NMR Spectroscopic Studies of Lithium Diethylamide: Insights into Ring Laddering

Jennifer L. Rutherford and David B. Collum*
Department of Chemistry and Chemical Biology
Cornell University
Ithaca, New York 14853-1301

Supporting Information

I. Preparation of [\(^{6}\)Li,\(^{15}\)N]Et\(_2\)NLI

II. \(^{6}\)Li and \(^{15}\)N NMR spectra of 0.1 M [\(^{6}\)Li,\(^{15}\)N]Et\(_2\)NLI in neat oxetane.

III. \(^{6}\)Li and \(^{15}\)N NMR spectra of 0.1 M [\(^{6}\)Li,\(^{15}\)N]Et\(_2\)NLI in 3:2 pentane:toluene with 20 equiv of oxetane.

IV. \(^{6}\)Li-detected \(^{15}\)N zero-quantum NMR spectrum of 0.1 M [\(^{6}\)Li,\(^{15}\)N]Et\(_2\)NLI in 3:2 pentane:toluene with 20 equiv oxetane.

V. \(^{6}\)Li NMR spectra of 0.1 M [\(^{6}\)Li,\(^{15}\)N]Et\(_2\)NLI in 3:2 pentane:toluene with 6 equiv of oxetane.

VI. \(^{15}\)N NMR spectra of 0.1 M [\(^{6}\)Li,\(^{15}\)N]Et\(_2\)NLI in 3:2 pentane:toluene with 6 equiv of oxetane.

VII. \(^{6}\)Li NMR spectra of 0.1 M [\(^{6}\)Li,\(^{15}\)N]Et\(_2\)NLI in 3:2 pentane:toluene with varying amounts of oxetane.

VIII. \(^{6}\)Li NMR spectra of 0.1 M [\(^{6}\)Li,\(^{15}\)N]Et\(_2\)NLI in 3:2 pentane:toluene with 1 equiv oxetane at varying temperatures.

IX. \(^{6}\)Li and \(^{15}\)N NMR spectra of 0.1 M [\(^{6}\)Li,\(^{15}\)N]Et\(_2\)NLI in 3:2 pentane:toluene with 1 equiv of oxetane at -125 °C; \(^{15}\)N decoupling.

X. \(^{6}\)Li and \(^{15}\)N NMR spectra of 0.1 M [\(^{6}\)Li,\(^{15}\)N]Et\(_2\)NLI in 3:2 pentane:toluene with 0.88 equiv of oxetane at -125 °C; \(^{15}\)N decoupling.

XI. \(^{6}\)Li,\(^{15}\)N-heteronuclear multiple quantum correlation (HMQC) spectrum of 0.1 M [\(^{6}\)Li,\(^{15}\)N]Et\(_2\)NLI in 3:2 pentane:toluene with 1.25 equiv of oxetane at -125 °C.

XII. \(^{6}\)Li and \(^{15}\)N NMR spectra of 0.15 M [\(^{6}\)Li,\(^{15}\)N]Et\(_2\)NLI in 3:2 pentane:toluene with 0.75 equiv of oxetane at -125 °C and -105 °C.

XIII. \(^{6}\)Li and \(^{15}\)N NMR spectra of 0.15 M [\(^{6}\)Li,\(^{15}\)N]Et\(_2\)NLI in 3:2 pentane:toluene with 0.75 equiv of oxetane at -125 °C and -105 °C; \(^{15}\)N broad-band decoupling.

XIV. \(^{6}\)Li and \(^{15}\)N NMR spectra of 0.15 M [\(^{6}\)Li,\(^{15}\)N]Et\(_2\)NLI in 3:2 pentane:toluene with 0.75 equiv of oxetane at -105 °C; \(^{15}\)N decoupling.
XV. 6Li and 15N NMR spectra of 0.15 M $[^6$Li,15N]Et_2NLi in 3:2 pentane:toluene with 0.75 equiv of oxetane at -125 °C: 15N decoupling.

