Structural and Rate Studies of the Formation and Trapping of Benzyne

Jason C. Riggs,^{*a*} Antonio Ramirez,^{*a*} Matthew E. Cremeens,^{*a*} John Candler,^{*b*} Crystal G. Bashore,^{*b*} Michael C. Wirtz,^{*b*} Jotham W. Coe,^{*b**} and David B. Collum^{*a**}

Contribution from the Department of Chemistry and Chemical Biology ^aBaker Laboratory, Cornell University, Ithaca, New York 14853-1301 ^bPfizer Global Research and Development, Groton Laboratories, Pfizer, Inc., Groton, CT 06340

Supporting Information

		Page
Ι	¹³ C NMR spectrum of 2-chloro-6-fluorophenyllithium (6)	S4
II	⁶ Li NMR spectra of 2-chloro-6-fluorophenyllithium (6)	S4
III	¹³ C NMR spectrum of 2,6-dichlorophenyllithium (7)	S5
IV	⁶ Li NMR spectra of 2,6-dichlorophenyllithium (7)	S5
V	¹³ C NMR spectrum of 3-chloro-6-fluorophenyllithium (8)	S6
VI	⁶ Li NMR spectra of 3-chloro-6-fluorophenyllithium (8)	S6
VII	¹³ C NMR spectrum of 2,3-dichloro-6-methoxyphenyllithium (9)	S7
VIII	⁶ Li NMR spectra of 2,3-dichloro-6-methoxyphenyllithium (9)	S7
IX	¹³ C NMR spectrum of 2,3-difluoro-6-methoxyphenyllithium (10)	S8
X	⁶ Li NMR spectra of 2,3-difluoro-6-methoxyphenyllithium (10)	S 8
XI	Plot of k_{obsd} vs [6] in THF (0.3 M) for the elimination of Li-halide	S9
XII	Plot of k_{obsd} vs [6] in THF (6.8 M) for the elimination of Li-halide	S10
XIII	Plot of k_{obsd} vs [THF] for the elimination of Li-halide from 6	S11
XIV	Plot of k_{obsd} vs [THF] for the elimination of LiF from 6	S12
XV	Plot of k_{obsd} vs [THF] for the elimination of LiCl from 6	S13

XVI	Plot of k_{obsd} vs [diene] for the elimination of Li-halide from 6	S14
XVII	Plot of k_{obsd} vs [3] for the elimination of Li-halide	S15
XVIII	[5a]:[5b] ratio vs [THF] for the elimination of Li-halide from 6	S15
XIX	Plot of k_{obsd} vs [7] in THF for the elimination of LiCl	S16
XX	Plot of k_{obsd} vs [THF] for the elimination of LiCl from 7	S17
XXI	Plot of k_{obsd} vs [diene] for the elimination of LiCl from 7	S18
XXII	Plot of k_{obsd} vs [C ₆ H ₄ Cl ₂] for the elimination of LiCl	S19
XXIII	Plot of k_{obsd} vs [8] in THF (0.3 M) for the elimination of LiF	S20
XXIV	Plot of k_{obsd} vs [8] in THF (6.8 M) for the elimination of LiF	S21
XXV	Plot of k_{obsd} vs [THF] for the elimination of LiF from 8	S22
XXVI	Plot of k_{obsd} vs [diene] for the elimination of LiF from 8	S23
XXVII	Plot of k_{obsd} vs $[C_6H_4F_2]$ for the elimination of LiF from 8	S24
XXVIII	Plot of k_{obsd} vs [9] in THF (5.0 M) for the elimination of LiCl	S25
XXIX	Plot of k_{obsd} vs [THF] for the elimination of LiCl from 9	S26
XXX	Plot of k_{obsd} vs [diene] for the elimination of LiCl from 9	S27
XXXI	Plot of k_{obsd} vs [C ₇ H ₆ Cl ₂ O] for the elimination of LiCl	S28
XXXII	Plot of k_{obsd} vs [10] in THF (5.0 M) for the elimination of LiF	S29
XXXIII	Plot of k_{obsd} vs [THF] for the elimination of LiF from 10	S 30
XXXIV	Plot of k_{obsd} vs [diene] for the elimination of LiF from 10	S31
XXXV	Plot of k_{obsd} vs [C ₇ H ₆ F ₂ O] for the elimination of LiF	S32
XXXVI	DFT computational studies	S33
XXXVII	Selected bond distances for structures in Section XXXVI	S40
XXXVII	II Representative Relaxed PES scans	S41
XXXIX	Experimental Section	S46
XL	Physical and Spectral Data	S47

I. 13 C NMR spectrum in neat THF at -100 °C of 0.4 M [6 Li]2-chloro-6-fluorophenyllithium (6).

M THF at –85 °C.

III. ¹³C NMR spectrum in neat THF at –100 °C of 0.4 M [⁶Li]2,6dichlorophenyllithium (7).

IV. ⁶Li NMR spectra in THF and toluene cosolvent of: (A) 0.20 M [⁶Li]-7 in 10.3 M THF at -100 °C; (B) 0.10 M [⁶Li]-7 in 5.0 M THF at -85 °C; (C) 0.10 M [⁶Li]-7 in 0.3 M THF at -85 °C.

V. ¹³C NMR spectrum in neat THF at –100 °C of 0.4 M [⁶Li]2,6-difluorophenyllithium (8).

VI. ⁶Li NMR spectra in THF and toluene cosolvent of: (A) 0.20 M [⁶Li]-**8** in 10.3 M THF at –100 °C; (B) 0.10 M [⁶Li]-**8** in 5.0 M THF at –85 °C; (C) 0.10 M [⁶Li]-**8** in 0.3 M THF at –85 °C.

VII. ¹³C NMR spectrum in 10.0 M THF and pentane co-solvent at –110 °C of 0.3 M [⁶Li]2,3-dichloro-6-methoxyphenyllithium (9). *Me*O resonance at 54.2 ppm not shown.

VIII. ⁶Li NMR spectra in THF and toluene / pentane cosolvent of: (A) 0.10 M [6 Li]-9 5.0 M THF at – 80 °C; (B) 0.10 M [6 Li]-9 in 10.0 M THF at – 80 °C; (C) 0.30 M [6 Li]-9 in 5.0 M THF at – 80 °C; (D) 0.30 M [6 Li]-9 in 5.0 M THF at – 110 °C.

IX. ¹³C NMR spectrum in 10.0 M THF and pentane co-solvent at –115 °C of 0.3 M [⁶Li]2,3-difluoro-6-methoxyphenyllithium (**10**). *Me*O resonance at 54.1 ppm not shown.

X. ⁶Li NMR spectra in THF and toluene / pentane cosolvent of: (A) 0.10 M [⁶Li]-**10** 5.0 M THF at – 90 °C; (B) 0.10 M [⁶Li]-**10** in 10.0 M THF at – 90 °C; (C) 0.30 M [⁶Li]-**10** in 5.0 M THF at – 90 °C; (D) 0.30 M [⁶Li]-**9** in 5.0 M THF at – 110 °C.

XI. Plot of $k_{obsd(6)}$ versus [6] in THF (0.3 M) and toluene cosolvent for the formation of 3-chloro- and 3-fluorobenzyne at -25 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = k$ [6] + k' ($k = 5 \pm 5 \times 10^{-4}$, $k' = 2.5 \pm 0.1 \times 10^{-3}$).

