Structures of β-Amino Ester Enolates: New Strategies Using the Method of Continuous Variation

Lara R. Liou, Anne J. McNeil, Gilman E. S. Toombes, David B. Collum

Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301

Supporting Information

(R)-5

(S) -5

rac-5

(R)-6

(S)-6

rac-6

(R)-7

(S)-7

(S)-8

(R)-8

rac-8
I. Experimental Procedures
II. (S)- β-Valine and (R)- β-Valine
A. ${ }^{6} \mathrm{Li}$ NMR spectra of $\left[{ }^{6} \mathrm{Li}\right](S)-6$ at various temperatures.
B. ${ }^{6} \mathrm{Li}$ NMR spectra of a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-6$ and $\left[{ }^{6} \mathrm{Li}\right](S)-6$ (mole fraction $\mathrm{R}=0.80$) at various temperatures.
C. ${ }^{6} \mathrm{Li}$ NMR spectra of a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-6$ and $\left[{ }^{6} \mathrm{Li}\right](S)-6$ (mole
fraction $\mathrm{R}=0.80)$ at various temperatures.
D. Variation of enolate concentration for a mixture of $\left[{ }^{6} \mathrm{Li}\right](S)-6$ and
$\left[{ }^{6} \mathrm{Li}\right](R)-6$ (mole fraction $\left.\mathrm{S}=0.30\right)$.
E. ${ }^{6} \mathrm{Li}$ NMR spectra of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-6$ and $\left[{ }^{6} \mathrm{Li}\right](S)-6$ at various
mole fractions in $9.0 \mathrm{M} \mathrm{THF} /$ toluene at $-20^{\circ} \mathrm{C}$.
F. Table of the relative integrations for the spectra in II.E. S13
G. Job Plot of $\left[{ }^{6} \mathrm{Li}\right](S)-6 /\left[{ }^{6} \mathrm{Li}\right](R)-6$ hexamers.
III. (S)- β-Valine and (R)- β-Alanine
A. ${ }^{6} \mathrm{Li}$ NMR spectra of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-6$ and $\left[{ }^{6} \mathrm{Li}\right](S)-5$ (mole fraction $\mathbf{6}=0.3$) at various temperatures.
B. ${ }^{6} \mathrm{Li}$ NMR spectra of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-6$ and $\left[{ }^{6} \mathrm{Li}\right](S)-5$ at various
temperatures.
C. Variation of enolate concentration for a mixture of $\left[{ }^{6} \mathrm{Li}\right](S)-6$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5$ (mole fraction $\left.\mathbf{6}=0.70\right)$.
D. Variation of enolate concentration for a mixture of $\left[{ }^{6} \mathrm{Li}\right](S)-6$ and
$\left[{ }^{6} \mathrm{Li}\right](R)-5($ mole fraction $\mathbf{6}=0.30)$.
E. ${ }^{6} \mathrm{Li}$ NMR spectra of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{6}$ and $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{5}$ at various mole fractions in $3.0 \mathrm{M} \mathrm{THF} /$ toluene at $-30^{\circ} \mathrm{C}$.
F. Table of the relative integrations for the spectra in III.E. S21
G. Job Plot of $\left[{ }^{6} \mathrm{Li}\right](S)-6 /\left[{ }^{6} \mathrm{Li}\right](R)-5$ hexamers.

IV. (R)- β-Valine and (R)- β-Alanine

A. ${ }^{6} \mathrm{Li}$ NMR spectra of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-6$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5$ at various
temperatures.
B. Variation of enolate concentration for a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-6$ and
$\left[{ }^{6} \mathrm{Li}\right](R)-5($ mole fraction $\mathbf{6}=0.70)$.
C. Variation of enolate concentration for a mixture of $\left[{ }^{6} \mathrm{Li}\right](S)-6$ and
$\left[{ }^{6} \mathrm{Li}\right](R)-5($ mole fraction $\mathbf{6}=0.30)$.
D. ${ }^{6} \mathrm{Li}$ NMR spectra of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-6$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5$ at various
mole fractions in $3.0 \mathrm{M} \mathrm{THF} /$ toluene at $-30{ }^{\circ} \mathrm{C}$.
E. Table of the relative integrations for the spectra in IV.D. S28
F. Job Plot of $\left[{ }^{6} \mathrm{Li}\right](R)-6 /\left[{ }^{6} \mathrm{Li}\right](R)-5$ hexamers. S29
G. The fit in IV.F overlaid with a statistical distribution of hexamers. S30

V. (S)- β-Phenylalanine $/(\boldsymbol{R})-\beta$-Phenylalanine

A. ${ }^{6} \mathrm{Li} \mathrm{NMR}$ spectra of $\left[{ }^{15} \mathrm{~N},{ }^{6} \mathrm{Li}\right](\mathrm{S})-7$ and $\left[{ }^{15} \mathrm{~N},{ }^{6} \mathrm{Li}\right]$ rac- 7 at various
temperatures.
B. ${ }^{6} \mathrm{Li}$ NMR spectra of $\left[{ }^{6} \mathrm{Li}\right](R)-7$ at various temperatures. S32
C. ${ }^{6} \mathrm{Li}$ NMR spectra of $\left[{ }^{6} \mathrm{Li}\right]$ rac- 7 at various temperatures. S33
D. ${ }^{6} \mathrm{Li}$ NMR spectra of a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-7$ and $\left[{ }^{6} \mathrm{Li}\right](S)-7$ (mole
fraction $\mathrm{R}=0.80)$ at various temperatures.
E. Variation of enolate concentration for $\left[{ }^{6} \mathrm{Li}\right](S)-7 . \quad$ S35
F. Variation of enolate concentration for a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-7$ and
$\left[{ }^{6} \mathrm{Li}\right](S)-7($ mole fraction $\mathrm{R}=0.30)$.
G. Variation of THF concentration for a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-7$ and
$\left[{ }^{6} \mathrm{Li}\right](S)-7($ mole fraction $\mathrm{S}=0.30)$.
H. ${ }^{6} \mathrm{Li}$ NMR spectra of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-7$ and $\left[{ }^{6} \mathrm{Li}\right](S)-7$ at various
mole fractions in $9.0 \mathrm{M} \mathrm{THF} /$ toluene at $-25{ }^{\circ} \mathrm{C}$.
I. Table of the relative integrations for the spectra in V.H. S40
J. Job Plot of $\left[{ }^{6} \mathrm{Li}\right](R)-7 /\left[{ }^{6} \mathrm{Li}\right](S)-7$ hexamers. S 41
K. Job Plot of $\left[{ }^{6} \mathrm{Li}\right](R)-7 /\left[{ }^{6} \mathrm{Li}\right](S)-7$ fit to tetramer model. S42