XVI. 6Li-6Li one-dimensional exchange (EXSY) spectra of 0.1 M $[^6$Li,15N]Et_2NLi in 3:2 pentane:toluene with 0.75 equiv oxetane.

XVII. 6Li-6Li two-dimensional exchange (EXSY) spectrum of 0.1 M $[^6$Li,15N]Et_2NLi in 3:2 pentane:toluene with 0.75 equiv oxetane.

XVIII. 6Li,15N-heteronuclear multiple quantum correlation (HMQC) spectrum of 0.15 M $[^6$Li,15N]Et_2NLi in 3:2 pentane:toluene with 0.75 equiv of oxetane at -105 °C.

XIX. 6Li,15N-heteronuclear multiple quantum correlation (HMQC) spectrum of 0.15 M $[^6$Li,15N]Et_2NLi in 3:2 pentane:toluene with 0.75 equiv of oxetane at -95 °C.

XX. 6Li and 15N NMR spectra of 0.1 M $[^6$Li,15N]Et_2NLi in THF/toluene mixtures.

XXI. 6Li-detected 15N zero-quantum NMR spectrum of 0.1 M $[^6$Li,15N]Et_2NLi in neat THF.

XXII. 6Li and 15N NMR spectra of 0.1 M $[^6$Li,15N]Et_2NLi in varying equiv of THF.

XXIII. 6Li NMR spectra of 0.1 M $[^6$Li,15N]Et_2NLi in 2 equiv THF at varying temperatures: 15N decoupled.

XXIV. 6Li NMR spectra of 0.1 M $[^6$Li,15N]Et_2NLi in 1 equiv THF at varying temperatures: 15N decoupled.

XXV. 6Li and 15N NMR spectra of 0.1 M $[^6$Li,15N]Et_2NLi in 1 equiv THF at -118 °C: 15N decoupled.

XXVI. 6Li and 15N NMR spectra of 0.1 M $[^6$Li,15N]Et_2NLi in 1 equiv THF at -87 °C: 15N decoupled.

XXVII. 6Li,15N-heteronuclear multiple quantum correlation (HMQC) spectrum of 0.1 M $[^6$Li,15N]Et_2NLi in 3:2 pentane:toluene with 1 equiv of THF at -118 °C.

XXVIII. 6Li,15N-heteronuclear multiple quantum correlation (HMQC) spectrum of 0.1 M $[^6$Li,15N]Et_2NLi in 3:2 pentane:toluene with 1 equiv of THF at -87 °C.

XXIX. 6Li and 15N NMR spectra of 0.1 M $[^6$Li,15N]Et_2NLi in diethyl ether/toluene mixtures.

XXX. 6Li-detected 15N zero-quantum NMR spectrum of 0.1 M $[^6$Li,15N]Et_2NLi in neat diethyl ether.
I. Preparation of $[^{6}\text{Li},^{15}\text{N}]\text{Et}_2\text{NLi}$

$[^{15}\text{N}]\text{Benzamide}$.1 A 100 mL pear-shaped flask chilled in a 0 °C bath was charged sequentially with $[^{15}\text{N}]\text{NH}_4\text{Cl}$ (3.1g, 57 mmol), water (10 mL), diethyl ether (15 mL), and benzoyl chloride (15.0 mL, 129 mmol). A chilled (5 °C) 19 M aqueous solution of NaOH (20 mL, 375 mmol) was added slowly via syringe directly to the aqueous layer causing precipitation of a white solid. The solid was filtered, washed repeatedly with ether and water to remove any excess benzoyl chloride and benzoic acid by-product, and dried in vacuo to afford 5.15 g of $[^{15}\text{N}]\text{benzamide}$ (76% yield). \textit{1H NMR (CDCl}_3/\text{DMSO)} δ 7.94 (d, J$_{^{15}\text{N},^1\text{H}}$ = 88.4 Hz, 1H), 7.91 (d, J = 7.5 Hz, 2H), 7.49 (t, J = 6.7 Hz, 1H), 7.42 (t, J= 6.7 Hz, 2H), 7.20 (d, J$_{^{15}\text{N},^1\text{H}}$ = 87.7 Hz, 1H). \textit{13C\{\textit{1H}\}NMR (CDCl}_3/\text{DMSO)} δ 166.8 (d, J$_{^{15}\text{N},^{13}\text{C}}$ = 16.2 Hz), 132.5 (d, J$_{^{15}\text{N},^{13}\text{C}}$ = 7.7 Hz), 129.4, 126.3, 125.8.

