Lithium Hexamethyldisilazide-Mediated Enolizations: Influence of Chelating Ligands and Hydrocarbon Cosolvents on the Rates and Mechanisms

Peter F. Godenschwager and David B. Collum Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853-1301

Supporting Information

Part I. NMR / in situ IR Structural Studies

I	⁶ Li NMR spectra recorded on [6 Li, 15 N]LiHMDS with TMEDA showing enolization of ketone 1 - <i>d</i> ₃ in 2:1 toluene/pentane.
П	⁶ Li NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS with 2.0 equiv DME showing complexation of ketone $1-d_3$ to LiHMDS monomer and dimer in 2:1 toluene/pentane.
III	⁶ Li NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS with 10 equiv DME showing LiHMDS-ketone complex 20 - d_3 and mixed dimer 11 - d_2 in 2:1 toluene/pentane.
IV	⁶ Li NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS with <i>trans</i> -TMCDA showing complexation of carbamate 15 in 3.0 M toluene/pentane.
V	⁶ Li NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS with TMEDA showing enolization of ketone $1-d_3$ in toluene.
VI	⁶ Li NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS with <i>trans</i> -TMCDA and carbamate 15 .
VII	⁶ Li NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS with TMEDA and varying toluene/pentane ratios.
VIII	In situ IR spectra of carbamate 15 with 0.10 M LiHMDS and 0.50 M TMEDA in 3.0 M toluene/pentane at various temperatures.
IX	In situ IR spectra of ketone 1 with 0.10 M LiHMDS and 0.50 M TMEDA in varying toluene/pentane mixtures at -60 °C.

Part II. in situ IR Kinetic Studies

X	Plot of k_{obsd} vs [<i>trans</i> -TMCDA] in toluene for the enolization of 1 by LiHMDS.
XI	Table of data for plot in section X .
XII	Plot of k_{obsd} vs [LiHMDS] for the enolization of 1 in <i>trans</i> -TMCDA/toluene.
XIII	Table of data for plot in section XII .
XIV	Plot of k_{obsd} vs [TMEDA] in toluene for the enolization of 1 - d_3 by LiHMDS.
XV	Table of data for the plot in section XIV .
XVI	Plot of k_{obsd} vs [LiHMDS] for the enolization of 1 - d_3 in TMEDA/toluene.
XVII	Table of data for the plot in section XVI .
XVIII	Plot of k_{obsd} vs [DME] in toluene for the enolization of 1 by LiHMDS.
XIX	Table of data for the plot in section XVIII .
XX	Plot of k_{obsd} vs [LiHMDS] for the enolization of 1 in DME (1.0 equiv) and toluene.
XXI	Table of data for the plot in section XX .
XXII	Plot of k_{obsd} vs [LiHMDS] for the enolization of 1 in DME (1.3 M) and toluene.
XXIII	Table of data for the plot in section XXII .
XXIV	Plot of k_{obsd} vs [LiHMDS] for the enolization of 1 in DME (6.8 M) and toluene.
XXV	Table of data for the plot in section XXIV .
XXVI	Plot of k_{obsd} vs [toluene] for the enolization of $1-d_3$ by LiHMDS in TMEDA/pentane.
XXVII	Table of data for the plot in section XXVI .

XXVIII	Plot of k_{obsd} vs [mesitylene] for the enolization of $1-d_3$ by LiHMDS in TMEDA/pentane.
XXIX	Table of data for the plot in section XXVIII .
XXX	Plot of k_{obsd} vs [toluene] for the enolization of 1 by LiHMDS in <i>trans</i> -TMCDA/pentane.
XXXI	Table of data for the plot in section XXX .

S3

Structures in Supporting Information

Me

Мe

I. ⁶Li NMR spectra of 0.10 M [⁶Li,¹⁵N]LiHMDS with added TMEDA and 1- d_3 in 2:1 toluene/pentane at -100 °C: A) ⁶Li NMR spectrum with 5.0 equiv of added TMEDA; B) ⁶Li NMR spectrum with 5.0 equiv of added TMEDA and 0.2 equiv of added 1- d_3 .