VI. (S)- β-Phenylalanine and (\boldsymbol{R})- β-Alanine

A. ${ }^{6} \mathrm{Li}$ NMR spectra of a mixture of $\left[{ }^{6} \mathrm{Li}\right](S)-7$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5($ mole
fraction $7=0.5)$ at various temperatures.
B. ${ }^{6} \mathrm{Li} \mathrm{NMR} \mathrm{spectra} \mathrm{of} \mathrm{a} \mathrm{mixture} \mathrm{of}\left[{ }^{6} \mathrm{Li}\right](S)-7$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5($ mole
fraction 7=0.7) at various temperatures.
C. ${ }^{6} \mathrm{Li}$ NMR spectra of mixtures of $\left[{ }^{6} \mathrm{Li}\right](S)-7$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5$ at various mole fractions in $9.0 \mathrm{M} \mathrm{THF} /$ toluene at $-40^{\circ} \mathrm{C}$.
D. ${ }^{6} \mathrm{Li}$ NMR spectra of mixtures of $\left[{ }^{6} \mathrm{Li}\right](S)-7$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5($ mole fraction $7=0.3$) in non-aromatic co-solvents at various temperatures.
E. ${ }^{6} \mathrm{Li}$ NMR spectra of mixtures of $\left[{ }^{6} \mathrm{Li}\right](S)-7$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5$ with benzene
or anisole as a co-solvent at various THF concentrations.
F. ${ }^{6} \mathrm{Li}$ NMR spectra of mixtures of $\left[{ }^{6} \mathrm{Li}\right](S)-7$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5$ with tert-butylbenzene as a co-solvent at various THF concentrations.
G. ${ }^{6} \mathrm{Li}$ NMR spectra of mixtures of $\left[{ }^{6} \mathrm{Li}\right](S)-7$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5$ with toluene
as a co-solvent at various THF concentrations.
H. Variation of enolate concentration for a mixture of $\left[{ }^{6} \mathrm{Li}\right](S)-7$ and
$\left[{ }^{6} \mathrm{Li}\right](R)-5$ (mole fraction $7=0.70$).
I. Variation of enolate concentration for a mixture of $\left[{ }^{6} \mathrm{Li}\right](S)-7$ and
$\left[{ }^{6} \mathrm{Li}\right](R)-5($ mole fraction $7=0.30)$.
J. ${ }^{6} \mathrm{Li}$ NMR spectra of mixtures of $\left[{ }^{6} \mathrm{Li}\right](S)-7$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5$ at various
mole fractions in $4.0 \mathrm{M} \mathrm{THF} /$ toluene at $-30^{\circ} \mathrm{C}$.
K. Table of the relative integrations for the spectra in VI.J. S55
L. Job Plot of $\left[{ }^{6} \mathrm{Li}\right](S)-7 /\left[{ }^{6} \mathrm{Li}\right](R)-5$ hexamers. S56

VII. (S)- β-Phenylglycine/(R)- β-Phenylglycine

A. ${ }^{6} \mathrm{Li}$ NMR spectra of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}$ (mole fraction $\mathrm{R}=0.70$) at various temperatures.
B. ${ }^{6} \mathrm{Li}$ NMR spectra of a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}$ (mole fraction $\mathrm{S}=0.30$) at various THF/toluene concentrations.
C. Variation of enolate concentration for a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}$ (mole fraction $\mathrm{R}=0.70$).
D. ${ }^{6} \mathrm{Li}$ NMR spectra of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}$ at various mole fractions in $9.0 \mathrm{M} \mathrm{THF} /$ toluene at $-40^{\circ} \mathrm{C}$. S60
E. Table of the relative integrations for the spectra in VII.D. S62
F. Job Plot of $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8} /\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ hexamers in $9.0 \mathrm{M} \mathrm{THF} /$ toluene. S63
G. Job Plot of $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8} /\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ fit to tetramer model in 9.0 M THF/ toluene. S64
H. ${ }^{6} \mathrm{Li}$ NMR spectra of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}$ at various mole fractions in $3.0 \mathrm{M} \mathrm{THF} /$ toluene at $-50^{\circ} \mathrm{C}$. S65
I. Table of the relative integrations for the spectra in VII.H. S67
J. Job Plot of $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8} /\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ hexamers in $3.0 \mathrm{M} \mathrm{THF} /$ toluene. S68
VIII. (S)- β-Phenylglycine and (R)- β-Alanine *Note this is $\mathbf{R} / \mathbf{R}^{\prime}$ ' mix
A. ${ }^{6} \mathrm{Li}$ NMR spectra of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\left[{ }^{6} \mathrm{Li}\right](S)-5$ at various temperatures. S69
B. Variation of enolate concentration for a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and [$\left.{ }^{6} \mathrm{Li}\right](S)-5$ (mole fraction $\mathbf{8}=0.70$). S70
C. Variation of enolate concentration for a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\left[{ }^{6} \mathrm{Li}\right](S)-5$ (mole fraction $\left.\mathbf{8}=0.30\right)$. S71
D. ${ }^{6} \mathrm{Li}$ NMR spectra of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\left[{ }^{6} \mathrm{Li}\right](S)-5$ at various mole fractions in $3.0 \mathrm{M} \mathrm{THF} /$ toluene at $-40^{\circ} \mathrm{C}$. S72
E. Table of the relative integrations for the spectra in VIII.D. S74
F. Job Plot of $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8} /\left[{ }^{6} \mathrm{Li}\right](R)-5$ hexamers. S75
G. The fit in VIII.F. overlaid with a statistical distribution of hexamers. S76
IX. Multi-author References S77

I. Experimental Procedures

A. Method for preparation of NMR spectroscopy samples

Separate stock solutions of $\left[{ }^{6} \mathrm{Li}\right] \mathrm{LiHMDS}$ and the appropriate β-amino ester were prepared in small vials. An NMR tube was fit with a septum and connected to a Schlenk line using a vacuum hose and needle. After the NMR tube was flame dried, the tube was placed under argon and in a $-78^{\circ} \mathrm{C}$ bath. The appropriate amount of base solution was added followed by the substrate and/or solvent solutions using gas-tight syringes. After all the components were added, the sample was placed under partial vacuum, and the sample tube was sealed with an oxygen torch. Prior to recording the spectra, the samples were warmed in a $0^{\circ} \mathrm{C}$ bath for 10-15 minutes followed by a few seconds of gentle shaking to ensure complete mixing and enolization.

B. Method of integration

NMR resonances were integrated using Varian's software, VNMR. After weighted Fourier transform with drift correction and 64,000 points and phasing, a baseline correction was applied when possible. Deconvolution was performed in the absolute intensity mode, with the default parameters for contributions from Lorentzian and Gaussian line shapes, and using the line list for well resolved spectra. For poorly resolved spectra, the resonances were indicated using the "mark" and "use mark" commands.

C. Preparation of compounds

The precursors to 5-7 were prepared from the Boc-protected, optically pure amino acids by Arndt-Eistert homologation. ${ }^{1}$ The Boc protection was removed by refluxing 0.25 M Boc- β-amino ester and 1.0 mole equivalent of p-toluenesulfonic acid monohydrate in methanol for about 3.5 hours or until deprotection was complete by TLC. The methanol was removed by rotary evaporation followed by full vacuum. The tosylate salt was recrystallized in THF/MeOH overnight in a -20 ${ }^{\circ} \mathrm{C}$ freezer. The free base was obtained by condensing ammonia at $-78{ }^{\circ} \mathrm{C}$ into a slurry of the tosylate salt and ether. After the reaction was allowed to warm to RT and the excess ammonia had dissipated, the ammonium tosylate was removed by filtration. Ether was removed by rotary evaporation, and the β-amino ester was further purified by a pot-to-pot transfer under reduced pressure.

The precursor to $\mathbf{8}$ was prepared according to a literature protocol. ${ }^{2}$ Enantiomeric excess of the N-trifluoromethylacetyl- β-phenylglycine derivative was measured by gas chromatography on an Alltech Chirasil-Val capillary column.

