pr in pentane; (D) 6Li NMR spectrum with 20 equiv. of added Me$_2$N-n-Pr in toluene; (E) 15N(1H) NMR spectrum with 20 equiv. of added Et$_3$N in pentane; (F) 15N(1H) NMR spectrum with 20 equiv. of added Me$_2$N-n-Pr in toluene.
IV. ^6Li and ^{15}N NMR spectra of 0.10 M $[^{6}\text{Li},^{15}\text{N}]\text{LiHMDS}$ at -80 °C: (A) ^6Li NMR spectrum with 20 equiv. of added MeNEt$_2$ in pentane; (B) $^{15}\text{N}[^1\text{H}]$ NMR spectrum with 20 equiv. of added MeNEt$_2$ in pentane; (C) ^6Li NMR spectrum with 20 equiv. of added Me$_2$N-i-Pr in pentane; (D) $^{15}\text{N}[^1\text{H}]$ NMR spectrum with 20 equiv. of added Me$_2$N-i-Pr in pentane; (E) ^6Li NMR spectrum with 20 equiv. of added Me$_2$N-i-Pr in toluene.
V. 6Li and 15N NMR spectra of 0.10 M $[^6$Li,15N]LiHMDS at -80 °C: (A) 6Li NMR spectrum with 20 equiv. of added Me$_2$N-t-Bu in pentane; (B) 15N(1H) NMR spectrum with 20 equiv. of added Me$_2$N-t-Bu in pentane; (C) 6Li NMR spectrum with 20 equiv. of added Me$_2$NCH$_2$-i-Pr in pentane; (D) 15N(1H) NMR spectrum with 20 equiv. of added Me$_2$NCH$_2$-i-Pr in pentane; (E) 6Li NMR spectrum with 20 equiv. of added Me$_2$NCH$_2$-t-Bu in pentane; (F) 15N(1H) NMR spectrum with 20 equiv. of added Me$_2$NCH$_2$-t-Bu in pentane.
Vi. 6Li NMR spectra of 0.10 M $[^6$Li,15N]LiHMDS at -80 °C: (A) 6Li NMR spectrum with 20 equiv. of added $\text{Me}_2\text{NCH}_2\text{Ph}$ in pentane; (B) 6Li NMR spectrum with 20 equiv. of added $\text{Me}_2\text{NCH}_2\text{Ph}$ in toluene; (C) 6Li NMR spectrum with 20 equiv. of added $\text{Me}_2\text{N(CH}_2)_3\text{Ph}$ in pentane; (D) 6Li NMR spectrum with 20 equiv. of added $\text{Me}_2\text{N(CH}_2)_4\text{Ph}$ in pentane; (E) 6Li NMR spectrum with 20 equiv. of added $\text{Me}_2\text{N(CH}_2)_4\text{Ph}$ in toluene.
VII. 6Li and 15N NMR spectra of 0.10 M $[^6$Li,15N]LiHMDS at -80 °C: (A) 6Li NMR spectrum with 20 equiv. of added Me$_2$N(CH$_2$)$_2$Ph in pentane; (B) 6Li NMR spectrum with 20 equiv. of added Me$_2$N(CH$_2$)$_2$Ph in toluene; (C) 15N(1H) NMR spectrum with 20 equiv. of added Me$_2$N(CH$_2$)$_2$Ph in pentane; (D) 6Li NMR spectrum with 10 equiv. of added (i-Pr)$_2$NH in pentane; (E) 15N(1H) NMR spectrum with 10 equiv. of added (i-Pr)$_2$NH in pentane.
VIII. 6Li, 15N, and 13C NMR spectra of 0.10 M $[^{6}$Li,15N]LiHMDS with added Et_2NH at -100 °C:

(A) 6Li NMR spectrum with 0.5 equiv. of added Et_2NH in toluene-d_8; (B) 15N(1H) NMR spectrum with 0.5 equiv. of added Et_2NH in toluene-d_8; (C) 6Li NMR spectrum with 10 equiv. of added Et_2NH in pentane; (D) 15N(1H) NMR spectrum with 10 equiv. of added Et_2NH in pentane; (E) 13C(1H) NMR spectrum with 0.5 equiv. of added Et_2NH in toluene-d_8; (F) 13C(1H) NMR spectrum with 2.0 equiv. of added Et_2NH in toluene-d_8.
IX. 6Li, 15N, and 13C NMR spectra of 0.10 M $[^6\text{Li},^{15}\text{N}]\text{LiHMDS}$ with added pyrrolidine at -100 °C: (A) 6Li NMR spectrum with 0.5 equiv. of added pyrrolidine in toluene-d_8; (B) $^{15}\text{N}[^1\text{H}]$ NMR spectrum with 0.5 equiv. of added pyrrolidine in toluene-d_8; (C) 6Li NMR spectrum with 10 equiv. of added pyrrolidine in pentane; (D) $^{15}\text{N}[^1\text{H}]$ NMR spectrum with 10 equiv. of added pyrrolidine in pentane; (E) $^{13}\text{C}[^1\text{H}]$ NMR spectrum with 0.5 equiv. of added pyrrolidine in toluene-d_8; (F) $^{13}\text{C}[^1\text{H}]$ NMR spectrum with 2.0 equiv. of added pyrrolidine in toluene-d_8.
X. 6Li, 15N, and 13C NMR spectra of 0.10 M $[^6$Li,15N]LiHMDS with added piperidine at -100 °C:

(A) 6Li NMR spectrum with 0.5 equiv. of added piperidine in toluene-d_6; (B) 15N(1H) NMR spectrum with 0.5 equiv. of added piperidine in toluene-d_6; (C) 6Li NMR spectrum with 10 equiv. of added piperidine in pentane; (D) 15N(1H) NMR spectrum with 10 equiv. of added piperidine in pentane; (E) 13C(1H) NMR spectrum with 0.5 equiv. of added piperidine in toluene-d_6; (F) 13C(1H) NMR spectrum with 2.0 equiv. of added piperidine in toluene-d_6.
X-ray, 6Li, 15N, and 13C NMR spectra of 0.10 M [Li6,Li15]LiHMDS with added n-BuNHMe at -100 °C: (A) 6Li NMR spectrum with 0.5 equiv. of added n-BuNHMe in toluene-d$_8$; (B) 15N[1H] NMR spectrum with 0.5 equiv. of added n-BuNHMe in toluene-d$_8$; (C) 6Li NMR spectrum with 10 equiv. of added n-BuNHMe in pentane; (D) 15N[1H] NMR spectrum with 10 equiv. of added n-BuNHMe in pentane; (E) 13C[1H] NMR spectrum with 0.5 equiv. of added n-BuNHMe in toluene-d$_8$; (F) 13C[1H] NMR spectrum with 2.0 equiv. of added n-BuNHMe in toluene-d$_8$.
XII. ^6Li, ^{15}N, and ^{13}C NMR spectra of 0.10 M $[^6\text{Li},^{15}\text{N}]\text{LiHMDS}$ with added t-BuNHMe: (A) ^6Li NMR spectrum with 0.5 equiv. of added t-BuNHMe in pentane at -115 °C; (B) $^{15}\text{N}[^1\text{H}]$ NMR spectrum with 0.5 equiv. of added t-BuNHMe in pentane at -115 °C; (C) ^6Li NMR spectrum with 10 equiv. of added t-BuNHMe in pentane at -100 °C; (D) $^{15}\text{N}[^1\text{H}]$ NMR spectrum with 10 equiv. of added t-BuNHMe in pentane at -100 °C; (E) $^{13}\text{C}[^1\text{H}]$ NMR spectrum with 0.5 equiv. of added t-BuNHMe in toluene-d_8 at -100 °C; (F) $^{13}\text{C}[^1\text{H}]$ NMR spectrum with 2.0 equiv. of added t-BuNHMe in toluene-d_8 at -100 °C.
XIII. 6Li, 15N, and 13C NMR spectra of 0.10 M $[^6$Li,15N]LiHMDS with added azetidine at -100 °C: (A) 6Li NMR spectrum with 0.5 equiv. of added azetidine in toluene-d$_8$; (B) 15N$^{[1]H}$ NMR spectrum with 0.5 equiv. of added azetidine in toluene-d$_8$; (C) 6Li NMR spectrum with 2.0 equiv. of added azetidine in toluene-d$_8$; (D) 15N$^{[1]H}$ NMR spectrum with 2.0 equiv. of added azetidine in toluene-d$_8$; (E) 13C$^{[1]H}$ NMR spectrum with 0.5 equiv. of added azetidine in toluene-d$_8$.
XIV. 6Li NMR spectra of 0.10 M $[^6$Li,15N]$LiHMDS$ with added NH$_3$ in 2:1 pentane/toluene at -100 °C: (A) 6Li NMR spectrum with 0.5 equiv. of added 15NH$_3$; (B) 6Li NMR spectrum with 0.5 equiv. of added 15NH$_3$ with single frequency 15N decoupling at 39.9 ppm (3z); (C) 6Li NMR spectrum with 0.5 equiv. of added 15NH$_3$ with single frequency 15N decoupling at 18.3 ppm. $^{(15}$NH$_3$); (D) 6Li NMR spectrum with 1.2 equiv. of added 15NH$_3$; (E) 6Li NMR spectrum with 3 equiv. of added NH$_3$.
XV. 6Li, 15N, and 13C NMR spectra of 0.10 M $[^6$Li,15N]LiHMDS with added n-BuNH$_2$ at -100 °C: (A) 6Li NMR spectrum with 0.5 equiv. of added n-BuNH$_2$ in toluene-d_8; (B) 15N(1H) NMR spectrum with 0.5 equiv. of added n-BuNH$_2$ in toluene-d_8; (C) 6Li NMR spectrum with 5.0 equiv. of added n-BuNH$_2$ in pentane; (D) 15N(1H) NMR spectrum with 5.0 equiv. of added n-BuNH$_2$ in pentane; (E) 13C(1H) NMR spectrum with 0.5 equiv. of added n-BuNH$_2$ in toluene-d_8.
XVI. 6Li, 15N, and 13C NMR spectra of 0.10 M $[^6$Li,15N]1LiHMDS with added i-PrNH$_2$ at -100 °C: (A) 6Li NMR spectrum with 0.7 equiv. of added i-PrNH$_2$ in toluene-d_8; (B) 15N(1H) NMR spectrum with 0.7 equiv. of added i-PrNH$_2$ in toluene-d_8; (C) 6Li NMR spectrum with 5.0 equiv. of added i-PrNH$_2$ in toluene-d_8; (D) 15N(1H) NMR spectrum with 5.0 equiv. of added i-PrNH$_2$ in toluene-d_8; (E) 13C(1H) NMR spectrum with 0.7 equiv. of added i-PrNH$_2$ in toluene-d_8.
XVII. ^6Li, ^{15}N, and ^{13}C NMR spectra of 0.10 M $[^6\text{Li},^{15}\text{N}]\text{LiHMDS}$ with added t-BuCH$_2$NH$_2$ at -100 °C: (A) ^6Li NMR spectrum with 0.5 equiv. of added t-BuCH$_2$NH$_2$ in toluene-d_8; (B) $^{15}\text{N}(1\text{H})$ NMR spectrum with 0.5 equiv. of added t-BuCH$_2$NH$_2$ in toluene-d_8; (C) ^6Li NMR spectrum with 10 equiv. of added t-BuCH$_2$NH$_2$ in pentane; (D) $^{15}\text{N}(1\text{H})$ NMR spectrum with 10 equiv. of added t-BuCH$_2$NH$_2$ pentane; (E) $^{13}\text{C}(1\text{H})$ NMR spectrum with 0.5 equiv. of added t-BuCH$_2$NH$_2$ in toluene-d_8.