$[^{15}\text{N}]\text{Diethylbenzamide}$.2 A 100 mL round bottom flask was charged sequentially with ^{15}N-benzamide (3.83 g, 31.4 mmol), toluene (45 mL), K$_2$CO$_3$ (6.4 g), t-butyl ammonium hydrogen sulfate (1.07 g), and finely ground NaOH (6 g). The heterogenous mixture was heated to 40 °C and bromoethane (6.0 mL, 80.0 mmol) in 10 mL toluene was added slowly via syringe. The mixture was refluxed with stirring for four hours. The organic phase was washed with water (2 x 100 mL), dried over Na$_2$SO$_4$, and concentrated in vacuo. The crude product was purified by flash chromatography (1:1 EtOAc/hexane), yielding 3.79 g (68% yield) of $[^{15}\text{N}]$diethylbenzamide. \textit{1H NMR (CDCl}_3) δ 7.37 (m, 5H), 3.6-3.3 (m, 4H), 1.2-1.1 (m, 6H). \textit{13C\{\textit{1H}\}NMR (CDCl}_3) δ 171.2 (d, J$_{^{15}\text{N},^{13}\text{C}}$ = 14.8 Hz), 137.2 (d, J$_{^{15}\text{N},^{13}\text{C}}$ = 7.4 Hz), 129.0, 128.3, 126.2, 43.2, 39.2, 14.1, 12.8.

$[^{15}\text{N}]\text{Diethylbenzylamine}$.3 A nitrogen-flushed, 100 mL round bottom flask was charged with $[^{15}\text{N}]$diethylbenzamide (3.50 g, 19.7 mmol) and toluene (40 mL) and cooled to 0 °C. Borane-methylsulfide complex (2.0 M) in THF (6.4 mL, 12.8 mmol) was added slowly via
syringe. Following a reflux for 24 hours, 25 mL of saturated NaHCO₃ solution was added, and
the resulting solution was heated under reflux for 30 minutes. The layers were separated and the
organic layer was dried over Na₂SO₄. The crude product was distilled in vacuo to give 2.45 g
(76% yield) of [¹⁵N]diethylbenzylamine. ¹H NMR (CDCl₃) δ 7.3 - 7.2 (m, 5H), 3.56 (m, 2H),
2.52 (q, J = 7.0 Hz, 4H), 1.04 (td, J₁H₋¹H = 7.2 Hz, J₁⁵N₋¹H = 2.7 Hz, 6H). ¹³C{¹H}NMR
(CDCl₃) δ 140.1 (d, J₁⁵N₋¹³C = 1.8 Hz), 129.1, 128.3, 126.8, 57.7 (d, J₁⁵N₋¹³C = 4.2 Hz), 46.9
(d, J₁⁵N₋¹³C = 4.1 Hz), 11.9 (d, J₁⁵N₋¹³C = 2.0 Hz).