The β-amino esters were stored at $-20^{\circ} \mathrm{C}$ and were checked for degradation by ${ }^{1} \mathrm{H}$ NMR spectroscopy prior to use.

[^0]
II. (S)- β-Valine and (R)- β-Valine

II.A. ${ }^{6} \mathrm{Li}$ NMR spectra $(58.8 \mathrm{MHz})$ of $\left[{ }^{6} \mathrm{Li}\right](S)-6$ at various temperatures. All samples are 0.10 M total enolate concentration and $9.0 \mathrm{M} \mathrm{THF} /$ toluene.

II.B. ${ }^{6} \mathrm{Li} \mathrm{NMR}$ spectra (58.8 MHz) of $\left[{ }^{6} \mathrm{Li}\right] \mathrm{rac}-6$ at various temperatures. All samples are 0.10 M total enolate concentration and $9.0 \mathrm{M} \mathrm{THF} /$ toluene.

II.C. ${ }^{6} \mathrm{Li}$ NMR spectra (58.8 MHz) of a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-6$ and $\left[{ }^{6} \mathrm{Li}\right](S)-6$ (mole fraction of $\mathbf{R}=0.80$) at various temperatures. All samples are 0.10 M total enolate concentration and 9.0 M THF/toluene.

* Spectrum recorded at 73.6 MHz.

[enolate]	Relative Integrations			
(M)	(\bullet)	$(\boldsymbol{\square})$	$(\boldsymbol{\nabla})$	(\bullet)
0.05	0.39	0.37	0.11	0.13
0.10	0.38	0.38	0.10	0.14
0.20	0.37	0.37	0.10	0.16

II.D. Variation of enolate concentration for a mixture of $\left[{ }^{6} \mathrm{Li}\right](S)-6$ and $\left[{ }^{6} \mathrm{Li}\right](R)-6$ (mole fraction of $\mathbf{S}=0.30) .{ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-6$ and $\left[{ }^{6} \mathrm{Li}\right](S)$ 6 (mole fraction of $\mathbf{S}=0.30$) at various enolate concentrations. All samples are 9.0 M $\mathrm{THF} /$ toluene and were recorded at $-20^{\circ} \mathrm{C}$. The relative integrations of the peaks are plotted versus the total enolate concentration The lines represent a linear least squares fit. $(\bullet) \mathbf{R}_{6}+\mathbf{S}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{S}_{1}+\mathbf{R}_{1} \mathbf{S}_{5}(\boldsymbol{\square}) \mathbf{R}_{2} \mathbf{S}_{4}+\mathbf{R}_{4} \mathbf{S}_{2}(\bullet) \mathbf{R}_{3} \mathbf{S}_{3}$ such that $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{6}$ and $\mathbf{S}=$ $\left[{ }^{6} \mathrm{Li}\right](S)-6$.

II.E. ${ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-6$ and $\left[{ }^{6} \mathrm{Li}\right](S)-6$ at various mole fractions in 9.0 M THF /toluene at $-20^{\circ} \mathrm{C}$. Samples are 0.10 M in total enolate concentration. ($\bullet \mathbf{R}_{6}+\mathbf{S}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{S}_{1}+\mathbf{R}_{1} \mathbf{S}_{5}(\boldsymbol{\bullet}) \mathbf{R}_{2} \mathbf{S}_{4}+\mathbf{R}_{4} \mathbf{S}_{2}(\bullet) \mathbf{R}_{3} \mathbf{S}_{3}$ such that $\mathbf{R}=$ $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{6}$ and $\mathbf{S}=\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{6}$.

II.E. (cont.) ${ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-6$ and $\left[{ }^{6} \mathrm{Li}\right](S)-6$ at various mole fractions in $9.0 \mathrm{M} \mathrm{THF} /$ toluene at $-20^{\circ} \mathrm{C}$. Samples are 0.10 M in total enolate concentration. ($\bullet) \mathbf{R}_{6}+\mathbf{S}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{S}_{1}+\mathbf{R}_{1} \mathbf{S}_{5}(\boldsymbol{\bullet}) \mathbf{R}_{2} \mathbf{S}_{4}+\mathbf{R}_{4} \mathbf{S}_{2}(\bullet) \mathbf{R}_{3} \mathbf{S}_{3}$ such that $\mathbf{R}=$ $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{6}$ and $\mathbf{S}=\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{6}$.
II.F. Table of the relative integrations for the spectra in II.E. ${ }^{a}$

Relative Integrations

Mole Frac. $(R)-\mathbf{6}$	$\mathbf{R}_{3} \mathbf{S}_{3}$ (\bullet)	$\mathbf{R}_{4} \mathbf{S}_{2}+\mathbf{R}_{2} \mathbf{S}_{4}$ $(\boldsymbol{\mathbf { a }})$	$\mathbf{R}_{5} \mathbf{S}_{1}+\mathbf{R}_{1} \mathbf{S}_{5}$ $(\boldsymbol{\nabla})$	$\mathbf{R}_{6}+\mathbf{S}_{6}$ (\bullet)
1.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	1.00 ± 0.00
0.90	0.06 ± 0.02	0.18 ± 0.03	0.123 ± 0.012	0.64 ± 0.05
0.80	0.21 ± 0.02	0.334 ± 0.004	0.126 ± 0.009	0.331 ± 0.004
0.70	0.43 ± 0.09	0.38 ± 0.03	0.08 ± 0.02	0.11 ± 0.04
0.60	0.670 ± 0.096	0.29 ± 0.05	0.03 ± 0.03	0.01 ± 0.03
0.50	0.75 ± 0.03	0.242 ± 0.016	0.01 ± 0.02	0.00 ± 0.00
0.40	0.60 ± 0.12	0.32 ± 0.06	0.05 ± 0.03	0.04 ± 0.03
0.30	0.36 ± 0.05	0.380 ± 0.006	0.103 ± 0.014	0.16 ± 0.03
0.20	0.210 ± 0.008	0.333 ± 0.014	0.134 ± 0.007	0.32 ± 0.02
0.10	0.068 ± 0.010	0.20 ± 0.02	0.138 ± 0.002	0.60 ± 0.03
0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	1.00 ± 0.00

${ }^{a}(\bullet) \mathbf{R}_{6}+\mathbf{S}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{S}_{1}+\mathbf{R}_{1} \mathbf{S}_{5}(\boldsymbol{\square}) \mathbf{R}_{2} \mathbf{S}_{4}+\mathbf{R}_{4} \mathbf{S}_{2}(\bullet) \mathbf{R}_{3} \mathbf{S}_{3}$ such that $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{6}$ and $\mathbf{S}=$ $\left[{ }^{6} \mathrm{Li}\right](S)-6$.

II.G. Job Plot of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{6} /\left[{ }^{6} \mathrm{Li}\right](S)-6\left(9.0 \mathrm{M} \mathrm{THF} /\right.$ toluene; $\left.-20^{\circ} \mathrm{C}\right)$ hexamers. The relative integrations are plotted as a function of the mole fraction of $\left[{ }^{6} \mathrm{Li}\right](R)-6$. $\mathbf{R}_{6}+\mathbf{S}_{6}(\nabla) \mathbf{R}_{5} \mathbf{S}_{1}+\mathbf{R}_{1} \mathbf{S}_{5}(\boldsymbol{\square}) \mathbf{R}_{4} \mathbf{S}_{2}+\mathbf{R}_{2} \mathbf{S}_{4}(\bullet) \mathbf{R}_{3} \mathbf{S}_{3}$ such that $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{6}$ and $\mathbf{S}=$ $\left[{ }^{6} \mathrm{Li}\right](S)-6$. The curves result from a parametric fit, affording $\phi_{0}=0.01134 ; \phi_{1}=0.0924$; $\phi_{2}=0.9574 ; \phi_{3}=5$.