II. ⁶Li NMR spectra of 0.10 M [⁶Li,¹⁵N]LiHMDS with added DME and 1- d_3 in 2:1 toluene/pentane at -100 °C: (A) ⁶Li NMR spectrum with 2.0 equiv of added DME; (B) ⁶Li NMR spectrum with 2.0 equiv of added DME and 0.50 equiv of added 1- d_3 ; (C) ⁶Li {¹⁵N} NMR spectrum of B.

III. ⁶Li NMR spectra of 0.10 M [⁶Li,¹⁵N]LiHMDS with added DME and $1-d_3$ in toluene at -90 °C: (A) ⁶Li NMR spectrum with 10 equiv of added DME; (B) ⁶Li NMR spectrum with 10 equiv of added DME and 0.50 equiv of added $1-d_3$ (showing enolate peaks).

IV. ⁶Li NMR spectra of 0.10 M [⁶Li,¹⁵N]LiHMDS with added *trans*-TMCDA and 1- d_3 in toluene at -90 °C: (A) ⁶Li NMR spectrum with 5.0 equiv added *trans*-TMCDA and 0.2 equiv of added 1- d_3 (before reaction); (B) ⁶Li NMR spectrum of A after warming of tube (showing enolate peaks); (C) ⁶Li {¹⁵N} NMR spectrum of B.

V. ⁶Li NMR spectra of 0.10 M [⁶Li,¹⁵N]LiHMDS with added TMEDA and carbamate **15** in 3.0 M toluene/pentane at -90 °C: (A) ⁶Li{¹⁵N} NMR spectrum with 5.0 equiv of added TMEDA; (B) ⁶Li{¹⁵N} NMR spectrum with 5.0 equiv of added TMEDA and 0.5 equiv of added **15**; (C) ⁶Li{¹⁵N} NMR spectrum with 5.0 equiv of added TMEDA and 1.0 equiv of added **15**; (D) ⁶Li{¹⁵N} NMR spectrum with 5.0 equiv of added TMEDA and 1.0 equiv of added **15**; (D) ⁶Li{¹⁵N} NMR spectrum with 5.0 equiv of added TMEDA and 2.0 equiv of added **15**.

VI. ⁶Li NMR spectra of 0.10 M [⁶Li,¹⁵N]LiHMDS with added *trans*-TMCDA and carbamate **15** in 3.0 M toluene/pentane at -90 °C: (A) ⁶Li{¹⁵N} NMR spectrum with 5.0 equiv of added *trans*-TMCDA; (B) ⁶Li{¹⁵N} NMR spectrum with 5.0 equiv of added *trans*-TMCDA and 0.5 equiv of added **15**; (C) ⁶Li{¹⁵N} NMR spectrum with 5.0 equiv of added *trans*-TMCDA and 1.0 equiv of added **15**; (D) ⁶Li{¹⁵N} NMR spectrum with 5.0 equiv of added *trans*-TMCDA and 2.0 equiv of added **15**.

VII. ⁶Li NMR spectra of 0.10 M [⁶Li,¹⁵N]LiHMDS with added toluene in pentane at -90 °C showing LiHMDS dimer: (A) ⁶Li{¹⁵N} NMR spectrum with 3.0 M added toluene; (B) ⁶Li{¹⁵N} NMR spectrum with 4.0 M added toluene; (C) ⁶Li{¹⁵N} NMR spectrum with 6.0 M added toluene; (D) ⁶Li{¹⁵N} NMR spectrum with 8.0 M added toluene.

VIII. In situ IR spectra recorded on 0.005 M carbamate **15** in 3.0 M toluene/pentane with 0.10 M LiHMDS and 0.50 M TMEDA at (A) 0 °C; (B) -30 °C; (C) -60 °C showing free and complexed carbamate.

IX. In situ IR spectra of ketone $1-d_3$ with 0.10 M LiHMDS and 0.50 M TMEDA in A) neat toluene and B) 2.5 M toluene/pentane at -60 °C.

X. Plot of k_{obsd} vs. [*trans*-TMCDA] for the enolization of **1** (0.005 M) by LiHMDS (0.10 M) in toluene at -55 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a[trans$ -TMCDA] + $b (a = 4.6 \pm 0.1 \times 10^{-1}, b = 1.17 \pm 0.02)$.