[¹⁵N]Diethylamine Hydrobromide.⁴ A Parr hydrogenator flask was charged with
[¹⁵N]diethylbenzylamine (4.0 g, 24.4 mmol), acetic acid (20 mL), methanol (20 mL), and
Pd(OH)₂ (0.380 g). The reaction vessel was placed under 50 psi H₂ for 3 days. The resulting
reaction mixture was filtered through Celite, and the filtrate was heated under reflux with 5 mL of
48% HBr ⁵ for two hours. The solution was placed under vacuum, and the liquid was removed to
give the amine hydrobromide as a pale peach solid. The solid was recrystallized in THF and a
minimal amount of isopropanol to give 2.09 g (56% yield) of [¹⁵N]diethylamine-HBr. ¹H (CDCl₃)
δ 9.05 (d, J₁⁵N₋¹H = 73.1 Hz, 2H), 3.09 (m, 4H), 1.53 (td, J₁H₋¹H = 7.5 Hz, J₁⁵N₋¹H = 3.5 Hz,
6H). ¹³C{¹H}NMR (CDCl₃) δ 42.5, 11.4.

[⁶Li,¹⁵N]Lithium Diethylamide. A 100 mL round bottom flask containing
[¹⁵N]diethylamine-HBr (2.09 g, 13.6 mmol) and a grain of phenanthroline was flushed with argon
and charged with Et₂O (15 mL) and TDA-1⁶ (5.6 mL, 17.7 mmol). (The TDA-1 serves to
scavenge the resulting LiBr to prevent formation of [¹⁵N]Et₂NH·LiBr.) n-BuLi in hexanes (1.6
M) was added with stirring to the mixture until the solution remained red for longer than 15
minutes, indicating the complete liberation of free diethylamine. The solution was vacuum
transferred to a collection flask. A fixed amount of octane was added as an internal standard to
estimate the quantity of diethylamine by GC.⁷ The yield of [¹⁵N]diethylamine was estimated to
be near quantitative. The \([^{15}\text{N}]\text{Et}_2\text{NH}/\text{Et}_2\text{O}\) solution was cooled in a 0 °C bath and \([^{6}\text{Li}]n-\text{BuLi}\) (5 mL, 10.5 mmol) was added to ensure an excess of diethylamine. After 3 hours of stirring at room temperature, the solvent was removed \textit{in vacuo}. To the resulting white residue, hexanes (40 mL) and \text{Et}_2\text{O} (13 mL) were added until all of the residue dissolved. The solution was alternately evaporated and cooled until a quantity of white solid precipitated. The mixture was filtered and yielded 0.720 g (67% yield) of solvent-free \([^{6}\text{Li},^{15}\text{N}]\text{lithium diethylamide}.

Supporting References and Footnotes

5. The hydrochloride salt was also synthesized with similar results, but \text{Et}_2\text{NH} \cdot \text{HCl} is very hygroscopic, unlike the hydrobromide alternative. Also the LiBr salt and resulting complexes with TDA-I are soluble in \text{Et}_2\text{O}, whereas the LiCl salt and complexes are not.