III. (S)- β-Valine and (R)- β-Alanine

III.A. ${ }^{6} \mathrm{Li}$ NMR spectra $(73.6 \mathrm{MHz})$ of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-6$ and $\left[{ }^{6} \mathrm{Li}\right](S)-5($ mole fraction of $\mathbf{6}=0.3$) at various temperatures. Samples are 0.10 M total enolate concentration and $3.0 \mathrm{M} \mathrm{THF} /$ toluene.
Mole Fraction $(R)-6=0.7$
Mole Fraction $(R)-6=0.5$

III.B. ${ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-6$ and $\left[{ }^{6} \mathrm{Li}\right](S)-5$ at various temperatures. Samples are 0.10 M total enolate concentration and 3.0 M THF/toluene.

[enolate] Relative Integrations

(M)	(\bullet)	$(\boldsymbol{\square})$	(∇)	(\diamond)
0.05	0.30	0.38	0.11	0.21
0.20	0.31	0.41	0.08	0.19
0.30	0.31	0.38	0.11	0.20

III.C. Variation of enolate concentration for a mixture of $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{6}$ and $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{5}$ (mole fraction of $\left.\mathbf{S}^{\prime}=0.70\right) .{ }^{6} \mathrm{Li}$ NMR spectra $(73.6 \mathrm{MHz})$ of a mixture of $\left[^{6} \mathrm{Li}\right](S)-6$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5$ (mole fraction of $\left.\mathbf{S}^{\prime}=0.70\right)$ at various enolate concentrations. All samples are $3.0 \mathrm{M} \mathrm{THF} /$ toluene and were recorded at $-30^{\circ} \mathrm{C}$. The relative integrations of the peaks are plotted versus the total enolate concentration. The lines represent a linear least squares fit. (\bullet) $\mathbf{R}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{S}^{\prime}{ }_{1}(\boldsymbol{\square}) \mathbf{R}_{4} \mathbf{S}^{\prime}{ }_{2}+\mathbf{R}_{2} \mathbf{S}^{\prime}{ }_{4}(\bullet) \mathbf{R}_{3} \mathbf{S}^{\prime}{ }_{3}(\nabla) \mathbf{R}_{1} \mathbf{S}^{\prime}{ }_{5}(\diamond) \mathbf{S}^{\prime}{ }_{6}$ such that $\mathbf{S}^{\prime}=\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{6}$ and $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{5}$.

[enolate]	Relative Integrations			
(M)	(\bullet)	$(\boldsymbol{\bullet})$	$(\boldsymbol{\nabla})$	(\bullet)
0.05	0.30	0.36	0.16	0.17
0.20	0.28	0.32	0.12	0.28
0.30	0.27	0.31	0.12	0.30

III.D. Variation of enolate concentration for a mixture of $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{6}$ and $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{5}$ (mole fraction of $\left.\mathbf{S}^{\prime}=0.30\right) .{ }^{6} \mathrm{Li}$ NMR spectra $(73.6 \mathrm{MHz})$ of a mixture of $\left[{ }^{6} \mathrm{Li}\right](S)-6$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5$ (mole fraction of $\left.\mathbf{S}^{\prime}=0.30\right)$ at various enolate concentrations. All samples are 3.0 M THF/toluene. The sample with total enolate concentration of 0.30 M is shown at various temperatures. The data in the table is from the spectra taken at $-30^{\circ} \mathrm{C}$. ($\diamond \mathbf{R}_{6}$ $(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{S}^{\prime}{ }_{1}(\boldsymbol{(}) \mathbf{R}_{4} \mathbf{S}^{\prime}{ }_{2}+\mathbf{R}_{2} \mathbf{S}^{\prime}{ }_{4}(\bullet) \mathbf{R}_{3} \mathbf{S}^{\prime}{ }_{3}(\nabla) \mathbf{R}_{1} \mathbf{S}^{\prime}{ }_{5}(\diamond) \mathbf{S}^{\prime}{ }_{6}$ such that $\mathbf{S}^{\boldsymbol{\prime}}=\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{6}$ and \mathbf{R} $=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{5}$.

III.E. ${ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-6$ and $\left[{ }^{6} \mathrm{Li}\right](S)-5$ at various mole fractions in 3.0 M THF /toluene at $-30^{\circ} \mathrm{C}$. Samples are 0.10 M total enolate concentration. (\bullet) $\mathbf{R}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{S}^{\prime}{ }_{1}(\boldsymbol{\square}) \mathbf{R}_{4} \mathbf{S}^{\prime}{ }_{2}+\mathbf{R}_{2} \mathbf{S}^{\prime}{ }_{4}(\bullet) \mathbf{R}_{3} \mathbf{S}^{\prime}{ }_{3}(\nabla) \mathbf{R}_{1} \mathbf{S}^{\prime}{ }_{5}(\diamond) \mathbf{S}_{6}{ }_{6}$ such that $\mathbf{S}^{\prime}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{6}$ and $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{5}$.

III.E. (cont.) ${ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-6$ and $\left[{ }^{6} \mathrm{Li}\right](S)-5$ at various mole fractions in 3.0 M THF/toluene at $-30^{\circ} \mathrm{C}$. Samples are 0.10 M total enolate concentration. (\bullet) $\mathbf{R}_{6}(\mathbf{\nabla}) \mathbf{R}_{5} \mathbf{S}^{\prime}{ }_{1}(\boldsymbol{\square}) \mathbf{R}_{4} \mathbf{S}^{\prime}{ }_{2}+\mathbf{R}_{2} \mathbf{S}^{\prime}{ }_{4}(\bullet) \mathbf{R}_{3} \mathbf{S}^{\prime}{ }_{3}(\nabla) \mathbf{R}_{1} \mathbf{S}^{\prime}{ }_{5}(\diamond) \mathbf{S}^{\prime}{ }_{6}$ such that $\mathbf{S}^{\prime}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{6}$ and $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{5}$.
III.F. Table of the relative integrations for the spectra in III.E. ${ }^{a}$