XI. Table of data for the plot in section I.

[trans-TMCDA] (M)	$k_{\rm obsd} 1 ({\rm s}^{-1})$	$k_{\rm obsd}2~({\rm s}^{-1})$	$k_{\text{obsd}} (\text{avg}) (\text{s}^{-1})$
0.15	$1.37 \pm 0.01\text{E-}3$	$1.07 \pm 0.01 \text{E-}3$	1.2 ±0.2E-3
0.4	1.60 ± 0.01 E-3	1.22 ± 0.01 E-3	$1.4 \pm 0.3 \text{E-}3$
0.6	1.43 ± 0.01 E-3	$1.30 \pm 0.01 \text{E-}3$	$1.40 \pm 0.04 \text{E-}3$
0.9	$1.87 \pm 0.02 \text{E-}3$	$1.46 \pm 0.02\text{E-}3$	$1.6 \pm 0.3 \text{E-}3$
1.2	$1.77 \pm 0.02 \text{E-}3$	$1.62 \pm 0.03 \text{E-}3$	$1.7 \pm 0.1 \text{E-}3$

XII. Plot of k_{obsd} vs. [LiHMDS] for the enolization of **1** (0.005 M) in *trans*-TMCDA (0.40 M) and toluene at -55 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a[\text{LiHMDS}]^b$ ($a = 8.0 \pm 0.5$, $b = 0.86 \pm 0.04$).

XIII. Table of data for plot in section XII.

[

LiHMDS] (M)	$k_{\rm obsd} 1 \ ({\rm s}^{-1})$	$k_{\text{obsd}}2 \text{ (s}^{-1})$	k_{obsd} (avg) (s ⁻¹)
0.05	$6.17 \pm 0.04 \text{E-4}$	$6.32 \pm 0.03 \text{E-4}$	$6.2 \pm 0.1 \text{E-4}$
0.10	1.16 ± 0.01 E-3	1.22 ± 0.01 E-3	$1.19 \pm 0.04 \text{E-}3$
0.15	$1.42 \pm 0.02 \text{E-}3$	$1.59 \pm 0.03 \text{E-}3$	$1.5 \pm 0.1 \text{E-}3$
0.20	$1.93 \pm 0.04 \text{E-}3$	$1.97 \pm 0.03 \text{E-}3$	$1.95 \pm 0.02E-3$
0.30	2.83 ± 0.08 E-3	$2.97 \pm 0.05 \text{E-}3$	$2.90 \pm 0.09 \text{E-3}$

XIV. Plot of k_{obsd} vs. [TMEDA] for the enolization of 1- d_3 (0.005 M) by LiHMDS (0.10 M) in toluene at -60 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a$ [TMEDA] + b ($a = 2 \pm 9 \times 10^{-2}$, $b = 2.4 \pm 0.1$).

XV. Table of data for plot in section **XIV**.

[TMEDA] (M)	$k_{\rm obsd} 1 ({\rm s}^{-1})$	$k_{\rm obsd}2~({\rm s}^{-1})$	$k_{\rm obsd}$ (avg) (s ⁻¹)
0.1	$2.34 \pm 0.05 \text{E-}3$	$2.72 \pm 0.04 \text{E-3}$	2.5 ± 0.1 E-3
0.4	$2.41 \pm 0.05 \text{E-}3$	$2.63 \pm 0.05 \text{E-}3$	$2.5 \pm 0.1 \text{E-}3$
0.9	$2.49 \pm 0.04 \text{E-}3$	2.33 ± 0.05 E-3	$2.4 \pm 0.1 \text{E-}3$
1.4	$2.25 \pm 0.05 \text{E-}3$	$2.45 \pm 0.04 \text{E-}3$	$2.3 \pm 0.1 \text{E-}3$
1.9	$2.77\pm0.05\text{E-}3$	$2.55 \pm 0.06\text{E-3}$	$2.6 \pm 0.1 \text{E-}3$

XVI. Plot of k_{obsd} vs [LiHMDS] for the enolization of $1-d_3$ (0.005 M) in TMEDA (0.40 M) and toluene at -60 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a[\text{LiHMDS}]/(1 + b[\text{LiHMDS}])$ ($a = 3.4 \pm 0.6 \times 10^1$, $b = 3.9 \pm 0.1$).