6. TDA-I (\textit{tris}[2-(2-methoxyethoxy)ethyl] amine, Aldrich).

7. In subsequent studies liberating other simple dialkylamines, it was found that recrystallized \text{n-BuLi} in pentane solution (rather than commercial \text{n-BuLi} in hexanes) worked best to quantify the amount of amine liberated.
Figure II. 6Li and 15N NMR spectra of 0.1 M [6Li,${^{15}}$N]Et$_2$NLi in neat oxetane at -110 °C: (A) 6Li NMR spectrum; (B) 15N[1H] NMR spectrum.
Figure III. 6Li and 15N NMR spectra of 0.1 M $[^6\text{Li},^{15}\text{N}]\text{Et}_2\text{NLi}$ in 3:2 pentane:toluene with 20 equiv of oxetane: (A) 6Li NMR spectrum at -120 °C; (B) $^{15}\text{N}[^1\text{H}]$ NMR spectrum at -120 °C; (C) 6Li NMR spectrum at -115 °C; (D) 6Li NMR spectrum at -110 °C; (E) 6Li NMR spectrum at -90 °C; (F) $^{15}\text{N}[^1\text{H}]$ NMR spectrum at -90 °C.
Figure IV. 6Li-detected 15N zero-quantum NMR spectrum of 0.1 M $[^6$Li,15N]Et_2NLi in 3:2 pentane:toluene with 20 equiv of oxetane at -120 °C.
Figure V. 6Li NMR spectra of 0.1 M $[^6]$Li,N$_2$Et$_2$Li in 3:2 pentane:toluene with 6 equiv of oxetane at the temperatures indicated.
Figure VI. 15N(1H) NMR spectra of 0.1 M $[^6$Li,15N]Et$_2$NLi in 3:2 pentane:toluene with 6 equiv of oxetane at: (A) -135 °C; (B) -120 °C; (C) -110 °C.
Figure VII. 6Li NMR spectra of 0.1 M $[^6$Li,15N]Et_2NLi in 3:2 pentane:toluene at -115 °C with:
(A) 20 equiv oxetane; (B) 9 equiv oxetane; (C) 6 equiv oxetane; (D) 3 equiv oxetane; (E) 1.25 equiv oxetane; (F) 1 equiv oxetane; (G) 0.75 equiv oxetane.
Figure VIII. ^6Li NMR spectra of 0.1 M $[{^6\text{Li},^{15}\text{N}}\text{Et}_2\text{NLi}]$ in 3:2 pentane:toluene with 1 equiv oxetane at: (A) -120°C; (B) -115°C; (C) -110°C; (D) -105°C.
Figure IX. 6Li and 15N NMR spectra of 0.1 M $[^6$Li,15N]Et_2NLi in 3:2 pentane:toluene with 1.0 equiv of oxetane at -125 °C: (A) 6Li spectrum; (B) 6Li spectrum, 15N single frequency decoupled at 35.5 ppm; (C) 6Li spectrum, 15N single frequency decoupled at 43.9 ppm; (D) spectrum C with sine bell resolution enhancement function applied (Note: Coupling for 8a doublet at 0.0 ppm is small and appears as a broad singlet in this spectrum. For a better view see Figure XD); (E) 15N(1H, 6Li) spectrum.
Figure X. 6Li and 15N NMR spectra of 0.1 M $[^6]$Li,$[^{15}]$Et$_2$NLi in 3:2 pentane:toluene with 0.88 equiv of oxetane at -125 °C: (A) 6Li spectrum; (B) 6Li spectrum, 15N single frequency decoupled at 35.3 ppm; (C) 6Li spectrum, 15N single frequency decoupled at 43.3 ppm; (D) spectrum C with sine bell resolution; (E) 15N(1H, 6Li)spectrum.
Figure XI. 6Li,15N-heteronuclear multiple quantum correlation (HMQC) spectrum of 0.1 M $[^6$Li,15N]Et$_2$NLi in 3:2 pentane:toluene with 1.25 equiv of oxetane at -125 °C.