[6] (M)	$k_{\rm obsd} 1 \; ({\rm s}^{-1})$	$k_{\rm obsd}^{2}$ (s ⁻¹)	$k_{\rm obsd}$ av (s ⁻¹)
0.050			
0.050	0.0029 <u>+</u> 3E-4	0.0022 <u>+</u> 2E-4	0.0026 <u>+</u> 5E-4
0.100	0.0022 <u>+</u> 1E-4	0.0025 <u>+</u> 2E-4	0.0023 <u>+</u> 3E-4
0.150	0.0026 <u>+</u> 1E-4	0.0028 <u>+</u> 3E-4	0.0027 <u>+</u> 1E-4
0.200	0.0022 <u>+</u> 2E-4	0.0023 <u>+</u> 2E-4	0.0022 <u>+</u> 1E-4
0.250	0.0025 <u>+</u> 3E-4	0.0023 <u>+</u> 2E-4	0.0024 <u>+</u> 1E-4
0.300	0.0025 <u>+</u> 2E-4	0.0022 <u>+</u> 2E-4	0.0024 <u>+</u> 2E-4
0.400	0.0024 <u>+</u> 2E-4	0.0025 <u>+</u> 3E-4	0.0024 <u>+</u> 1E-4

XII. Plot of k_{obsd} versus [**6**] in THF (6.8 M) and toluene cosolvent for the formation of 3-chloro- and 3-fluorobenzyne at -25 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = k$ [**6**] + k' ($k = 1 \pm 2 \times 10^{-4}$, $k' = 8.6 \pm 0.6 \times 10^{-4}$).

[6] (M)	$k_{\rm obsd} 1 \ ({\rm s}^{-1})$	$k_{\rm obsd} 2 \ ({\rm s}^{-1})$	$k_{\rm obsd}$ av (s ⁻¹)
0.050	0.0008 <u>+</u> 1E-4	0.0011 <u>+</u> 1E-4	0.0009 <u>+</u> 2E-4
0.100	0.00082 <u>+</u> 5E-5	0.00074 <u>+</u> 3E-5	0.00078 <u>+</u> 6E-5
0.150	0.00088 <u>+</u> 4E-5	0.00082 <u>+</u> 5E-5	0.00085 <u>+</u> 4E-5
0.200	0.00075 <u>+</u> 8E-5	0.00078 <u>+</u> 5E-5	0.00077 <u>+</u> 2E-5
0.300	0.0008 <u>+</u> 1E-4	0.00077 <u>+</u> 4E-5	0.00081 <u>+</u> 5E-5
0.400	0.0008 <u>+</u> 1E-4	0.00089 <u>+</u> 1E-5	0.00086 <u>+</u> 5E-5

XIII. Plot of k_{obsd} versus [THF] in toluene cosolvent for the formation of 3-chloroand 3-fluorobenzyne from **6** (0.2 M) at -25 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = k[THF]^n + k'$ ($k = 4.0 \pm 0.4 \times 10^{-5}$, $n = -1.12 \pm 0.09$, $k' = 7.3 \pm 0.3 \times 10^{-4}$).

Li

6

[THF] (M)	$k_{\rm obsd} 1 \ ({\rm s}^{-1})$	$k_{\rm obsd} 2 \ ({\rm s}^{-1})$	$k_{\rm obsd}$ av (s ⁻¹)
0.30	0.0022 <u>+</u> 2E-4	0.0023 <u>+</u> 2E-4	0.0022 <u>+</u> 1E-4
0.50	0.0017 <u>+</u> 1E-4	0.0016 <u>+</u> 2E-4	0.0017 <u>+</u> 1E-4
0.80	0.0012 <u>+</u> 1E-4	0.0012 <u>+</u> 1E-4	0.0012 <u>+</u> 1E-4
1.30	0.0010 <u>+</u> 1E-4	0.00096 <u>+</u> 8E-5	0.00099 <u>+</u> 4E-5
1.80	0.00092 <u>+</u> 5E-5	0.0010 <u>+</u> 1E-4	0.00096 <u>+</u> 5E-5
2.80	0.00087 <u>+</u> 4E-5	0.00084 <u>+</u> 5E-5	0.00086 <u>+</u> 2E-5
3.80	0.00082 <u>+</u> 4E-5	0.00090 <u>+</u> 3E-5	0.00086 <u>+</u> 6E-5
4.80	0.0009 <u>+</u> 1E-4	0.00080 <u>+</u> 5E-5	0.00083 <u>+</u> 4E-5
6.80	0.00075 <u>+</u> 8E-5	0.00078 <u>+</u> 5E-5	0.00077 <u>+</u> 2E-5
9.00	0.00071 <u>+</u> 6E-5	0.00077 <u>+</u> 8E-5	0.00074 <u>+</u> 4E-5

XIV. Plot of k_{obsd} versus [THF] in toluene cosolvent for the formation of 3chlorobenzyne (**4a**) from **6** (0.2 M) at -25 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = k[THF]^n + k'$ ($k = 4.2 \pm 0.6 \times 10^{-4}$, $n = -1.1 \pm 0.1$, $k' = 1 \pm 4 \times 10^{-5}$).

[THF] (M)	$k_{\rm obsd} 1 \ ({\rm s}^{-1})$	$k_{\rm obsd} 2$ (s ⁻¹)	$k_{\rm obsd} {\rm av}~({\rm s}^{-1})$
0.30	0.0015 <u>+</u> 1E-4	0.0016 <u>+</u> 1E-4	0.0015 <u>+</u> 1E-4
0.50	0.0011 <u>+</u> 1E-4	0.00097 <u>+</u> 6E-5	0.0010 <u>+</u> 1E-4
0.80	0.00048 <u>+</u> 5E-5	0.00049 <u>+</u> 5E-5	0.00048 <u>+</u> 1E-5
1.30	0.00030 <u>+</u> 4E-5	0.00028 <u>+</u> 3E-5	0.00029 <u>+</u> 1E-5
1.80	0.00018 <u>+</u> 2E-5	0.00020 <u>+</u> 2E-5	0.00019 <u>+</u> 1E-5
2.80	0.00014 <u>+</u> 2E-5	0.00013 <u>+</u> 1E-5	0.00014 <u>+</u> 1E-5
3.80	0.00011 <u>+</u> 1E-5	0.00012 <u>+</u> 1E-5	0.00011 <u>+</u> 1E-5
4.80	0.000086 <u>+</u> 8E-6	0.00008 <u>+</u> 1E-5	0.000083 <u>+</u> 4E-6
6.80	0.000082 <u>+</u> 9E-6	0.000086 <u>+</u> 8E-6	0.000084 <u>+</u> 3E-6
9.00	0.000057 <u>+</u> 8E-6	0.000062 <u>+</u> 7E-6	0.000059 <u>+</u> 3E-6

XV. Plot of k_{obsd} versus [THF] in toluene cosolvent for the formation of 3fluorobenzyne (4b) from 6 (0.2 M) at -25 $^{\circ}$ C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = k[THF] + k' (k = -1 \pm 4 \ge 10^{-6}, k' = 7.1 \pm 0.2 \ge 10^{-6}$ 10-4).

