Lithium Hexamethyldisilazide-Mediated Enolizations: Influence of Triethylamine on E/Z Selectivities and Enolate Reactivities

Peter F. Godenschwager and David B. Collum^{*} Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University, Ithaca, New York 14853-1301

Supporting Information

Ι	Plot of k_{obsd} vs [Et ₃ N] in toluene for the enolization of 5 - d_3 by LiHMDS.	S 3
II	Table of data for plot in section I .	S 3
III	Plot of k_{obsd} vs [LiHMDS] for the enolization of 5 - d_3 in Et ₃ N/toluene.	S4
IV	Table of data for plot in section III .	S4
V	Plot of k_{obsd} vs [Et ₃ N] for the enolization of isopropyl propionate by LiHMDS in toluene.	S 5
VI	Table of data for plot in section V .	S 5
VII	Plot of k_{obsd} vs [LiHMDS] for the enolization of isopropyl propionate in Et ₃ N/toluene.	S6
VIII	Table of data for plot in section VII .	S6
IX	Plot of E/Z selectivity for the enolization of 5 by LiHMDS in Et ₃ N/toluene.	S7
X	Table of data for the plot in section IX .	S7
XI	Plot of E/Z selectivity vs [THF] for the enolization of 5 by LiHMDS in toluene.	S8
XII	Table of data for the plot in section XI .	S8
XIII	Plot of E/Z selectivity vs [cyclohexyl ethyl ketone] for the enolization of 5 by LiHMDS in Et ₃ N/toluene.	S9
XIV	Table of data for the plot in section XIII .	S9

XV	⁶ Li NMR spectra recorded on [${}^{6}Li$, ${}^{15}N$]LiHMDS in Et ₃ N/toluene showing the enolization of 5 .	S10
XVI	E/Z selectivities for the enolization of 5 by LiHMDS in the presence of trialkyl amines in toluene cosolvent.	S11
XVII	E/Z selectivities for the enolization of 5 by LiHMDS in the presence of ethereal ligands in toluene cosolvent.	S12
XVIII	E/Z selectivities for the enolization of 5 by LiHMDS in the presence of polydentate ligands in toluene cosolvent.	S13
XIX	E/Z selectivities for the enolization of methyl propionate by various lithium amides.	S14
XX.	E/Z selectivities for the enolization of various ketones by LiHMDS in Et ₃ N/toluene.	S15
XXI.	Stereoselectivities of aldol reaction of ketone enolates, generated by LiHMDS in Et_3N /toluene, with isobutyraldehyde.	S16
XXII.	Stereoselectivities of aldol reaction of 2-methyl-3-pentanone enolate, generated by LiHMDS, in various enolization and aldol solvent systems with isobutyraldehyde.	S17
XXIII.	Stereoselectivities of aldol reaction of 3-pentanone enolate, generated by LiHMDS in Et ₃ N/toluene, in various aldol solvent systems with isobutyraldehyde.	S18

I. Plot of k_{obsd} vs [Et₃N] in toluene for the enolization of **5**- d_3 (0.005 M) by LiHMDS (0.10 M) at -78 °C. The line depicts the unweighted least-squares fit to $k_{obsd} = a[Et_3N]/(1 + b[Et_3N])$ ($a = 4.0 \pm 0.1$, $b = 8.2 \pm 0.6 \times 10^{-1}$).

II. Table of data for plot in section **I**.

[Et ₃ N] (M)	$k_{\rm obsd} 1 \ ({\rm s}^{-1})$	$k_{\rm obsd}2~({\rm s}^{-1})$	$k_{\text{obsd}}(\text{avg})$ (s ⁻¹)
0.15	$4.97 \pm 0.05 \text{E-}4$	4.60 ± 0.06 E-4	4.7 ± 0.2 E-4
0.30	9.4 ± 0.1 E-4	9.4 ± 0.1 E-4	$9.4 \pm 0.0E-4$
0.60	$1.84 \pm 0.03E-3$	$1.65 \pm 0.03E-3$	$1.7 \pm 0.1E-3$
1.2	$2.49 \pm 0.08\text{E-3}$	2.39 ± 0.04 E-3	$2.44 \pm 0.07E-3$
1.6	$2.83 \pm 0.06\text{E-3}$	$2.74 \pm 0.07E-3$	$2.78 \pm 0.06E-3$
2.0	3.10 ± 0.05 E-3	$3.12 \pm 0.09E-3$	$3.11 \pm 0.01E-3$
3.0	$3.48 \pm 0.05 \text{E-}3$	3.8 ± 0.1 E-3	$3.6 \pm 0.2E-3$
4.0	3.8 ± 0.1 E-3	3.7 ± 0.1 E-3	$3.75 \pm 0.07E-3$

III. Plot of k_{obsd} vs [LiHMDS] for the enolization of **5**- d_3 in 4.0 M Et₃N/toluene at -78 °C. The curve depicts the unweighted least-squares fit to $k_{obsd} = a$ [LiHMDS] + b ($a = 5 \pm 1 \times 10^{-3}$, $b = 3.0 \pm 0.1 \times 10^{-3}$).