Relative Integrations

Mole Frac. (R)-6	$\begin{gathered} \hline \mathbf{R}_{3} \mathbf{S}^{\prime}{ }_{3} \\ (\bullet) \end{gathered}$	$\mathbf{R}_{4} \mathbf{S}^{\prime}{ }_{2}+\mathbf{R}_{2} \mathbf{S}^{\prime}{ }_{4}{ }^{b}$	$\mathbf{R}_{1} \mathbf{S}{ }_{5}{ }_{5}$ (∇)	$\begin{gathered} \mathbf{R}_{5} \mathbf{S}_{1}{ }_{1} \\ (\mathbf{\nabla}) \end{gathered}$
1.00	0.000 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
0.90	0.051 ± 0.003	0.16 ± 0.01	0.127 ± 0.005	0.00 ± 0.00
0.80	0.172 ± 0.008	0.30 ± 0.01	0.14 ± 0.01	0.00 ± 0.00
0.70	0.35 ± 0.02	0.39 ± 0.01	0.11 ± 0.01	0.00 ± 0.00
0.60	0.529 ± 0.005	0.376 ± 0.002	0.053 ± 0.001	0.00 ± 0.00
0.50	0.63 ± 0.06	0.35 ± 0.02	0.02 ± 0.02	0.00 ± 0.00
0.40	0.57 ± 0.02	0.36 ± 0.01	0.00 ± 0.000	0.061 ± 0.001
0.30	0.38 ± 0.01	0.37 ± 0.01	0.000 ± 0.000	0.136 ± 0.007
0.20	0.186 ± 0.003	0.302 ± 0.004	0.00 ± 0.00	0.196 ± 0.005
0.10	0.050 ± 0.00005	0.159 ± 0.009	0.000 ± 0.000	0.201 ± 0.009
0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00

	Relative Integrations	
Mole Frac. $(R)-\mathbf{6}$	$\mathbf{S}^{\prime}{ }_{6}$ (\diamond)	\mathbf{R}_{6} (\checkmark)
1.00	1.00 ± 0.00	0.00 ± 0.00
0.90	0.67 ± 0.01	0.00 ± 0.00
0.80	0.389 ± 0.0005	0.00 ± 0.00
0.70	0.16 ± 0.02	0.00 ± 0.00
0.60	0.042 ± 0.004	0.00 ± 0.00
0.50	0.01 ± 0.02	0.00 ± 0.00
0.40	0.00 ± 0.00	0.01 ± 0.01
0.30	0.00 ± 0.00	0.12 ± 0.02
0.20	0.00 ± 0.00	0.32 ± 0.01
0.10	0.00 ± 0.00	0.59 ± 0.02
0.00	0.00 ± 0.00	1.00 ± 0.00

${ }^{a}(\bullet) \mathbf{R}_{6}(\mathbf{\nabla}) \mathbf{R}_{5} \mathbf{S}^{\prime}{ }_{1}(\mathbf{\square}) \mathbf{R}_{4} \mathbf{S}^{\prime}{ }_{2}+\mathbf{R}_{2} \mathbf{S}^{\prime}{ }_{4}(\bullet) \mathbf{R}_{3} \mathbf{S}^{\prime}{ }_{3}(\nabla) \mathbf{R}_{1} \mathbf{S}^{\prime}{ }_{5}(\diamond) \mathbf{S}^{\prime}{ }_{6}$ such that $\mathbf{S}^{\prime}=$ $\left[{ }^{6} \mathrm{Li}\right](R)-6$ and $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](S)-5$.
${ }^{b}$ The relative integrations of the $\mathbf{R}_{2} \mathbf{S}^{\prime}{ }_{4}$ and $\mathbf{R}_{4} \mathbf{S}{ }_{2}$ aggregates are summed due poor resolution of their resonances.

III.G. Job Plot of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{6} /\left[{ }^{6} \mathrm{Li}\right](S)-5\left(3.0 \mathrm{M} \mathrm{THF} /\right.$ toluene; $\left.-30^{\circ} \mathrm{C}\right)$ hexamers. The relative integrations are plotted as a function of the mole fraction of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{6}$. ($) \mathbf{R}_{6}$ $(\nabla) \mathbf{R}_{5} \mathbf{S}^{\prime}{ }_{1}(\mathbf{\square}) \mathbf{R}_{4} \mathbf{S}^{\prime}{ }_{2}+\mathbf{R}_{2} \mathbf{S}^{\prime}{ }_{4}(\bullet) \mathbf{R}_{3} \mathbf{S}^{\prime}{ }_{3}(\nabla) \mathbf{R}_{1} \mathbf{S}^{\prime}{ }_{5}(\diamond) \mathbf{S}^{\prime}{ }_{6}$ such that $\left.\mathbf{S}^{\prime}={ }^{6} \mathrm{Li}\right](R)-\mathbf{6}$ and \mathbf{R} $=\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{5}$. The relative integrations of the $\mathbf{R}_{2} \mathbf{S}^{\prime}{ }_{4}$ and $\mathbf{R}_{4} \mathbf{S}^{\prime}{ }_{2}$ aggregates are summed due to poor resolution of their resonances. The curves result from a parametric fit, affording $\phi_{0}=1.00 ; \phi_{1}=0.86 ; \phi_{2}=3.91 ; \phi_{3}=14.08 ; \phi_{4}=4.84 ; \phi_{5}=0.84 ; \phi_{6}=1.96$.
IV. (R)- β-Valine and (\boldsymbol{R})- β-Alanine
Mole Fraction $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{6}=0.3$
Mole Fraction $\left[{ }^{6} \mathrm{Li}\right](R)-6=0.5$

IV.A. ${ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{6}$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5$ at various temperatures. All samples are 0.10 M total enolate concentration and 3.0 M THF/toluene.

[enolate]	Relative Integrations (M)			(\diamond)	(∇)
(\square)	(\bullet)	$(\mathbf{\square})$			
0.05	0.11	0.30	0.36	0.19	0.04
0.20	0.10	0.30	0.35	0.20	0.05
0.30	0.10	0.27	0.34	0.21	0.08

IV.B. Variation of enolate concentration for a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{6}$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5$ (mole fraction of $\mathbf{R}^{\prime}=0.70$). ${ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-6$ and $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{5}$ (mole fraction of $\mathbf{R}^{\mathbf{\prime}}=0.70$) at various enolate concentrations. All samples are $3.0 \mathrm{M} \mathrm{THF} /$ toluene and were recorded at $-30^{\circ} \mathrm{C}$. The relative integrations of the peaks are plotted versus the total enolate concentration. The lines represent a linear least squares fit. (\bullet) $\mathbf{R}_{6}+\mathbf{R}_{5} \mathbf{R}^{\prime}{ }_{1}(\boldsymbol{\bullet}) \mathbf{R}_{4} \mathbf{R}_{2}^{\prime}(\bullet) \mathbf{R}_{3} \mathbf{R}^{\prime}{ }_{3}$ (ロ) $\mathbf{R}_{2} \mathbf{R}_{4}(\nabla) \mathbf{R}_{1} \mathbf{R}_{5}{ }_{5}(\diamond) \mathbf{R}^{\prime}{ }_{6}$ such that $\left.\mathbf{R}^{\prime}={ }^{6} \mathrm{Li}\right](R)-\mathbf{6}$ and $\left.\mathbf{R}={ }^{6} \mathrm{Li}\right](R)-\mathbf{5}$.