$k_{\rm obsd} 1 \ ({\rm s}^{-1})$	$k_{\rm obsd} 2 \ ({\rm s}^{-1})$	$k_{\rm obsd} { m av}~({ m s}^{-1})$
0.00068 <u>+</u> 6E-5	0.00072 <u>+</u> 5E-5	0.00070 <u>+</u> 3E-5
0.00068 <u>+</u> 6E-5	0.00062 <u>+</u> 5E-5	0.00065 <u>+</u> 4E-5
0.00069 <u>+</u> 7E-5	0.00071 <u>+</u> 7E-5	0.00070 <u>+</u> 1E-5
0.00073 <u>+</u> 8E-5	0.00068 <u>+</u> 7E-5	0.00070 <u>+</u> 3E-5
0.00074 <u>+</u> 8E-5	0.00080 <u>+</u> 8E-5	0.00077 <u>+</u> 4E-5
0.00073 <u>+</u> 8E-5	0.00071 <u>+</u> 6E-5	0.00072 <u>+</u> 2E-5
0.00072 <u>+</u> 7E-5	0.00079 <u>+</u> 7E-5	0.00075 <u>+</u> 5E-5
0.00077 <u>+</u> 8E-5	0.00072 <u>+</u> 7E-5	0.00075 <u>+</u> 4E-5
0.00067 <u>+</u> 7E-5	0.00070 <u>+</u> 5E-5	0.00068 <u>+</u> 2E-5
0.00065 <u>+</u> 8E-5	0.00071 <u>+</u> 8E-5	0.00068 <u>+</u> 4E-5
	$k_{obsd}1 (s^{-1})$ $0.00068 \pm 6E-5$ $0.00068 \pm 6E-5$ $0.00069 \pm 7E-5$ $0.00073 \pm 8E-5$ $0.00074 \pm 8E-5$ $0.00072 \pm 7E-5$ $0.00077 \pm 8E-5$ $0.00077 \pm 8E-5$ $0.00067 \pm 7E-5$ $0.00065 \pm 8E-5$	$k_{obsd}1 (s^{-1})$ $k_{obsd}2 (s^{-1})$ $0.00068 \pm 6E-5$ $0.00072 \pm 5E-5$ $0.00068 \pm 6E-5$ $0.00062 \pm 5E-5$ $0.00069 \pm 7E-5$ $0.00071 \pm 7E-5$ $0.00073 \pm 8E-5$ $0.00068 \pm 7E-5$ $0.00074 \pm 8E-5$ $0.00080 \pm 8E-5$ $0.00073 \pm 8E-5$ $0.00071 \pm 6E-5$ $0.00072 \pm 7E-5$ $0.00079 \pm 7E-5$ $0.00077 \pm 8E-5$ $0.00072 \pm 7E-5$ $0.00077 \pm 8E-5$ $0.00070 \pm 5E-5$ $0.00067 \pm 7E-5$ $0.00071 \pm 8E-5$

XVI. Plot of k_{obsd} versus [spiro[2.4]hepta-4,6-diene] in THF (0.3 M) and toluene cosolvent for the formation of 3-chloro and 3-fluorobenzyne from **6** (0.2 M) at -25 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = k$ [diene] + k' ($k = -1 \pm 4 \ge 10^{-4}$, $k' = 2.2 \pm 0.1 \ge 10^{-3}$).

[Diene] (M)	$k_{\rm obsd} 1 \; ({\rm s}^{-1})$	$k_{\rm obsd} 2 ({\rm s}^{-1})$	$k_{\rm obsd} {\rm av}~({\rm s}^{-1})$
0.02	0.0022 <u>+</u> 2E-4	0.00212 <u>+</u> 4E-5	0.00216 <u>+</u> 5E-5
0.04	0.0022 <u>+</u> 2E-4	0.0023 <u>+</u> 2E-4	0.0022 <u>+</u> 1E-4
0.10	0.0020 <u>+</u> 1E-4	0.00217 <u>+</u> 4E-5	0.00211 <u>+</u> 9E-5
0.20	0.00207 <u>+</u> 3E-5	0.0021 <u>+</u> 2E-4	0.00210 <u>+</u> 4E-5

XVII. Plot of k_{obsd} versus [**3**] in THF (0.3 M) and toluene cosolvent for the formation of 3-chloro and 3-fluorobenzyne from **6** (0.2 M) at -25 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = k[\mathbf{3}] + k'$ ($k = 1 \pm 2 \times 10^{-4}$, $k' = 2.3 \pm 0.1 \times 10^{-3}$).

[3] (M)	$k_{\rm obsd} 1 \; ({\rm s}^{-1})$	$k_{\rm obsd} 2 \ ({\rm s}^{-1})$	$k_{\rm obsd}$ av (s ⁻¹)
0.00	0.0025 <u>+</u> 3E-4	0.0021 <u>+</u> 2E-4	0.0023 <u>+</u> 3E-4
0.10	0.0022 <u>+</u> 2E-4	0.0024 <u>+</u> 3E-4	0.0023 <u>+</u> 1E-4
0.20	0.0022 <u>+</u> 2E-4	0.0023 <u>+</u> 2E-4	0.0022 <u>+</u> 1E-4
0.30	0.00225 <u>+</u> 3E-5	0.0025 <u>+</u> 2E-4	0.0024 <u>+</u> 1E-4

XVIII. Table of data for observed ratio of [**5a**]:[**5b**] versus [THF] in toluene cosolvent for the formation of 3-chloro and 3-fluorobenzyne from **6** (0.2 M).

[THF] (M)	[5a]:[5b] (av)	[THF] (M)	[5 a]:[5 b] (av)
0.30	0.69 <u>+</u> 0.08	2.80	0.16 <u>+</u> 0.02
0.50	0.61 <u>+</u> 0.07	3.80	0.13 <u>+</u> 0.01
0.80	0.41 <u>+</u> 0.05	4.80	0.10 <u>+</u> 0.01
1.30	0.29 <u>+</u> 0.02	6.80	0.11 <u>+</u> 0.01
1.80	0.20 <u>+</u> 0.02	9.00	0.08 <u>+</u> 0.01

XIX. Plot of k_{obsd} versus [7] in THF (0.3 M) and toluene cosolvent for the formation of 3-chlorobenzyne (**4a**) at -25 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = k[7] + k' (k = (-5 \pm 3) \times 10^{-4}, k' = (1.8 \pm 0.1) \times 10^{-3}).$

[7] (M)	$k_{\rm obsd} 1 ({\rm s}^{-1})$	$k_{\rm obsd} 2 \ ({\rm s}^{-1})$	$k_{\rm obsd} {\rm av}~({\rm s}^{-1})$
0.05	0.0017 <u>+</u> 1E-4	0.0020 <u>+</u> 2E-4	0.0019 <u>+</u> 2E-4
0.10	0.0016 <u>+</u> 1E-4	0.0018 <u>+</u> 2E-4	0.0017 <u>+</u> 1E-4
0.15	0.00179 <u>+</u> 9E-5	0.0016 <u>+</u> 1E-4	0.0017 <u>+</u> 1E-4
0.20	0.0016 <u>+</u> 2E-4	0.00151 <u>+</u> 5E-5	0.00155 <u>+</u> 5E-5
0.25	0.0017 <u>+</u> 1E-4	0.00157 <u>+</u> 9E-5	0.0016 <u>+</u> 1E-4
0.30	0.0016 <u>+</u> 1E-4	0.00181 <u>+</u> 8E-5	0.0017 <u>+</u> 1E-4
0.40	0.00163 <u>+</u> 7E-5	0.0016 <u>+</u> 1E-4	0.00161 <u>+</u> 3E-5

XX. Plot of k_{obsd} vs [THF] in toluene cosolvent for the formation of 3chlorobenzyne (**4a**) from **7** (0.2 M) at -25 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = k$ [THF] + k' ($k = (-4 \pm 9) \times 10^{-6}$, $k' = (1.5 \pm 0.1) \times 10^{-3}$).