IV. Table of data for plot in section **III**.

[LiHMDS] (M)	$k_{\rm obsd} 1 \ ({\rm s}^{-1})$	$k_{\rm obsd}2~({\rm s}^{-1})$	$k_{\text{obsd}}(\text{avg}) (\text{s}^{-1})$
0.05	$3.21 \pm 0.06E-3$	$3.09 \pm 0.07 \text{E-}3$	3.15 ± 0.08 E-3
0.10	3.8 ± 0.1 E-3	3.7 ± 0.1 E-3	$3.75 \pm 0.07E-3$
0.15	3.6 ± 0.1 E-3	$3.9 \pm 0.1E-3$	$3.7 \pm 0.2E-3$
0.20	4.2 ± 0.1 E-3	4.6 ± 0.1 E-3	$4.4 \pm 0.2E-3$
0.25	4.2 ± 0.1 E-3	4.7 ± 0.1 E-3	4.4 ± 0.3 E-3

V. Plot of k_{obsd} vs [Et₃N] for the enolization of isopropyl propionate by LiHMDS (0.10 M) in toluene at -78 °C. The curve depicts the unweighted least-squares fit to $k_{obsd} = a[Et_3N]/(1 + b[Et_3N])$ ($a = 3.5 \pm 0.6 \times 10^{-3}$, $b = 1.6 \pm 0.4$).

VI. Table of data for plot in section V.

[Et ₃ N] (M)	$k_{\rm obsd}~({ m s}^{-1})$
0.10	$1.76 \pm 0.01E-4$
0.20	$3.99 \pm 0.02E-4$
0.50	9.71 ± 0.09E-4
1.0	$1.35 \pm 0.01E-3$
1.5	$1.55 \pm 0.02E-3$
2.0	$1.78 \pm 0.01E-3$
3.0	$1.77 \pm 0.03E-3$
4.0	$1.57 \pm 0.01E-3$

VII. Plot of k_{obsd} vs [LiHMDS] for the enolization of isopropyl propionate in 2.5 M Et₃N/toluene at -78 °C. The curve depicts the unweighted least-squares fit to $k_{obsd} = a$ [LiHMDS] + b ($a = 1.9 \pm 0.4 \times 10^{-3}$, $b = 1.50 \pm 0.09 \times 10^{-3}$).

VIII. Table of data for the plot in section VII.

[LiHMDS] (M)	$k_{\rm obsd} 1 \ ({\rm s}^{-1})$	$k_{\rm obsd}2~({\rm s}^{-1})$	$k_{\text{obsd}}(\text{avg}) (\text{s}^{-1})$
0.05	$1.44 \pm 0.01E-3$	$1.58 \pm 0.02E-3$	1.51 ± 0.09E-3
0.10	$1.82 \pm 0.02E-3$	1.65 ± 0.01 E-3	$1.7 \pm 0.1E-3$
0.15	$1.76 \pm 0.02E-3$	1.87 ± 0.01 E-3	$1.82 \pm 0.07 \text{E-3}$
0.20	$2.20 \pm 0.02E-3$	$1.98 \pm 0.02E-3$	2.0 ± 0.1 E-3
0.25	$1.86 \pm 0.03E-3$	$1.96 \pm 0.02E-3$	$1.91 \pm 0.07 \text{E-}3$
0.40	$2.19 \pm 0.03E-3$	$2.35 \pm 0.03E-3$	2.2 ± 0.1 E-3

IX. Plot of *E*/*Z* selectivity for the enolization of **5** (0.05 M) by LiHMDS in 1.5 M Et_3N /toluene at -78 °C.

Х.	Table	of da	ta for	the	plot	in	section	IX.
----	-------	-------	--------	-----	------	----	---------	-----

[LiHMDS] (M)	<i>E</i> / <i>Z</i> 1	<i>E</i> / Z 2	E/Z (avg)
0.025	1:4.4	1:3.2	1:3.8
0.05	1:2.3	1:1.8	1:2.1
0.0625	11.4 : 1	16.7 : 1	14:1
0.075	49 :1	48:1	49:1
0.1	88:1	83:1	86 : 1
0.125	110:1	106 : 1	108:1
0.15	106 : 1	98:1	102:1
0.2	107:1	120:1	114:1
0.3	138:1	108 : 1	123 : 1