[enolate] (M)	(∇)	Relative Integrations			
(\square)	(\bullet)	$(■)$	(\bullet)		
0.05	0.19	0.34	0.30	0.14	0.03
0.10	0.17	0.35	0.30	0.14	0.04
0.20	0.17	0.32	0.31	0.15	0.05

IV.C. Variation of enolate concentration for a mixture of $\left[{ }^{6} \mathrm{Li}\right](S)-6$ and $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{5}$ (mole fraction of $\left.\mathbf{R}^{\prime}=0.30\right) .{ }^{6} \mathrm{Li}$ NMR spectra $(73.6 \mathrm{MHz})$ of a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-6$ and $\left.{ }^{6} \mathrm{Li}\right](R)-5$ (mole fraction of $\mathbf{R}^{\prime}=0.30$) at various enolate concentrations. All samples are $3.0 \mathrm{M} \mathrm{THF} /$ toluene and were recorded at $-30^{\circ} \mathrm{C}$. The relative integrations of the peaks are plotted versus the total enolate concentration. The lines represent a linear least squares fit. (\bullet) $\mathbf{R}_{6}+\mathbf{R}_{5} \mathbf{R}^{\prime}{ }_{1}(\boldsymbol{\square}) \mathbf{R}_{4} \mathbf{R}^{\prime}{ }_{2}(\bullet) \mathbf{R}_{3} \mathbf{R}^{\prime}{ }_{3}(\square) \mathbf{R}_{2} \mathbf{R}_{4}{ }_{4}(\nabla) \mathbf{R}_{1} \mathbf{R}^{\prime}{ }_{5}(\diamond) \mathbf{R}_{6}$ such that $\mathbf{R}^{\prime}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{6}$ and $\left.\mathbf{R}={ }^{6} \mathrm{Li}\right](R)-\mathbf{5}$.

IV.D. ${ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-6$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5$ at various mole fractions in $3.0 \mathrm{M} \mathrm{THF} /$ toluene at $-30^{\circ} \mathrm{C}$. Samples are 0.10 M total enolate concentration. ($\bullet \mathbf{R}_{6}+\mathbf{R}_{5} \mathbf{R}^{\prime}{ }_{1}(\boldsymbol{\square}) \mathbf{R}_{4} \mathbf{R}^{\prime}{ }_{2}(\bullet) \mathbf{R}_{3} \mathbf{R}_{3}{ }_{3}(\square) \mathbf{R}_{2} \mathbf{R}^{\prime}{ }_{4}(\nabla) \mathbf{R}_{1} \mathbf{R}_{5}(\diamond) \mathbf{R}_{6}{ }_{6}$ such that $\mathbf{R}^{\prime}=\left[{ }^{6} \mathrm{Li}\right](R)-6$ and $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{5}$.

IV.D. (cont.) ${ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-6$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5$ at various mole fractions in $3.0 \mathrm{M} \mathrm{THF} /$ toluene at $-30^{\circ} \mathrm{C}$. Samples are 0.10 M total enolate concentration. $(\bullet) \mathbf{R}_{6}+\mathbf{R}_{5} \mathbf{R}^{\prime}{ }_{1}(\boldsymbol{\square}) \mathbf{R}_{4} \mathbf{R}^{\prime}{ }_{2}(\bullet) \mathbf{R}_{3} \mathbf{R}^{\prime}{ }_{3}$ (ロ) $\mathbf{R}_{2} \mathbf{R}^{\prime}{ }_{4}(\nabla) \mathbf{R}_{1} \mathbf{R}^{\prime}{ }_{5}(\diamond) \mathbf{R}_{6}{ }_{6}$ such that $\mathbf{R}^{\prime}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{6}$ and $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{5}$.
IV.E. Table of the relative integrations for the spectra in IV.D. ${ }^{a}$

Mole Frac. $(R)-6$	Relative Integrations $\mathbf{R}^{\prime}{ }_{6}$ (\diamond)	$\mathbf{R}_{1} \mathbf{R}^{\prime}{ }_{5}$ (∇)	$\mathbf{R}_{2} \mathbf{R}^{\prime}{ }_{4}$ (\square)	$\mathbf{R}_{3} \mathbf{R}^{\prime}{ }_{3}$ (\bullet)
		0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
1.00	1.00 ± 0.00	0.38 ± 0.02	0.101 ± 0.004	0.00 ± 0.00
0.90	0.52 ± 0.02	0.412 ± 0.003	0.27 ± 0.01	0.078 ± 0.007
0.80	0.24 ± 0.02	0.300 ± 0.002	0.354 ± 0.002	0.197 ± 0.004
0.70	0.099 ± 0.004	0.15 ± 0.02	0.31 ± 0.03	0.32 ± 0.02
0.60	0.028 ± 0.005	0.07 ± 0.01	0.225 ± 0.006	0.345 ± 0.007
0.50	0.006 ± 0.009	0.021 ± 0.003	0.114 ± 0.005	0.284 ± 0.004
0.40	0.00 ± 0.00	0.00 ± 0.00	0.04 ± 0.01	0.18 ± 0.02
0.30	0.00 ± 0.00	0.00 ± 0.00	0.008 ± 0.011	0.087 ± 0.005
0.20	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.01 ± 0.01
0.10	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
0.00	0.00 ± 0.00			

Mole Frac.	Relative Integrations	
$(R) \mathbf{- 6}$	$\mathbf{R}_{4} \mathbf{R}^{\prime}{ }_{2}$ $(\mathbf{\square})$	$\mathbf{R}_{5} \mathbf{R}^{\prime}{ }_{1}+\mathbf{R}^{\prime}{ }_{6}{ }^{b}$ $(\boldsymbol{*})$
1.00	0.00 ± 0.00	0.00 ± 0.00
0.90	0.00 ± 0.00	0.00 ± 0.00
0.80	0.00 ± 0.00	0.00 ± 0.00
0.70	0.049 ± 0.0004	0.00 ± 0.00
0.60	0.16 ± 0.03	0.03 ± 0.01
0.50	0.26 ± 0.02	0.095 ± 0.001
0.40	0.35 ± 0.01	0.234 ± 0.002
0.30	0.35 ± 0.02	0.43 ± 0.04
0.20	0.260 ± 0.001	0.65 ± 0.02
0.10	0.06 ± 0.04	0.93 ± 0.05
0.00	0.00 ± 0.00	1.00 ± 0.00

${ }^{a}(\diamond) \mathbf{R}_{6}+\mathbf{R}_{5} \mathbf{R}^{\prime}{ }_{1}(\boldsymbol{\square}) \mathbf{R}_{4} \mathbf{R}^{\prime}{ }_{2}(\bullet) \mathbf{R}_{3} \mathbf{R}^{\prime}{ }_{3}(\square) \mathbf{R}_{2} \mathbf{R}^{\prime}{ }_{4}(\nabla) \mathbf{R}_{1} \mathbf{R}^{\prime}{ }_{5}(\diamond) \mathbf{R}_{6}{ }_{6}$ such that $\mathbf{R}^{\prime}=$ $\left.{ }^{[}{ }^{6} \mathrm{Li}\right](R)-6$ and $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{5}$.
${ }^{b}$ The relative integrations of the \mathbf{R}_{6} and $\mathbf{R}_{5} \mathbf{S}{ }^{\prime}{ }_{1}$ aggregates are summed due to poor resolution of their resonances.