Figure XII. 6Li and 15N NMR spectra of 0.1 M $[^6$Li,15N]Et_2NLi in 3:2 pentane:toluene with 0.75 equiv of oxetane: (A) 6Li spectrum at -125 °C; (B) 6Li spectrum at -105 °C; (C) 15N{1H} spectrum at -125 °C; (D) spectrum C expanded; (E) 15N{1H} spectrum at -105 °C; (F) spectrum E expanded.
Figure XIII. \(^6\text{Li}\) and \(^{15}\text{N}\) NMR spectra of 0.15 M \([\text{Li}_{\text{i}}{^{15}\text{N}}]\text{Et}_2\text{Li}\) in 3:2 pentane:toluene with 0.75 equiv of oxetane: (A) \(^6\text{Li}\) spectrum at -105 °C; (B) \(^6\text{Li}\) spectrum at -125 °C; (C) \(^6\text{Li}\{^{15}\text{N}\}\) spectrum at -105 °C; (D) \(^6\text{Li}\{^{15}\text{N}\}\) spectrum at -125 °C; (E) \(^{15}\text{N}\{^1\text{H}, \ ^6\text{Li}\}\) spectrum at -105 °C.
Figure XIV. ^6Li and ^{15}N NMR spectra of 0.15 M $[^6\text{Li},^{15}\text{N}]\text{Et}_2\text{NLi}$ in 3:2 pentane:toluene with 0.75 equiv of oxetane at -105 °C: (A) $^6\text{Li}[^{15}\text{N}]$ spectrum; (B) spectrum A expanded; (C) ^6Li spectrum, ^{15}N single frequency decoupled at 44.8 ppm; (D) spectrum B expanded; (E) ^6Li spectrum, ^{15}N single frequency decoupled at 32.8 ppm; (F) spectrum E expanded; (G) $^{15}\text{N}(^1\text{H},^6\text{Li})$ spectrum.
Figure XV. 6Li and 15N NMR spectra of 0.1 M $[^6$Li,15N]Et_2NLi in 3:2 pentane:toluene with 0.75 equiv of oxetane at -125 °C: (A) 6Li spectrum; (B) 15N(1H, 6Li) spectrum; (C) 6Li(15N) spectrum; (D) 6Li spectrum, 15N single frequency decoupled at 34.7 ppm; (E) 6Li spectrum, 15N single frequency decoupled at 45.7 ppm; (F) spectrum E with sine bell resolution enhancement function applied.
Figure XVI. 6Li NMR spectra of 0.15 M $[^6$Li,15N]Et_2NLi in 3:2 pentane:toluene with 0.75 equiv of oxetane at -100 °C: (A) 6Li$^{[15]$N$}$ spectrum; (B) 6Li one-dimensional exchange difference spectrum, selectively irradiated at 1.84 ppm, $\tau_m = 0.4$ s; (C) 6Li one-dimensional exchange difference spectrum, selectively irradiated at 1.27 ppm, $\tau_m = 0.4$ s.
Figure XVII. 6Li-6Li exchange (EXSY) spectrum of 0.1 M [6Li,15N]Et$_2$NLi in 3:2 pentane:toluene with 0.75 equiv of oxetane at -100 °C, $\tau_m = 0.6$ s.
Figure XVIII. 6Li,15N-heteronuclear multiple quantum correlation (HMQC) spectrum of 0.15 M $[^6$Li,15N]Et$_2$NLi in 3:2 pentane:toluene with 0.75 equiv of oxetane at -105 °C.
Figure XIX. \(^{6}\text{Li},^{15}\text{N}\)-heteronuclear multiple quantum correlation (HMQC) spectrum of 0.15 M \([^{6}\text{Li},^{15}\text{N}]\text{Et}_2\text{NLi}\) in 3:2 pentane:toluene with 0.75 equiv of oxetane at -95 °C.
Figure XX. 6Li and 15N NMR spectra of 0.1 M [6Li,15N]Et$_2$NLi: (A) 6Li spectrum in toluene with 20 equiv of THF at -110 °C; (B) 15N(1H) spectrum in toluene with 20 equiv of THF at -110 °C; (C) 6Li spectrum in neat THF at -105 °C; (D) 15N(1H) spectrum in neat THF at -105 °C.
Figure XXI. ^6Li-detected ^{15}N zero-quantum NMR spectrum of $0.1\text{M} \ [^6\text{Li},^{15}\text{N}]\text{Et}_2\text{NLi}$ in neat THF at -105 °C.