[THF] (M)	$k_{\rm obsd} 1 \; ({\rm s}^{-1})$	$k_{\rm obsd} 2 \ ({\rm s}^{-1})$	$k_{\rm obsd} {\rm av}~({\rm s}^{-1})$
0.30	0.0016 <u>+</u> 2E-4	0.00151 <u>+</u> 5E-5	0.00155 <u>+</u> 6E-5
0.80	0.00141 <u>+</u> 8E-5	0.0016 <u>+</u> 1E-4	0.0015 <u>+</u> 1E-4
2.80	0.00137 <u>+</u> 7E-5	0.0015 <u>+</u> 1E-4	0.00144 <u>+</u> 9E-5
5.80	0.0013 <u>+</u> 1E-4	0.00146 <u>+</u> 9E-5	0.00140 <u>+</u> 9E-5
9.00	0.00144 <u>+</u> 9E-5	0.0016 <u>+</u> 2E-4	0.0015 <u>+</u> 1E-4

XXI. Plot of k_{obsd} versus [spiro[2.4]hepta-4,6-diene] in THF (0.3 M) and toluene cosolvent for the formation of 3-chlorobenzyne (**4a**) from **7** (0.2 M) at -25 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = k$ [diene] + k' ($k = (-6 \pm 3) \times 10^{-4}$, $k' = (9.4 \pm 0.3) \times 10^{-4}$).

[Diene] (M)	$k_{\rm obsd} 1 \; ({\rm s}^{-1})$	$k_{\rm obsd} 2$ (s ⁻¹)	$k_{\rm obsd}$ av (s ⁻¹)
0.02	0.0018 <u>+</u> 2E-4	0.00183 <u>+</u> 8E-5	0.00180 <u>+</u> 5E-5
0.04	0.0016 <u>+</u> 2E-4	0.00151 <u>+</u> 5E-5	0.00155 <u>+</u> 6E-5
0.10	0.00156 <u>+</u> 8E-5	0.0017 <u>+</u> 2E-4	0.0016 <u>+</u> 1E-4
0.20	0.0015 <u>+</u> 1E-4	0.00147 <u>+</u> 6E-5	0.00149 <u>+</u> 2E-5

XXII. Plot of k_{obsd} versus $[C_6H_4Cl_2]$ in THF (0.3 M) and toluene cosolvent for the formation of 3-chlorobenzyne (**4a**) from **7** (0.2 M) at -25 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = k[C_6H_4Cl_2] + k'$ ($k = 2 \pm 3 \times 10^{-4}$, $k' = 1.6 \pm 0.1 \times 10^{-3}$).

$\left[C_{6}H_{4}Cl_{2}\right](M)$	$k_{\rm obsd} 1 \ ({\rm s}^{-1})$	$k_{\rm obsd} 2 \ ({\rm s}^{-1})$	$k_{\rm obsd}$ av (s ⁻¹)
0.00	0.0017 <u>+</u> 2E-4	0.00148 <u>+</u> 8E-5	0.0016 <u>+</u> 2E-4
0.10	0.00170 <u>+</u> 7E-5	0.00157 <u>+</u> 7E-5	0.00164 <u>+</u> 9E-5
0.20	0.0016 <u>+</u> 2E-4	0.00151 <u>+</u> 5E-5	0.00155 <u>+</u> 6E-5
0.30	0.00161 <u>+</u> 8E-5	0.0018 <u>+</u> 1E-4	0.0017 <u>+</u> 1E-4

XXIII. Plot of k_{obsd} versus [8] in THF (0.3 M) and toluene cosolvent for the formation of 3-fluorobenzyne (**4b**) at -25 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = k[8] + k' (k = 4.5 \pm 3.6) \times 10^{-4}$, $k' = (8 \pm 1) \times 10^{-4}$).

[8] (M)	$k_{\rm obsd} 1 \; ({\rm s}^{-1})$	$k_{\rm obsd} 2 \ ({\rm s}^{-1})$	$k_{\rm obsd} { m av} ~({ m s}^{-1})$
0.05	$0.00060 \pm 9E_{-}5$	$0.0008 \pm 1E_{-1}$	$0.0007 \pm 2E_{-}1$
0.10	0.00095 <u>+</u> 8E-5	0.0011 <u>+</u> 1E-4	0.0007 <u>+</u> 2E-4 0.0010 <u>+</u> 1E-4
0.15	0.00082 <u>+</u> 9E-5	0.0010 <u>+</u> 1E-4	0.0009 <u>+</u> 1E-4
0.20	0.00086 <u>+</u> 9E-5	0.00074 <u>+</u> 9E-5	0.00080 <u>+</u> 8E-5
0.25	0.0010 <u>+</u> 1E-4	0.00093 <u>+</u> 7E-5	0.00097 <u>+</u> 6E-5
0.30	0.00087 <u>+</u> 8E-5	0.00095 <u>+</u> 7E-5	0.00091 <u>+</u> 6E-5
0.40	0.00096 <u>+</u> 9E-5	0.0010 <u>+</u> 1E-4	0.0010 <u>+</u> 1E-4

XXIV. Plot of k_{obsd} versus [8] in THF (6.8 M) and toluene cosolvent for the formation of 3-fluorobenzyne (**4b**) at -25 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = k[8] + k' (k = 1 \pm 1) \times 10^{-5}$, $k' = (4.1 \pm 0.2) \times 10^{-5}$).

[8] (M)	$k_{\rm obsd} 1 \; ({\rm s}^{-1})$	$k_{\rm obsd} 2 \ ({\rm s}^{-1})$	$k_{\rm obsd} { m av} ~({ m s}^{-1})$
0.05			
0.05	0.000036 <u>+</u> 5E-6	0.000040 <u>+</u> 5E-6	0.000038 <u>+</u> 3E-6
0.10	0.000040 <u>+</u> 6E-6	0.000046 <u>+</u> 6E-6	0.000043 <u>+</u> 4E-6
0.15	0.000043 <u>+</u> 3E-6	0.000047 <u>+</u> 2E-6	0.000045 <u>+</u> 3E-6
0.20	0.000050 <u>+</u> 6E-6	0.000045 <u>+</u> 6E-6	0.000047 <u>+</u> 3E-6
0.30	0.000047 <u>+</u> 5E-6	0.000043 <u>+</u> 6E-6	0.000045 <u>+</u> 2E-6
0.40	0.000042 <u>+</u> 4E-6	0.000045 <u>+</u> 5E-6	0.000044 <u>+</u> 2E-6

XXV. Plot of k_{obsd} versus [THF] in toluene cosolvent for the formation of 3-fluorobenzyne (**4b**) from **8** (0.2 M) at -25 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = k[\text{THF}]^n + k'$ ($k = 2.4 \pm 0.2$) x 10⁻⁴, $n = -1.0 \pm 0.1$, $k' = (0.1 \pm 2.0) \times 10^{-5}$).