XVIII. 6Li, 15N, and 13C NMR spectra of 0.10 M [6Li,15N]LiHMDS with added t-BuNH$_2$ at -100 °C: (A) 6Li NMR spectrum with 0.5 equiv. of added t-BuNH$_2$ in toluene-$_d_8$; (B) 15N[1H] NMR spectrum with 0.5 equiv. of added t-BuNH$_2$ in toluene-$_d_8$; (C) 6Li NMR spectrum with 10 equiv. of added t-BuNH$_2$ in pentane; (D) 15N[1H] NMR spectrum with 10 equiv. of added t-BuNH$_2$ pentane; (E) 13C[1H] NMR spectrum with 0.5 equiv. of added t-BuNH$_2$ in toluene-$_d_8$; (F) 13C[1H] NMR spectrum with 2.0 equiv. of added t-BuNH$_2$ in toluene-$_d_8$.
XIX. 6Li, 15N, and 13C NMR spectra of 0.10 M $[^{6}$Li,15N]LiHMDS with 1.1 equiv. of added Et$_2$NH and 1.1 equiv. of added Et$_2$O at -100 °C in toluene-d$_8$: (A) 6Li NMR spectrum; (B) 15N$[^1$H] NMR spectrum; (C) 13C$[^1$H] NMR spectrum.
XX. 6Li, 15N, and 13C NMR spectra of 0.10 M $[^{6}\text{Li},^{15}\text{N}]\text{LiHMDS}$ with 1.1 equiv. of added tetrahydrofuran and 1.1 equiv. of added piperidine at -100 °C in toluene-d$_8$: (A) 6Li NMR spectrum; (B) 15N(1H) NMR spectrum; (C) 13C(1H) NMR spectrum.
XXI. 6Li, 15N, and 13C NMR spectra of 0.10 M $[^6$Li,15N]3LiHMDS with 1.1 equiv. of added tetrahydrofuran and 1.1 equiv. of added pyrrolidine at -100 °C in toluene-d_8: (A) 6Li NMR spectrum; (B) 15N(1H) NMR spectrum; (C) 13C(1H) NMR spectrum.
XXII. 6Li, 15N, and 13C NMR spectra of 0.10 M $[^{6}$Li,15N]LiHMDS with 1.1 equiv. of added n-BuOMe and 1.1 equiv. of added n-BuNHMe at -100 °C in toluene-d_6: (A) 6Li NMR spectrum; (B) 15N(1H) NMR spectrum; (C) 13C(1H) NMR spectrum.
XXIII. 6Li, 15N, and 13C NMR spectra of 0.10 M $[^6$Li,15N]LiHMDS with 1.1 equiv. of added t-BuOMe and 1.1 equiv. of added t-BuNHMe: (A) 6Li NMR spectrum in pentane at -115 °C; (B) 15N[1H] NMR spectrum in pentane at -115 °C; (C) 13C[1H] NMR spectrum in toluene-d_8 at -100 °C.
XXIV. ^6Li and ^{15}N NMR spectra of 0.10 M $[^6\text{Li},^{15}\text{N}]\text{LiHMDS}$: (A) ^6Li NMR spectrum in neat toluene at -80 °C; (B) $^{15}\text{N}[^1\text{H}]$ NMR spectrum in neat toluene at -80 °C; (C) ^6Li NMR spectrum in neat m-xylene at -60 °C; (D) $^{15}\text{N}[^1\text{H}]$ NMR spectrum in neat m-xylene at -60 °C; (E) ^6Li NMR spectrum in neat mesitylene at -60 °C; (F) $^{15}\text{N}[^1\text{H}]$ NMR spectrum in neat mesitylene at -60 °C.
XXV. 6Li and 15N NMR spectra of 0.10 M $[^6$Li,15N]LiHMDS in pentane at -80 °C: (A) 6Li NMR spectrum with 40 equiv. of ethylene; (B) 15N(1H) NMR spectrum with 40 equiv. of ethylene; (C) 6Li NMR spectrum with 15 equiv. of butyne; (D) 15N(1H) NMR spectrum with 15 equiv. of butyne; (E) 6Li NMR spectrum with 60 equiv. of 1-pentene.
XXVI. 6Li-detected 15N zero-quantum NMR spectra of 0.1 M $[^6$Li,15N]LiHMDS in pentane at -80 oC: (A) neat pentane; (B) 20 equiv. of Et$_3$N; (C) 15 equiv. of butyne; (D) 40 equiv. of ethylene.
XXVII. $^6\text{Li}-^{15}\text{N}$ HMOC spectra of 0.10 M $[^6\text{Li},^{15}\text{N}]\text{LiHMDS}$ at -100 °C with 1.1 equiv. of added tetrahydropyran and 1.1 equiv. of added piperidine at -100 °C in toluene-d_8. The upper and left-hand traces are the corresponding $^{15}\text{N}(^1\text{H},^6\text{Li})$ and ^6Li NMR spectra.
XXVIII. Plot of $[\text{AS}_n]/[\text{A}_2\text{S}_2]^{1/2}$ vs. $[\text{Et}_2\text{NH}]$ for 0.1 M LiHMDS in pentane at -80 °C. The data are fit by non-linear least squares methods to the function in equation 5 of the manuscript. $K_{eq} = 4.0 \times 10^{-2}$, $n = 2.6$.
XXIX. Plot of $[A_{S_n}] / [A_{2S_2}]^{1/2}$ vs. $[\text{Me}_2\text{N}-i-\text{Pr}]$ for 0.1 M LiHMDS at -80 °C in pentane (▲) and $[A_{S_n}] / [A_{2S_2}]^{1/2}$ vs. $[\text{Me}_2\text{N}-i-\text{Pr}]$ in toluene (●). All samples contain 33% pentane by volume. The data are fit by non-linear least squares methods to the function in equation 5 ($K_{eq} = 6.3 \times 10^{-2}$, $n = 2.7$) or to the function in equation 8 ($K_{eq(1)} = 2.3 \times 10^{-3}$, $K_{eq(2)} = 6.8 \times 10^{-1}$) of the manuscript.
XXX. Plot of $[\text{AS}_n]/[\text{A}_2\text{S}_2]^{1/2}$ vs. [toluene] for 0.1 M LiHMDS at -80 °C with 33% Me$_2$N-i-Pr by volume and a pentane cosolvent.
XXXI. **Derivation of equation 8 and equations for Least-Squares Figure 4.**