XVII. Table of data for the plot in section XVI.

[LiHMDS] (M)	$k_{\rm obsd} 1 \ ({\rm s}^{-1})$	$k_{\rm obsd}2~({\rm s}^{-1})$	$k_{\text{obsd}}(\text{avg})(\text{s}^{-1})$
0.05	1.59 ± 0.01 E-3	$1.56 \pm 0.01 \text{E-3}$	$1.57 \pm 0.02\text{E-3}$
0.10	$2.41 \pm 0.05 \text{E-}3$	$2.63 \pm 0.05 \text{E-}3$	$2.5 \pm 0.1 \text{E-}3$
0.20	$3.8 \pm 0.1 \text{E-}3$	4.1 ± 0.1 E-3	$3.9 \pm 0.2 \text{E-}3$
0.30	$4.0 \pm 0.1 \text{E-}3$	4.6 ± 0.1 E-3	$4.3 \pm 0.4 \text{E-}3$
0.40	$5.1 \pm 0.3 \text{E-}3$	6.3 ± 0.4 E-3	$5.7 \pm 0.8 \text{E-}3$

XVIII. Plot of k_{obsd} vs [DME] for the enolization of **1** (0.005 M) by LiHMDS (0.10 M) in toluene at -78 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a[DME]^b/(1 + c[DME]^b) + d$ ($a = 3.9 \pm 0.3$, $b = -2.6 \pm 0.1$, $c = 3.4 \pm 0.3 \times 10^{-1}$, $d = 9 \pm 1 \times 10^{-1}$.

XIX. Table of data for the plot in section XVIII.

[DME] (M)	$k_{\rm obsd} 1 ({\rm s}^{-1})$	$k_{\rm obsd}2~(\rm s^{-1})$	$k_{\text{obsd}}(\text{avg})(\text{s}^{-1})$
0.0	$8.2 \pm 0.1 \text{E-}3$	$7.6 \pm 0.2 \text{E-}3$	8 ± 1E-3
0.1	1.15 ± 0.01 E-2	$1.23 \pm 0.03 \text{E-}2$	$1.19 \pm 0.05\text{E-}2$
0.4	$1.07 \pm 0.01 \text{E-}2$	$1.03 \pm 0.01 \text{E-}2$	$1.05 \pm 0.02\text{E-}2$
0.6	$6.42 \pm 0.08 \text{E-}3$	$7.66 \pm 0.07 \text{E-}3$	$7.0 \pm 0.8 \text{E-}3$
0.8	$5.2 \pm 0.1 \text{E-}3$	$4.8 \pm 0.1 \text{E-}3$	$5.0 \pm 0.2 \text{E-}3$
1.05	$3.58 \pm 0.05 \text{E-}3$	$3.55 \pm 0.04 \text{E-}3$	$3.56 \pm 0.02\text{E-3}$
1.3	$3.01 \pm 0.05 \text{E-}3$	$2.80 \pm 0.06\text{E-3}$	$2.9 \pm 0.1 \text{E-}3$
1.8	$1.83 \pm 0.02\text{E-}3$	$1.80 \pm 0.02\text{E-}3$	$1.81 \pm 0.02\text{E-3}$
2.3	$1.42 \pm 0.01 \text{E-}3$	$1.51 \pm 0.01\text{E-}3$	$1.46 \pm 0.06\text{E-3}$
2.8	$1.07 \pm 0.01 \text{E-}3$	1.100±0.009E-3	$1.08 \pm 0.02\text{E-3}$
3.8	$9.6 \pm 0.1 \text{E-4}$	$1.04 \pm 0.01 \text{E-}3$	$1.00 \pm 0.05 \text{E-3}$
4.8	$8.75 \pm 0.08 \text{E-4}$	$8.35 \pm 0.07 \text{E-4}$	$8.5 \pm 0.2 \text{E-4}$
5.8	$7.69 \pm 0.08 \text{E-4}$	$7.85 \pm 0.06\text{E-4}$	$7.7 \pm 0.1 \text{E-4}$
6.8	$9.27 \pm 0.06\text{E-4}$	$8.79 \pm 0.09 \text{E-4}$	$9.0 \pm 0.3 \text{E-4}$
7.8	$9.4 \pm 0.1 \text{E-4}$	$9.1 \pm 0.1 \text{E-4}$	$9.2 \pm 0.2 \text{E-4}$

XX. Plot of k_{obsd} vs. [LiHMDS] for the enolization of **1** (0.005 M) in DME (1.0 equiv) and toluene at -78 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a$ [LiHMDS] + b ($a = 1.0 \pm 0.6 \times 10^{1}$, $b = 7.3 \pm 0.7$).