XI. Plot of E/Z selectivity vs. [THF] for the enolization of **5** (0.05 M) by LiHMDS (0.15 M) in toluene at -78 °C.

XII. Table of data for the plot in section XI.

E/Z
13:1
11:1
7.2:1
3.2:1
1:1.1
1:4.2
1:13

XIII. Plot of E/Z selectivity vs. [cyclohexyl ethyl ketone] for the enolization of **5** (0.05 M) by LiHMDS (0.15 M) in 1.5 M Et₃N/toluene at -78 °C.

XIV. Data for the plot in section **XIII**.

[Cyclohexyl ethyl ketone] (M)	E/Z of 2-methyl-3-pentanone	
0	155 : 1	
0.025	92:1	
0.05	51:1	
0.10	1:5	
0.15	1:10	

XV. ⁶Li spectra recorded on [⁶Li,¹⁵N]LiHMDS (0.15 M), Et₃N (1.5 M), and **5** (0.05 M) in toluene at -100 °C. (A) Enolization takes place at -100 °C showing *E* enolate mixed dimer **10**; (B) Spectrum (A) decoupled; (C) Enolization takes place at 0 °C showing *E* enolate mixed dimer **10** and *Z* enolate mixed dimer **11**; (D) Spectrum (C) decoupled.

XVI. *E*/*Z* selectivities for the enolization of **5** (0.05 M) by LiHMDS (0.15 M) in the presence of trialkyl amines at -78 $^{\circ}$ C in toluene.

Amine	E/Z
Et_3N^a	102 : 1
DMEA ^b	90:1
$(i-Pr)_2$ EtN ^b	40:1
$(i-\mathrm{Bu})_3\mathrm{N}^\mathrm{b}$	60:1

^a 1.5M ligand. ^b1.0M ligand

XVII. E/Z selectivities for the enolization of **5** (0.05 M) by LiHMDS (0.15 M) in the presence of ethereal ligands at -78 °C in toluene.

Ligand	E/Z
THF (0.5 M)	13:1
THF (10 M)	1:13
2,2,5,5-tetramethyl THF (1.5 M)	42:1
cineole (1 M)	38:1

XVIII. E/Z selectivities for the enolization of **5** (0.05 M) by LiHMDS (0.15 M) in the presence of polydentate ligands at -78 °C in toluene.

Ligand	E/Z
TMEDA	33:1
TMCDA	26:1
Me ₂ NCH ₂ CH ₂ OMe (1.5 M)	3:1
$Me_2NCH_2CH_2OMe$ (0.10 M)	52:1

XIX. E/Z selectivity of methyl propionate at -78 °C.

lithium amide	ligand	E/Z
LDA	THF	9:1
LDA	THF / HMPA	1:5
LiHMDS	THF	1:8
LiHMDS	Et ₃ N	22:1

XX. *E*/*Z* selectivities for the enolization of various ketones (0.05 M) by LiHMDS (0.15 M) in Et₃N (1.5 M)/toluene at -78 °C. ^a60 °C

E/Z
142 : 1
102 : 1
79:1
3.4 : 1

XXI. Stereoselectivities of aldol reaction of ketone enolates (0.05 M) generated by LiHMDS (0.15 M) in Et₃N (1.5 M)/toluene at -78 °C with 0.15 M isobutyraldehyde.

ketone	anti / syn
3-pentanone	8:1
2-methyl-3-pentanone	25:1
cyclohexyl ethyl ketone	>30:1

XXII. Stereoselectivities of aldol reaction of 2-methyl-3-pentanone enolate (0.05 M) generated by LiHMDS (0.15 M) in various enolization and aldol solvent systems at - 78 °C with 0.15 M isobutyraldehyde.

enolization solvent	aldol solvent	anti / syn
1.5 M Et ₃ N / toluene	1.5 M Et ₃ N / toluene	25:1
1.5 M Et ₃ N / toluene	$1.5 \text{ M Et}_3\text{N} / 1.5 \text{ M THF} / \text{toluene}$	18:1
THF	THF	1:4

XXIII. Stereoselectivities of aldol reaction of 3-pentanone enolate (0.05 M) generated by LiHMDS (0.15 M) in 1.5 M Et₃N/toluene and various aldol solvent systems at -78 °C with 0.15M isobutyraldehyde.

anti / syn
1:1.5
7:1
2.5:1
2.5:1
4:1