[THF] (M)	$k_{\rm obsd} 1 \ ({\rm s}^{-1})$	$k_{\rm obsd} 2 \ ({\rm s}^{-1})$	$k_{\rm obsd}$ av (s ⁻¹)
0.30	0.00086 <u>+</u> 9E-5	0.00074 <u>+</u> 9E-5	0.00080 <u>+</u> 7E-5
0.50	0.00047 <u>+</u> 6E-5	0.0005 <u>+</u> 1E-4	0.00049 <u>+</u> 2E-5
0.80	0.00031 <u>+</u> 4E-5	0.00037 <u>+</u> 3E-5	0.00034 <u>+</u> 4E-5
1.30	0.00017 <u>+</u> 2E-5	0.00015 <u>+</u> 1E-5	0.00016 <u>+</u> 1E-5
1.80	0.00011 <u>+</u> 1E-5	0.00013 <u>+</u> 1E-5	0.00012 <u>+</u> 1E-5
2.80	0.00008 <u>+</u> 1E-5	0.00007 <u>+</u> 1E-5	0.000075 <u>+</u> 4E-6
3.80	0.00007 <u>+</u> 1E-5	0.000065 <u>+</u> 5E-6	0.000067 <u>+</u> 3E-6
4.80	0.000055 <u>+</u> 6E-6	0.000050 <u>+</u> 7E-6	0.000052 <u>+</u> 3E-6
6.80	0.000050 <u>+</u> 6E-6	0.000045 <u>+</u> 6E-6	0.000047 <u>+</u> 3E-6
9.00	0.000041 <u>+</u> 4E-6	0.000044 <u>+</u> 6E-6	0.000042 <u>+</u> 3E-6

XXVI. Plot of k_{obsd} versus [spiro[2.4]hepta-4,6-diene] in THF (0.3 M) and toluene cosolvent for the formation of 3-fluorobenzyne (**4b**) from **8** (0.2 M) at -25 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = k$ [diene] + k' ($k = (3 \pm 3) \times 10^{-4}$, $k' = (8.3 \pm 0.3) \times 10^{-4}$).

[Diene] (M)	$k_{\rm obsd} 1 \ ({\rm s}^{-1})$	$k_{\rm obsd} 2 \ ({\rm s}^{-1})$	$k_{\rm obsd} {\rm av}~({\rm s}^{-1})$
0.02	0.00082 <u>+</u> 8E-5	0.0009 <u>+</u> 1E-4	0.00086 <u>+</u> 4E-5
0.04	0.00086 <u>+</u> 9E-5	0.00074 <u>+</u> 9E-5	0.00080 <u>+</u> 7E-5
0.10	0.0009 <u>+</u> 1E-4	0.00087 <u>+</u> 9E-5	0.00089 <u>+</u> 3E-5
0.20	0.0009 <u>+</u> 1E-4	0.00083 <u>+</u> 7E-5	0.00088 <u>+</u> 7E-5

XXVII. Plot of k_{obsd} versus $[C_6H_4F_2]$ in THF (0.3 M) and toluene cosolvent for the formation of 3-fluorobenzyne (**4b**) from **8** (0.2 M) at -25 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = k[C_6H_4Cl_2] + k'$ ($k = (5 \pm 8) \times 10^{-5}$, $k' = (7.8 \pm 0.1) \times 10^{-4}$).

$[C_6H_4F_2]$ (M)	$k_{\rm obsd} 1 \ ({\rm s}^{-1})$	$k_{\rm obsd} 2$ (s ⁻¹)	$k_{\rm obsd}$ av (s ⁻¹)
0.00	0.00072 <u>+</u> 9E-5	0.0008 <u>+</u> 1E-4	0.00077 <u>+</u> 7E-5
0.10	0.0008 <u>+</u> 1E-4	0.00085 <u>+</u> 8E-5	0.00081 <u>+</u> 6E-5
0.20	0.00086 <u>+</u> 9E-5	0.00074 <u>+</u> 9E-5	0.00080 <u>+</u> 7E-5
0.30	0.00083 <u>+</u> 8E-5	0.0007 <u>+</u> 1E-4	0.00079 <u>+</u> 6E-5

XXVIII. Plot of k_{obsd} versus [9] in THF (5.0 M) and toluene cosolvent for the formation of 6-chloro-3-methoxybenzyne from 9 at -50 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = k[9] + k' (k = (2 \pm 1) \times 10^{-3})$, $k' = (6 \pm 2) \times 10^{-4}$.

[9] (M)	$k_{\rm obsd} 1 \ ({ m s}^{-1})$	$k_{\rm obsd} 2 ({\rm s}^{-1})$	$k_{\rm obsd}$ av (s ⁻¹)
0.025	0.00082 <u>+</u> 9E-5	0.0008 <u>+</u> 2E-4	0.00079 <u>+</u> 4E-5
0.050	0.00055 <u>+</u> 7E-5	0.00029 <u>+</u> 6E-5	0.0004 <u>+</u> 2E-4
0.100	0.0011 <u>+</u> 1E-4	0.0010 <u>+</u> 1E-4	0.0010 <u>+</u> 1E-4
0.150	0.0008 <u>+</u> 1E-4	0.00085 <u>+</u> 1E-5	0.000850 <u>+</u> 3E-6
0.200	0.00112 <u>+</u> 7E-5	0.0009 <u>+</u> 2E-4	0.0010 <u>+</u> 2E-4
0.250	0.00082 <u>+</u> 9E-5	0.0010 <u>+</u> 1E-4	0.00079 <u>+</u> 4E-5

XXIX. Plot of k_{obsd} versus [THF] in toluene cosolvent for the formation of 3-chloro-6-methoxybenzyne from **9** (0.1 M) at -50 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = k$ [THF] + k' ($k = (0.5 \pm 2.0) \times 10^{-5}$, $k' = (9 \pm 1) \times 10^{-4}$).

[THF] (M)	$k_{\rm obsd} 1 \ ({\rm s}^{-1})$	$k_{\rm obsd} 2 \ ({\rm s}^{-1})$	$k_{\rm obsd} {\rm av}~({\rm s}^{-1})$
1.0	0.0007 <u>+</u> 1E-4	0.00080 <u>+</u> 5E-5	0.00078 <u>+</u> 3E-5
3.0	0.00097 <u>+</u> 6E-5	0.0009 <u>+</u> 1E-4	0.00092 <u>+</u> 7E-5
5.0	0.0011 <u>+</u> 1E-4	0.0010 <u>+</u> 1E-4	0.0010 <u>+</u> 1E-4
7.0	0.00076 <u>+</u> 6E-5	0.0008 <u>+</u> 1E-4	0.00080 <u>+</u> 6E-5
9.0	0.00079 <u>+</u> 8E-5	0.0010 <u>+</u> 1E-4	0.00088 <u>+</u> 6E-5