IV.F. A Plot of $\left[{ }^{6} \mathrm{Li}\right](R)-6 /\left[{ }^{6} \mathrm{Li}\right](R)-5\left(3.0 \mathrm{M} \mathrm{THF} /\right.$ toluene; $\left.-50^{\circ} \mathrm{C}\right)$ hexamers. The relative integrations are plotted as a function of the mole fraction of [$\left.{ }^{6} \mathrm{Li}\right](R)-6$. ($\left.*\right)$ $\mathbf{R}_{6}+\mathbf{R}_{5} \mathbf{R}^{\prime}{ }_{1}(\mathbf{\square}) \mathbf{R}_{4} \mathbf{R}^{\prime}{ }_{2}(\bullet) \mathbf{R}_{3} \mathbf{R}^{\prime}{ }_{3}(\square) \mathbf{R}_{2} \mathbf{R}^{\prime}{ }_{4}(\nabla) \mathbf{R}_{1} \mathbf{R}^{\prime}{ }_{5}(\diamond) \mathbf{R}^{\prime}{ }_{6}$ such that $\mathbf{R}^{\prime}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{6}$ and $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{5}$. The relative integrations of the \mathbf{R}_{6} and $\mathbf{R}_{5} \mathbf{S}^{\prime}{ }_{1}$ aggregates are summed due to poor resolution of their resonances. The curves result from a parametric fit, affording $\phi_{0}=1.00 ; \phi_{1}=2.04 ; \phi_{2}=2.88 ; \phi_{3}=3.66 ; \phi_{4}=4.03 ; \phi_{5}=3.99 ; \phi_{6}=3.45$.

IV.G. The fit in IV.F. is overlaid with the expected statistical distribution of an ensemble of hexamers.
(——) Fit to data ($\phi_{0}=1.00 ; \phi_{1}=2.04 ; \phi_{2}=2.88 ; \phi_{3}=3.66 ; \phi_{4}=4.03 ; \phi_{5}=3.99 ; \phi_{6}=3.45$)
(---) Statistical distribution $\left(\phi_{0}=1 . ; \phi_{1}=6 ; \phi_{2}=15 ; \phi_{3}=20 ; \phi_{4}=15 ; \phi_{5}=6 ; \phi_{6}=1\right)$

V. (S)- β-Phenylalanine/(R)- β-Phenylalanine

V.A. ${ }^{6} \mathrm{Li}$ NMR $\operatorname{spectra}(58.8 \mathrm{MHz})$ of $\left[{ }^{15} \mathrm{~N},{ }^{6} \mathrm{Li}\right] \mathrm{rac}-7$ and $\left[{ }^{15} \mathrm{~N},{ }^{6} \mathrm{Li}\right](R)-7$ at various temperatures. All samples are 0.10 M in total enolate concentration and 9.0 M THF/toluene.

V.B. ${ }^{6} \mathrm{Li}$ NMR spectra $(58.8 \mathrm{MHz})$ of $\left[{ }^{6} \mathrm{Li}\right](R)-7$ at various temperatures. All samples are 0.10 M total enolate concentration and 9.0 M THF /toluene.

* Spectra were recorded at 73.6 MHz.

V.C. ${ }^{6} \mathrm{Li}$ NMR spectra (58.8 MHz) of [$\left.{ }^{6} \mathrm{Li}\right] \mathrm{rac}-7$ at various temperatures. All samples are 0.10 M total enolate concentration and 9.0 M THF /toluene.

V.D. ${ }^{6} \mathrm{Li}$ NMR spectra (58.8 MHz) of a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-7$ and $\left[{ }^{6} \mathrm{Li}\right](S)-7$ (mole fraction of $\mathbf{R}=0.80$) at various temperatures. All samples are 0.10 M total enolate concentration and $9.0 \mathrm{M} \mathrm{THF} /$ toluene.

V.E. Variation of enolate concentration for $\left[{ }^{6} \mathrm{Li}\right](S)-7 .{ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of $\left[{ }^{6} \mathrm{Li}\right](S)-7$ at various enolate concentrations at $-25^{\circ} \mathrm{C}$. All samples are 9.0 M THF/toluene. To determine if the peak at 0.65 ppm was a different aggregate (tetramer, dimmer, etc.), the absolute enolate concentration was varied. Integration of the peaks shows no significant variation in the peak ratios as a function of absolute enolate concentration.

[enolate]	Relative Integrations			
(M)	(\bullet)	$(\boldsymbol{\nabla})$	$(\boldsymbol{\bullet})$	$(\boldsymbol{\star})$
0.05	0.57	0.17	0.12	0.14
0.15	0.55	0.16	0.12	0.17
0.25	0.56	0.17	0.12	0.15
0.40	0.55	0.16	0.12	0.16

V.F. Variation of enolate concentration for a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-7$ and $\left[{ }^{6} \mathrm{Li}\right](S)-7$ (mole fraction of $\mathbf{R}=0.30) .{ }^{6} \mathrm{Li}$ NMR spectra $(58.8 \mathrm{MHz})$ of a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-7$ and $\left[{ }^{6} \mathrm{Li}\right](S)-7$ (mole fraction of $\mathbf{R}=0.3$) at various enolate concentrations. All samples are 9.0 M THF/toluene and were recorded at $-25^{\circ} \mathrm{C}$. The relative integrations of the peaks are plotted versus the total enolate concentration. The lines represent a linear least squares fit. $(\bullet) \mathbf{R}_{6}+\mathbf{S}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{S}_{1}+\mathbf{R}_{1} \mathbf{S}_{5}(\bullet) \mathbf{R}_{3} \mathbf{S}_{3}+\mathbf{R}_{2} \mathbf{S}_{4}+\mathbf{R}_{4} \mathbf{S}_{2}(\star)$ impurity such that $\mathbf{R}=$ $\left[{ }^{6} \mathrm{Li}\right](R)-7$ and $\mathbf{S}=\left[{ }^{6} \mathrm{Li}\right](S)-7$.

[THF] Relative Integrations

(M)	(\bullet)	$(\boldsymbol{\nabla})$	(\star)	(\star)
2.0	0.44	0.25	0.17	0.14
6.0	0.50	0.20	0.14	0.16
8.0	0.54	0.17	0.13	0.16

V.G. Variation of THF concentration for a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-7$ and $\left[{ }^{6} \mathrm{Li}\right](S)-7$ (mole fraction of $\mathbf{S}=0.30) .{ }^{6} \mathrm{Li}$ NMR spectra $(58.8 \mathrm{MHz})$ of a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-7$ and $\left[{ }^{6} \mathrm{Li}\right](S)$ 7 (mole fraction of $\mathbf{S}=0.30$) at various $\mathrm{THF} /$ toluene concentrations. All samples are 0.10 M total enolate and were recorded at $-25^{\circ} \mathrm{C}$. The relative integrations of the peaks are plotted versus the total enolate concentration. The lines represent a linear least squares fit. $(\bullet) \mathbf{R}_{6}+\mathbf{S}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{S}_{1}+\mathbf{R}_{1} \mathbf{S}_{5}(\bullet) \mathbf{R}_{3} \mathbf{S}_{3}+\mathbf{R}_{2} \mathbf{S}_{4}+\mathbf{R}_{4} \mathbf{S}_{2}(\boldsymbol{\star})$ impurity such that $\mathbf{R}=$ $\left[{ }^{6} \mathrm{Li}\right](R)-7$ and $\mathbf{S}=\left[{ }^{6} \mathrm{Li}\right](S)-7$.

V.H. ${ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-7$ and $\left[{ }^{6} \mathrm{Li}\right](S)-7$ at various mole fractions in $9.0 \mathrm{M} \mathrm{THF} /$ toluene at $-25^{\circ} \mathrm{C}$. Samples are 0.10 M in total enolate concentration. ($\bullet) \mathbf{R}_{6}+\mathbf{S}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{S}_{1}+\mathbf{R}_{1} \mathbf{S}_{5}(\bullet) \mathbf{R}_{3} \mathbf{S}_{3}+\mathbf{R}_{2} \mathbf{S}_{4}+\mathbf{R}_{4} \mathbf{S}_{2}$ ($\left.\boldsymbol{\star}\right)$ impurity such that $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)-7$ and $\mathbf{S}=\left[{ }^{6} \mathrm{Li}\right](S)-7$.