XXI. Table of data for the plot in section **XX**.

[LiHMDS] (M)	$k_{\rm obsd} 1 ({\rm s}^{-1})$	$k_{\rm obsd}2~({\rm s}^{-1})$	$k_{\text{obsd}}(\text{avg})(\text{s}^{-1})$
0.05	$7.2 \pm 0.2 \text{E-}3$	$8.80 \pm 0.07 \text{E-}3$	8 ± 1E-3
0.10	$8.2 \pm 1E-3$	$7.6 \pm 0.2 \text{E-}3$	$7.9 \pm 0.4 \text{E-}3$
0.15	9.1 ± 0.3 E-3	$8.9 \pm 0.1 \text{E-}3$	$9.0 \pm 0.1 \text{E-}3$

XXII. Plot of k_{obsd} vs. [LiHMDS] for the enolization of **1** (0.005 M) in DME (1.30 M) and toluene at -78 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a[\text{LiHMDS}]/(1 + b[\text{LiHMDS}])$ ($a = 3.1 \pm 0.1 \times 10^{1}$, $b = 1.3 \pm 0.2$).

XXIII. Table of data for the plot in section XXII.

[LiHMDS] (M)	$k_{\rm obsd} 1 \ ({\rm s}^{-1})$	$k_{\rm obsd}2~({\rm s}^{-1})$	$k_{\text{obsd}}(\text{avg})(\text{s}^{-1})$
0.05	1.32 ± 0.01 E-3	$1.55 \pm 0.01\text{E-3}$	$1.4 \pm 0.1 \text{E-}3$
0.10	$3.01 \pm 0.05 \text{E-}3$	$2.80 \pm 0.06\text{E-3}$	$2.9 \pm 0.1 \text{E-}3$
0.20	$4.8 \pm 0.2 \text{E-}3$	$4.8 \pm 0.2 \text{E-}3$	$4.8 \pm 0.0 \text{E-}3$
0.30	$6.24 \pm 0.06\text{E-3}$	$7.0 \pm 0.1 \text{E-}3$	$6.6 \pm 0.5 \text{E-}3$
0.35	$7.2 \pm 0.3 \text{E-}3$	$7.8 \pm 0.2 \text{E-}3$	$7.5 \pm 0.4 \text{E-}3$

XXIV. Plot of k_{obsd} vs. [LiHMDS] for the enolization of **1** (0.005 M) in DME (6.80 M) and toluene at -78 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a[\text{LiHMDS}]^b$ ($a = 1.90 \pm 0.07 \times 10^1$, $b = 1.35 \pm 0.2$).

XXV. Table of data for the plot in section **XXIV**.

[LiHMDS] (M)	$k_{\text{obsd}} 1 \text{ (s}^{-1})$	$k_{\rm obsd}2~({\rm s}^{-1})$	$k_{\text{obsd}}(\text{avg})(\text{s}^{-1})$
0.05	$3.61 \pm 0.02\text{E-4}$	3.61 ± 0.03 E-4	3.61E-4
0.10	$9.27 \pm 0.06\text{E-4}$	$8.79 \pm 0.09 \text{E-}4$	$9.0 \pm 0.3 \text{E-4}$
0.15	$1.38 \pm 0.01 \text{E-}3$	$1.42 \pm 0.02E-3$	$1.40 \pm 0.02\text{E-}3$
0.20	$2.18 \pm 0.04 \text{E-}3$	$2.19 \pm 0.03E-3$	$2.185 \pm 0.007\text{E-3}$
0.25	$2.92 \pm 0.09 \text{E-}3$	$2.74 \pm 0.04 \text{E-}3$	$2.8 \pm 0.1 \text{E-3}$
0.30	$3.61 \pm 0.09 \text{E-}3$	$3.89 \pm 0.08\text{E-}3$	$3.7 \pm 0.1 \text{E-}3$
0.35	$4.4 \pm 0.1 \text{E-}3$	$4.8 \pm 0.1 \text{E-}3$	$4.6 \pm 0.2 \text{E-}3$