XXX. Plot of k_{obsd} versus [spiro[2.4]hepta-4,6-diene] in THF (5.0 M) and toluene cosolvent for the formation of 6-chloro-3-methoxybenzyne from **9** (0.1 M) at -50 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = k[diene] + k' (k = (-2 \pm 5) \times 10^{-4}, k' = (1.0 \pm 0.1) \times 10^{-3}).$

[Diene] (M)	$k_{\rm obsd} 1 \ ({\rm s}^{-1})$	$k_{\rm obsd} 2 \ ({\rm s}^{-1})$	$k_{\rm obsd}$ av (s ⁻¹)
0.12	0.0010 <u>+</u> 1E-4	0.00093 <u>+</u> 7E-5	0.00094 <u>+</u> 2E-5
0.20	0.0011 <u>+</u> 1E-4	0.0010 <u>+</u> 1E-4	0.0010 <u>+</u> 1E-4
0.25	0.0007 <u>+</u> 1E-4	0.0011 <u>+</u> 1E-4	0.0009 <u>+</u> 2E-4
0.30	0.00094 <u>+</u> 7E-5	0.00091 <u>+</u> 7E-5	0.00092 <u>+</u> 2E-5

XXXI. Plot of k_{obsd} versus [3,4-dichloroanisole] in THF (5.0 M) and toluene cosolvent for the formation of 6-chloro-3-methoxybenzyne from **9** (0.1 M) at -50 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = k[3,4\text{-dichloroanisole}] + k' (k = (-12 \pm 4) \times 10^{-4}, k' = (11 \pm 1) \times 10^{-4})$. Points corresponding to [3,4-dichloroanisole] < 0.1 M are represented by and omitted from the fit.

OMe

Cl 9 Li

Cl

$[C_7H_6Cl_2O]$ (M)	$k_{\rm obsd} 1 \ ({\rm s}^{-1})$	$k_{\rm obsd} 2 \ ({\rm s}^{-1})$	$k_{\rm obsd} {\rm av} ({\rm s}^{-1})$
0.01			
0.01	0.0019 <u>+</u> 1E-4	0.0020 <u>+</u> 1E-4	0.00197 <u>+</u> 7E-5
0.03	0.00055 <u>+</u> 7E-5	0.00156 <u>+</u> 6E-5	0.0004 <u>+</u> 2E-4
0.06	0.0012 <u>+</u> 1E-4	0.0012 <u>+</u> 1E-4	0.00122 <u>+</u> 3E-5
0.10	0.0011 <u>+</u> 1E-4	0.0010 <u>+</u> 1E-4	0.0010 <u>+</u> 1E-4
0.20	0.0008 <u>+</u> 1E-4	0.0009 <u>+</u> 1E-4	0.00084 <u>+</u> 4E-5
0.30	0.00069 <u>+</u> 4E-5	0.00064 <u>+</u> 3E-5	0.00066 <u>+</u> 4E-5
0.40	0.0005 <u>+</u> 2E-4	0.0008 <u>+</u> 1E-4	0.0007 <u>+</u> 2E-4

XXXII. Plot of k_{obsd} versus [**10**] in THF (5.0 M) and toluene cosolvent for the formation of 6-fluoro-3-methoxybenzyne at -35 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = k[\mathbf{10}] + k'$ ($k = (-1 \pm 2) \times 10^{-4}$, $k' = (5 \pm 3) \times 10^{-4}$). A point corresponding to [**10**] = 0.025 M is represented by and omitted from the fit.

[10] (M)	$k_{\rm obsd} 1 \ ({\rm s}^{-1})$	$k_{\rm obsd} 2 \ ({\rm s}^{-1})$	$k_{\rm obsd} {\rm av} ~{\rm (s}^{-1})$
0.025	0.00022 <u>+</u> 5E-5	0.00023 <u>+</u> 4E-5	0.00023 <u>+</u> 1E-5
0.050	0.00053 <u>+</u> 5E-5	0.00043 <u>+</u> 5E-5	0.00048 <u>+</u> 7E-5
0.100	0.00051 <u>+</u> 6E-5	0.00047 <u>+</u> 4E-5	0.00049 <u>+</u> 3E-5
0.150	0.00049 <u>+</u> 1E-5	0.00038 <u>+</u> 1E-5	0.00044 <u>+</u> 8E-5
0.200	0.00048 <u>+</u> 8E-5	0.00054 <u>+</u> 8E-5	0.00051 <u>+</u> 4E-5
0.250	0.0005 <u>+</u> 2E-4	0.00038 <u>+</u> 8E-5	0.00044 <u>+</u> 9E-5

XXXIII. Plot of k_{obsd} versus [THF] in toluene cosolvent for the formation of 6-fluoro-3-methoxybenzyne from **10** (0.1M) at -35 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = k[\text{THF}]^n$ ($k = (3.1 \pm 0.3) \times 10^{-3}$, $n = -1.1 \pm 0.1$).

[THF] (M)	$k_{\rm obsd} 1 \ ({\rm s}^{-1})$	$k_{\rm obsd} 2 \ ({\rm s}^{-1})$	$k_{\rm obsd} {\rm av}~({\rm s}^{-1})$
1.0	0.0036 <u>+</u> 5E-4	0.003 <u>+</u> 1E-3	0.0031 <u>+</u> 7E-4
1.5	0.0017 <u>+</u> 5E-4	0.0020 <u>+</u> 3E-4	0.00108 <u>+</u> 4E-5
2.0	0.0014 <u>+</u> 1E-4	0.00147 <u>+</u> 8E-5	0.00145 <u>+</u> 4E-5
3.0	0.00111 <u>+</u> 6E-5	0.00105 <u>+</u> 1E-5	0.00108 <u>+</u> 4E-5
4.0	0.00081 <u>+</u> 8E-5	0.00078 <u>+</u> 6E-5	0.00080 <u>+</u> 2E-5
5.0	0.00051 <u>+</u> 6E-5	0.00047 <u>+</u> 4E-5	0.00049 <u>+</u> 3E-5
7.0	0.00026 <u>+</u> 5E-5	0.00023 <u>+</u> 4E-5	0.00024 <u>+</u> 2E-5
9.0	0.00028 <u>+</u> 2E-5	0.00012 <u>+</u> 2E-5	0.00022 <u>+</u> 1E-5

XXXIV. Plot of k_{obsd} versus [spiro[2.4]hepta-4,6-diene] in THF (5.0 M) and toluene cosolvent for the formation of 6-fluoro-3-methoxybenzyne from **10** (0.1 M) at -35 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = k[\text{diene}] + k' (k = (-4 \pm 2) \times 10^{-4}, k' = (6.1 \pm 0.5) \times 10^{-4}).$

[Diene] (M)	$k_{\rm obsd} 1 \ (s^{-1})$	$k_{\rm obsd} 2 \ ({\rm s}^{-1})$	$k_{\rm obsd}$ av (s ⁻¹)
0.10	0.00052 <u>+</u> 6E-5	0.00068 <u>+</u> 9E-5	0.0006 <u>+</u> 1E-4
0.20	0.00051 <u>+</u> 6E-5	0.00047 <u>+</u> 4E-5	0.00049 <u>+</u> 3E-5
0.30	0.00051 <u>+</u> 7E-5	0.00051 <u>+</u> 4E-5	0.000510 <u>+</u> 4E-6
0.40	0.0005 <u>+</u> 1E-4	0.0005 <u>+</u> 1E-4	0.000470 <u>+</u> 6E-6