Figure XXII. 6Li and 15N NMR spectra of [Li,15NEt$_2$NLi in 3:2 pentane:toluene with THF co-solvent: (A) 6Li spectrum of 0.08 M [Li,15NEt$_2$NLi with 9 equiv of THF at -115 °C; (B) 6Li spectrum of 0.1 M [Li,15NEt$_2$NLi with 5 equiv of THF at -110 °C; (C) 6Li spectrum of 0.2 M [Li,15NEt$_2$NLi with 3 equiv of THF at -115 °C; (D) 15N [H] spectrum of 0.2 M [Li,15NEt$_2$NLi with 3 equiv of THF at -115 °C; (E) 6Li spectrum of 0.16 M [Li,15NEt$_2$NLi with 2 equiv of THF at -115 °C; (F) 6Li spectrum of 0.1 M [Li,15NEt$_2$NLi with 1 equiv of THF at -110 °C.
Figure XXIII. 6Li NMR spectra of 0.16 M $[^6$Li,15N]Et_2NLi in 3:2 pentane:toluene with 2 equiv of THF: (A) at -120 °C; (B) spectrum A broad-band decoupled; (C) at -115 °C; (D) spectrum C broad-band decoupled; (E) at -105 °C; (F) spectrum E broad-band decoupled.
Figure XXIV. 6Li NMR spectra of 0.1 M $[^6$Li,15N]Et$_2$NLi in 3:2 pentane:toluene with 1 equiv of THF: (A) 6Li spectrum at -118 °C; (B) 6Li${}^{[15}$N] spectrum at -118 °C; (C) 6Li spectrum at -100 °C; (D) 6Li${}^{[15}$N] spectrum at -100 °C; (E) 6Li spectrum at -87 °C; (F) 6Li${}^{[15}$N] spectrum at -87 °C.
Figure XXV. 6Li and 15N NMR spectra of 0.1 M [6Li,15N]Et$_2$NLi in 3:2 pentane:toluene with 1.0 equiv of THF at -118 °C: (A) 6Li spectrum; (B) 6Li[15N] spectrum; (C) 6Li spectrum, 15N single frequency decoupled at 46.8 ppm; (D) 6Li spectrum, 15N single frequency decoupled at 46.3 ppm; (E) 6Li spectrum, 15N single frequency decoupled at 43.2 ppm; (F) 6Li spectrum, 15N single frequency decoupled at 33.8 ppm; (G) 15N[1H, 6Li] spectrum.
Figure XXVI. 6Li and 15N NMR spectra of 0.1 M $[^6$Li,15N]Et_2NLi in 2:1 pentane:toluene with 1.0 equiv of THF at -87 °C: (A) 6Li spectrum; (B) 6Li(15N) spectrum; (C) 6Li spectrum, 15N single frequency decoupled at 50.8 ppm; (D) 6Li spectrum, 15N single frequency decoupled at 46.0 ppm; (E) 6Li spectrum, 15N single frequency decoupled at 42.6 ppm; (F) 6Li spectrum, 15N single frequency decoupled at 33.8 ppm; (G) 15N(1H, 6Li) spectrum.
Figure XXVII. 6Li,15N-heteronuclear multiple quantum correlation (HMOC) spectrum of 0.1 M $[^6$Li,15N]Et_2NLi in 3:2 pentane:toluene with 1 equiv of THF at -118 °C.
Figure XXVIII. 6Li,15N-heteronuclear multiple quantum correlation (HMQC) spectrum of 0.1 M $[^6$Li,15N]Et_2NLi in 3:2 pentane:toluene with 1 equiv of THF at -87 °C.
Figure XXIX. 6Li and 15N NMR spectra of 0.1 M $[^6]$Li,$[^{15}$N]Et$_2$NLi in diethyl ether at -100 °C:
(A) 6Li NMR spectrum in neat ether; (B) 15N(1H) NMR spectrum in neat ether (Note: Distortion of quintet is caused by presence of $[^{15}$N]Et$_2$NH underneath the multiplet.); (C) 6Li NMR spectrum in toluene with 20 equiv ether; (D) 15N(1H) NMR spectrum in toluene with 20 equiv ether; (E) 6Li NMR spectrum in toluene with 5 equiv ether.
Figure XXX. 6Li-detected 15N zero-quantum NMR spectrum of 0.1 M [6Li,15N]Et$_2$NLi in neat diethyl ether at -100 °C.