Given the equilibria

\[
\frac{1}{2} \text{A}_2 \text{S}_2 + 2 \text{S} + \text{T} \rightleftharpoons \text{AS}_2 \text{T} + \text{S} \rightleftharpoons \text{AS}_3 + \text{T}
\]

such that

\[
K_1 = \frac{[\text{AS}_2 \text{T}]}{[\text{A}_2 \text{S}_2]^{1/2} [\text{S}][\text{T}]}
\]

and

\[
K_2 = \frac{[\text{AS}_3][\text{T}]}{[\text{AS}_2 \text{T}][\text{S}]} \tag{1}
\]

we can derive the equations describing the equilibrium constants as a function of solvent and organolithium concentrations. We define the total monomer concentration, \([\text{A}_T]\), such that

\[
[\text{A}_T] = [\text{AS}_2 \text{T}] + [\text{AS}_3]
\]

Substituting into equation 2 and rearranging affords

\[
[\text{AS}_2 \text{T}] = \frac{[\text{A}_T][\text{T}]}{(K_2)[\text{S}]+[\text{T}]}
\]

Squaring equation 1, substituting for \([\text{AS}_2 \text{T}]\), and rearranging affords

\[
\frac{[\text{A}_T]}{[\text{A}_2 \text{S}_2]} = K_1^2 [\text{S}]^2 ((K_2)[\text{S}]+[\text{T}])^2 \tag{3}
\]

Since the total LiHMDS concentration equals 0.10 M, then

\[
[\text{A}_2 \text{S}_2] = \frac{0.10 - [\text{A}_T]}{2}
\]

Substituting into equation 3 for \([\text{A}_2 \text{S}_2]\) and rearranging affords

\[
\text{A}_T^2 + \frac{-K_1^2 [\text{S}]^2 (K_2 [\text{S}]+[\text{T}])^2}{2} + \frac{(0.1)K_1^2 [\text{S}]^2 (K_2 [\text{S}]+[\text{T}])^2}{2} = 0
\]

Solving for \([\text{A}_T]\) using the quadratic equation affords

\[
[\text{A}_T] = \frac{-K_1^2 [\text{S}]^2 (K_2 [\text{S}]+[\text{T}])^2}{4} + \frac{K_1 [\text{S}](K_2 [\text{S}]+[\text{T}])}{2} \sqrt{\frac{K_1^2 [\text{S}]^2 (K_2 [\text{S}]+[\text{T}])^2}{4} + 0.2}
\]