XXXV. Plot of k_{obsd} versus [3,4-difluoroanisole] in THF (5.0 M) and toluene cosolvent for the formation of 3-fluoro-6-methoxybenzyne from **10** (0.1M) at -35 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = k[3,4\text{-dichloroanisole}] + k' (k = (-6 \pm 1) \times 10^{-4}, k' = (5.4 \pm 0.3) \times 10^{-4})$. A point corresponding to [3,4-difluoroanisole] = 0.05 M is represented by and omitted from the fit.

$$[C_7H_6F_2O]$$
 (M) $k_{obsd}1$ (s⁻¹) $k_{obsd}2$ (s⁻¹) $k_{obsd}av$ (s⁻¹) 0.05 $0.00078 \pm 5E-5$ $0.00067 \pm 6E-5$ $0.00072 \pm 8E-5$ 0.10 $0.00051 \pm 6E-5$ $0.00047 \pm 4E-5$ $0.00049 \pm 3E-5$ 0.20 $0.00042 \pm 1E-5$ $0.00038 \pm 5E-5$ $0.00040 \pm 3E-5$ 0.30 $0.00036 \pm 5E-5$ $0.00029 \pm 6E-5$ $0.00030 \pm 4E-5$ 0.40 $0.00030 \pm 4E-5$ $0.00031 \pm 4E-5$ $0.000300 \pm 6E-6$

XXXVI. Optimized geometries^{*a*} and free energies (*G*, Hartrees) of reactants. Free energies (ΔG , kcal/mol) include thermal corrections at 298 °C. All calculations were performed with Gaussian 03.^{*b*} ΔG Me₂O = -154.97011 Hartrees.

^aHydrogens hidden for clarity

^bGaussian 03, Revision B.04, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.

^{*a*}Full optimization of structure **XV** spontaneously converged to its isomer **XIX**. ^{*b*}Full optimization of structure **XVI** spontaneously converged to its isomer **XX**.

^cMost stable conformer shown.

^{*d*}Isomers without Li-F contacts are minima and display comparable stabilities.

^{*e*}Full optimization of structure **XL** spontaneously converged to its isomer **XXXII**. ^{*f*}Multiple optimization attempts resulted in dissociation of a Me₂O molecule.

XXXVI (Continued).

XLI

-552.08392

-862.04710

XLVIII

-552.08125

-707.07249

-862.04868

-1017.01277

XXXVI (Continued).

L

-552.08427

-707.07509

-862.04989

-1017.00975

	C1-C2	C1-C6	C2-C3	C5-C6	C1-X	C2-X	C3-X	C6-X	C5-O	C1-Li	Li-S	Li-X	Li-OMe
I	1.40												
11	1.39		1.39		1.76		1.35"						
	1.39				1.76								
IV	1.39						1.35"						
V		1.39		1.40	1.75°				1.36				
VI		1.40		1.40	1.75				1.36				
VII		1.38		1.40	1.34"				1.36				
		1.39		1.40	1.34"				1.36	1.07			
	1.41									1.97	1.00		
	1.42									1.99	1.89		
	1.42									2.04	1.95		
	1.42	1.20				 1 00h		1.20		2.09	2.04°	2.40d	
	1.38	1.39				1.88		1.36 [°]		1.97	1.00	2.40°	
	1.39	1.39				1.82°		1.38		2.02	1.89	2.49 ^e	
	1.39	1.37				1.79		1.40		1.98	1 00	1.90°	
	1.39	1.37						1.45 1.42 ^a		2.01	1.00 1.050	1.95° 2.11°	
	1.39	1.30				1 00 ^b		1.43 1.40^{a}		2.00	1.95	2.11	
	1.39	1.39				1.00 1.97^{b}		1.40 1.70^{b}		2.12	2.05	2.03	
	1.30	1.39				1.07 1.86 ^b		1.79 1.80 ^b		2.01	1.88	2.42 2.53d	
	1.30	1.39				1.00 1.80^{b}		1.00 1.80^{b}		2.01 2.05	1.00 1.05 ^c	2.33 3 30 ^d	
	1.39	1.39				1.02 1.83 ^b		1.02 1.82^{b}		2.05	1.95 2.04°	3.39	
	1.39	1.39				1.05 1.46^{a}		1.02 1.36^{a}		2.13	2.04	1.37	
XXVI	1.37	1.37				1.40 1.45^{a}		1.30 1.36^{a}		2.00	1 80	1.0° 1.05 ^e	
XXVII	1.37	1.37				1.43 1.44^{a}		1.30 1.37^{a}		2.00	1.07 1.95 ^c	$2.00^{-1.00}$	
XXVIII	1.37	1 39				1.11 1 40 ^a		1.37 1 39 ^a		2.00	2.05°	2.11 2.69 ^e	
XXIX	1.38	1.39	1 41			1.10 1.78^{b}	1.76^{b}		1 43 ^f	1 98	2.00		1 93
XXX	1.38	1.09	1 41			1.70^{b}	1.76^{b}		1.10^{1}	2 02	1 89		1 99
XXXI	1.38	1.40	1.41			1.79^{b}	1.76^{b}		1.42^{f}	2.06	1.96°		2.14
XXXII	1.38	1.41	1.41			1.82^{b}	1.77^{b}		1.39 ^f	2.13	2.05°		3.15
XXXIII	1.37	1.41	1.40			1.86^{b}	1.76^{b}		1.37 ^f	1.97		2.41^{d}	
XXXIV	1.37	1.40	1.40			1.85^{b}	1.76^{b}		1.38 ^f	2.00	1.88	2.51^{d}	
XXXV	1.38	1.40	1.40			1.81^{b}	1.76^{b}		1.40^{f}	2.05	1.95°		
XXXVII	1.38	1.40	1.39			1.87^{b}	1.76^{b}		1.37^{f}	1.97		2.35^{d}	
XXXVIII	1.38	1.40	1.39			1.86^{b}	1.76^{b}		1.39 ^f	2.01	1.90	2.44^{d}	
XXXIX	1.38	1.40	1.40			1.84^{b}	1.76^{b}		1.38 ^f	2.06	1.96 ^c	2.61^{d}	
XLI	1.36	1.41	1.39			1.45^{a}	1.35^{a}		1.38^{f}	1.98		1.90^{e}	1.92
XLII	1.36	1.41	1.39			1.44^{a}	1.35^{a}		1.38 ^f	2.01	1.89	1.97^{e}	1.99
XLIII	1.36	1.41	1.39			1.43^{a}	1.36^{a}		1.39 ^f	2.05	1.95°	2.13^{e}	2.10
XLIV	1.37	1.41	1.40			1.40^{a}	1.36^{a}		1.40^{f}	2.11	2.04°	2.88^{e}	3.21
XLV	1.36	1.41	1.39			1.45^{a}	1.35^{a}		1.38^{f}	1.98		1.90^{e}	
XLVI	1.36	1.41	1.39			1.44^{a}	1.35^{a}		1.38 ^f	2.01	1.89	1.97^{e}	
XLVII	1.36	1.41	1.39			1.43^{a}	1.36^{a}		1.39 ^f	2.05	1.95°	2.13^{e}	
XLVIII	1.38	1.41	1.40			1.39^{a}	1.36^{a}		1.40^{f}	2.11	2.04°	3.25^{e}	
XLIX	1.37	1.40	1.38			1.45^{a}	1.35^{a}		1.38 ^f	1.98		1.87^{e}	
L	1.37	1 40	1.38			1.40^{a}	1.35^{a}		1.38	2 01	1 89	1.0^{1}	
- 11	1.37	1.10	1 39			1.11 1.43^{a}	1.00		1 38 ^f	2.01	1.07 1.96°	2.04^{e}	
	1.07	1.40	1 20			1. 1 0 1 /1 ⁴	1.30		1.00 1.20f	∠.07 0.10	2.00	2.07 2.09	
LII	1.30	1.40	1.37			1.41	1.30		1.39	∠.1∠	∠.00	∠.40	