XXVI. Plot of k_{obsd} vs. [toluene] for the enolization of 1- d_3 (0.005 M) by LiHMDS (0.10 M) in TMEDA (0.50 M) and pentane at -60 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a$ [toluene]^b ($a = 1.5 \pm 0.3 \times 10^2$, $b = -1.6 \pm 0.1$).

XXVII. Table of data for the plot in section XXVI.

[toluene] (M)	$k_{\rm obsd} 1 \ ({\rm s}^{-1})$	$k_{\rm obsd}2~({\rm s}^{-1})$	$k_{\text{obsd}}(\text{avg})(\text{s}^{-1})$
3.00	$2.45 \pm 0.03 \text{E-}2$	$2.25 \pm 0.06\text{E-}2$	2.3 ± 0.1 E-2
4.26	$1.57 \pm 0.03 \text{E-}2$	$1.41 \pm 0.02\text{E-}2$	$1.5 \pm 0.1 \text{E-}2$
5.68	$8.2 \pm 0.1 \text{E-}3$	$8.8 \pm 0.1 \text{E-3}$	$8.5 \pm 0.4 \text{E-}3$
7.00	$4.5 \pm 0.1 \text{E-}3$	$5.2 \pm 0.2 \text{E-}3$	$4.8 \pm 0.4 \text{E-}3$
8.52	$2.8 \pm 0.1 \text{E-3}$	$2.97\pm0.06\text{E-}3$	$2.8 \pm 0.1 \text{E-}3$

XXVIII. Plot of k_{obsd} vs. [mesitylene] for the enolization of $1-d_3$ (0.005 M) by LiHMDS (0.10 M) in TMEDA (0.50 M) and pentane at -65 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a$ [mesitylene]^b ($a = 1.3 \pm 0.3 \times 10^2$, $b = -1.8 \pm 0.1$).

XIX. Table of data for the plot in section XXVIII.

[mesitylene] (M)	$k_{\rm obsd} 1 \ ({\rm s}^{-1})$	$k_{\text{obsd}}2 \text{ (s}^{-1})$	$k_{\text{obsd}}(\text{avg})(\text{s}^{-1})$
3.50	$1.38 \pm 0.03\text{E-}2$	$1.18 \pm 0.03\text{E-}2$	1.2 ± 0.1 E-2
4.50	$8.5 \pm 0.2 \text{E-}3$	$8.3 \pm 0.2 \text{E-}3$	$8.4 \pm 0.1 \text{E-}3$
5.68	$4.97 \pm 0.08 \text{E-}3$	$4.9 \pm 0.1 \text{E-}3$	$4.93 \pm 0.04 \text{E-}3$

XXX. Plot of k_{obsd} vs [toluene] for the enolization of **1** (0.005 M) by LiHMDS (0.10 M) in TMCDA (0.50 M) and pentane at -55 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a$ [toluene]^b ($a = 7.2 \pm 0.4 \times 10^{1}$, $b = -1.81 \pm 0.04$).

XXXI. Table of data for the plot in section XXX.

[toluene] (M)	$k_{\rm obsd} 1 ({\rm s}^{-1})$	$k_{\text{obsd}}2 \text{ (s}^{-1})$	$k_{\text{obsd}}(\text{avg})(\text{s}^{-1})$
3.00	$9.9 \pm 0.6 \text{E-}3$	-	$9.9 \pm 0.6 \text{E-}3$
4.17	$5.5 \pm 0.2 \text{E-}3$	-	$5.5 \pm 0.2 \text{E-}3$
6.00	$2.92 \pm 0.05 \text{E-}3$	-	$2.92 \pm 0.05 \text{E-}3$
8.34	$1.22 \pm 0.01 \text{E-}3$	$1.60 \pm 0.01 \text{E-}3$	$1.4 \pm 0.3 \text{E-}3$