$-\mathbf{A}\mathbf{A}\mathbf{A}\mathbf{V}\mathbf{\Pi}$. Defected Dong distances (A) for structures in Dection AAA V	XXXVII. Selected bond	distances (Å) for	• structures in Sect	ion XXXVI
---	-----------------------	-------------------	----------------------	-----------

X=halogen, S = MeO₂. ^{*a*}C-F, ^{*b*}C-Cl, ^{*c*}Average distance, ^{*d*}Li-Cl, ^{*e*}Li-F.

XXXVIII. Relaxed PES scans representing potential energy (ΔE , kcal/mol) as a function of C-halogen bond lengthening (Å) relative to fully optimized reactants.

^aLengthened C-halogen distances shown for clarity.

^{*b*}Since full optimizations of **XX** with Li-Cl contacts spontaneously converged to its isomer **XX**, ΔE 's were normalized to the potential energy and C-Cl bond distance of **XX**.

XXXVIII (Continued).

XXXVIII (Continued).

XXXIX Experimental Section.

NMR Spectroscopic Analyses. Samples for spectroscopic analyses were prepared by using a protocol described elsewhere [Romesberg, F. E.; Bernstein, M. P.; Fuller, D. J.; Harrison, A. T.; Collum, D. B. *J. Am. Chem. Soc.* **1993**, *115*, 3475]. ⁶Li and ¹³C NMR spectra were recorded on a Varian XL-400 spectrometer operating at 58.84 and 100.58 MHz, respectively. The ⁶Li and ¹³C resonances are referenced to 0.30 M [⁶Li]LiCl/MeOH (0.0 ppm, -100 °C), and the THF β-methylene resonance (25.37 ppm, -100 °C), respectively.

Kinetics. For a kinetic run corresponding to a single rate constant, a relatively concentrated (2.2 M) solution of *n*-BuLi in pentane at -78 °C was prepared and titrated to determine the precise concentration.³⁹ The solution was diluted to a concentration appropriate for the particular series and titrated a second time. A series of oven-dried, argon-flushed 5 mL serum vials (8-10 per rate constant) fitted with stir bars were charged with a stock solution containing the haloarene, spiro[2.4]hepta-4,6-diene, THF, and *n*-octane as a GC standard. The reaction vials were held under argon at -25.0 ± 0.2 °C (-50.0 ± 0.5 °C for the 3,4-dihaloanisoles). The reactions were initiated by adding aliquots of a stock solution of *n*-BuLi in hydrocarbon, also refrigerated, to achieve a concentration 0.1 M below the actual haloarene concentration. The vessels were periodically quenched with 1:1 H₂O-THF at intervals chosen to ensure an adequate sampling of early conversion at 10% consumption of the starting material. The quenched aliquots were extracted into pentane and the extracts analyzed using an auto injecting GC fitted with a 30 meter HP-5 column. The metalations were monitored by following the decrease of haloarene relative to the internal standard. The initial rates were determined by least-squares analyses, and were shown to be reproducible within $\pm 10\%$. Following the formation of the corresponding cycloadducts 5 afforded equivalent rates within \pm 10%. The observed rate constants (k_{obsd}) were calculated by dividing the initial rates (linear slopes) by the corresponding concentrations of haloarene. The reported errors correspond to one standard deviation.

XL. Physical and Spectral Data.

5-Chloro-9,9-spirocyclopropyl-1,4-dihydro-1,4-methano-naphthalene (5a).

Clear colorless oil. TLC: $R_f = 0.60 (100\% \text{ hexanes})$; MS $m/z 202 (M)^+$. ¹H NMR (400 MHz, CDCl₃) δ 7.04 (d, J = 6.6 Hz, 1H), 6.89 (dd, J = 7.9, 1.2 Hz, 1H), 6.87-6.82 (m, 3H), 3.56 (d, J = 2.1 Hz, 1H), 3.32 (br s, 1H), 0.67-0.52 (m, 2H), 0.50-0.43 (m, 2H); Anal. Calcd for $C_{13}H_{11}$ Cl: C, 77.04; H, 5.47. Found: C, 75.78; H, 5.57. Anal. Calcd for $C_{13}H_{11}$ Cl: C, 75.36; H, 5.59.

5-Fluoro-9,9-spirocyclopropyl-1,4-dihydro-1,4-methano-naphthalene (5b).

Clear colorless oil. TLC: $R_f = 0.60 (100\% \text{ hexanes})$; MS m/z 186, 184 (M)⁺. ¹H NMR (400 MHz, CDCl₃) δ 6.97 (d, J = 7.0 Hz, 1H), 6.87 (m, 1H), 6.83 (br s, 2H), 6.63 (ddd, J = 8.7, 8.3, 0.9 Hz, 1H), 3.58 (d, J = 1.6 Hz, 1H), 3.32 (m, 1H), 0.66-0.61 (m, 2H), 0.60-0.45 (m, 2H); Anal. Calcd for C₁₃H₁₁F: C, 83.84; H, 5.95. Found: C, 83.40; H, 6.12.

5-Chloro-8-methoxy-9,9-spirocyclopropyl-1,4-dihydro-1,4-methanonaphthalene (5c). White solid. TLC: $R_f = 0.30$ (5% diethyl ether in hexanes). ¹H NMR (500 MHz, CDCl₃): δ 6.92-6.87 (m, 3H), 6.52 (d, J = 8.9 Hz, 1H), 3.79 (s, 3H), 3.62 (m, 1H), 3.58 (m, 1H), 0.68-0.63 (m, 2H), 0.56-0.51 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 152.2, 151.4, 142.8, 142.0, 140.4, 125.7, 120.2, 110.6, 65.9, 56.2, 55.1, 53.0, 9.6, 9.1.

5-Fluoro-8-methoxy-9,9-spirocyclopropyl-1,4-dihydro-1,4-methanonaphthalene (5d). White solid. TLC: $R_f = 0.30$ (5% diethyl ether in hexanes). ¹H NMR (500 MHz, CDCl₃): δ 6.90-6.88 (m, 2H), 6.65-6.62 (m, 1H), 6.53-6.50 (m, 1H), 3.79 (s, 3H), 3.61 (m, 2H), 0.66-0.64 (m, 2H), 0.55-0.52 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 153.3, 150.7 (d, J = 177 Hz), 142.6, 142.2, 141.2 (d, J = 5 Hz), 138.2 (d, J = 22 Hz), 112.9 (d, J = 24 Hz), 110.4 (d, J = 7 Hz), 66.1, 56.6, 52.6, 52.3, 9.6, 9.1.