V.H. (cont.) ${ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-7$ and $\left[{ }^{6} \mathrm{Li}\right](S)-7$ at various mole fractions in $9.0 \mathrm{M} \mathrm{THF} /$ toluene at $-25^{\circ} \mathrm{C}$. Samples are 0.10 M in total enolate concentration. $(\bullet) \mathbf{R}_{6}+\mathbf{S}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{S}_{1}+\mathbf{R}_{1} \mathbf{S}_{5}(\bullet) \mathbf{R}_{3} \mathbf{S}_{3}+\mathbf{R}_{2} \mathbf{S}_{4}+\mathbf{R}_{4} \mathbf{S}_{2}(\boldsymbol{\star})$ impurity such that $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{7}$ and $\mathbf{S}=\left[{ }^{6} \mathrm{Li}\right](S)-7$.
V.I. Table of the relative integrations for the spectra in V.H. ${ }^{a}$

Mole Frac. (R)-7	Relative Integrations		
	$\begin{gathered} \mathbf{R}_{6}+\mathbf{S}_{6} \\ (\bullet) \end{gathered}$	$\begin{gathered} \mathbf{R}_{5} \mathbf{S}_{1}+\mathbf{R}_{1} \mathbf{S}_{5} \\ (\mathbf{\nabla}) \end{gathered}$	$\mathbf{R}_{4} \mathbf{S}_{2}+\mathbf{R}_{2} \mathbf{S}_{4}+\mathbf{R}_{3} \mathbf{S}_{3}{ }^{b}$ (${ }^{\text {) }}$
1.00	1.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
0.90	0.59 ± 0.06	0.26 ± 0.02	0.15 ± 0.05
0.80	0.25 ± 0.04	0.25 ± 0.02	0.50 ± 0.06
0.70	0.13 ± 0.07	0.18 ± 0.05	0.69 ± 0.11
0.60	0.02 ± 0.02	0.05 ± 0.02	0.93 ± 0.03
0.50	0.00 ± 0.00	0.02 ± 0.003	0.98 ± 0.003
0.40	0.01 ± 0.02	0.07 ± 0.003	0.92 ± 0.02
0.30	0.08 ± 0.03	0.14 ± 0.03	0.78 ± 0.06
0.20	0.25 ± 0.04	0.26 ± 0.010	0.49 ± 0.05
0.10	0.55 ± 0.03	0.27 ± 0.004	0.18 ± 0.03
0.00	1.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
$\begin{aligned} & { }^{a}\left(\mathbf{R}_{6}+\mathbf{S}_{6}\right. \\ & \text { and } \mathbf{S}=\left[{ }^{6} \mathrm{Li}\right] \end{aligned}$	$\text { V) } \mathbf{R}_{5} \mathbf{S}_{1}+\mathbf{R}_{1}$	$\mathbf{R}_{3} \mathbf{S}_{3}+\mathbf{R}_{2} \mathbf{S}_{4}+$	$\mathbf{S}_{2}(\boldsymbol{\star})$ impurity suc
${ }^{\text {b }}$ The $\mathbf{R}_{3} \mathbf{S}_{3}$ and	$\mathbf{R}_{2} \mathbf{S}_{4}+\mathbf{R}_{4} \mathbf{S}_{2}$	were integra	d as a single peak d

V.J. Job Plot of $\left[{ }^{6} \mathrm{Li}\right](R)-7 /\left[{ }^{6} \mathrm{Li}\right](S)-7\left(9.0 \mathrm{M} \mathrm{THF} /\right.$ toluene; $\left.-25^{\circ} \mathrm{C}\right)$ hexamers. The relative integrations are plotted as a function of the mole fraction of $\left[{ }^{6} \mathrm{Li}\right](R)-7$. (\bullet) $\mathbf{R}_{6}+\mathbf{S}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{S}_{1}+\mathbf{R}_{1} \mathbf{S}_{5}(\bullet) \mathbf{R}_{3} \mathbf{S}_{3}+\mathbf{R}_{2} \mathbf{S}_{4}+\mathbf{R}_{4} \mathbf{S}_{2}$ such that $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)-7$ and $\mathbf{S}=\left[{ }^{6} \mathrm{Li}\right](S)-7$. The $\mathbf{R}_{3} \mathbf{S}_{3}, \mathbf{R}_{2} \mathbf{S}_{4}$, and $\mathbf{R}_{4} \mathbf{S}_{2}$ aggregates are assigned as spectroscopically indistinguishable. The curves result from a parametric fit, affording $\phi_{0}=1 ; \phi_{1}=2.17 ; \phi_{2}=19.3 ; \phi_{3}=13.6$.

V.K. Job Plot of $\left[{ }^{6} \mathrm{Li}\right](R)-7 /\left[{ }^{6} \mathrm{Li}\right](S)-7\left(9.0 \mathrm{M} \mathrm{THF} /\right.$ toluene; $\left.-25^{\circ} \mathrm{C}\right)$ fit to tetramer model. $(\bullet) \mathbf{R}_{\mathbf{4}}+\mathbf{S}_{\mathbf{4}}(\boldsymbol{\nabla}) \mathbf{R}_{\mathbf{3}} \mathbf{S}_{\mathbf{1}}+\mathbf{R}_{\mathbf{1}} \mathbf{S}_{\mathbf{3}}(\bullet) \mathbf{R}_{\mathbf{2}} \mathbf{S}_{\mathbf{2}}$ such that $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{7}$ and $\mathbf{S}=\left[{ }^{6} \mathrm{Li}\right](S)$-7. The relative integrations are plotted as a function of the mole fraction of $\left[{ }^{6} \mathrm{Li}\right](R)-7$. The curves result from a parametric fit, affording $\phi_{0}=1 ; \phi_{1}=10.1 ; \phi_{2}=1041$.

VI. (S)- β-Phenylalanine and (\boldsymbol{R})- β-Alanine

VI.A. ${ }^{6} \mathrm{Li}$ NMR spectra $(58.8 \mathrm{MHz})$ of a mixture of $\left[{ }^{6} \mathrm{Li}\right](S)-7$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5($ mole fraction of $7=0.5$) at various temperatures. All samples are 0.10 M total enolate concentration and $9.0 \mathrm{M} \mathrm{THF} /$ toluene.

VI.B. ${ }^{6} \mathrm{Li}$ NMR spectra $(73.6 \mathrm{MHz})$ of a mixture of $\left[{ }^{6} \mathrm{Li}\right](S)-7$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5($ mole fraction of $7=0.7$) at various temperatures. All samples are 0.10 M total enolate concentration and $9.0 \mathrm{M} \mathrm{THF} /$ toluene.

VI.C. ${ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of mixtures of $\left[{ }^{6} \mathrm{Li}\right](S)-7$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5$ at various mole fractions in $9.0 \mathrm{M} \mathrm{THF} /$ toluene at $-40^{\circ} \mathrm{C}$. Samples are 0.10 M in total enolate concentration. (\bullet) $\mathbf{R}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{S}^{\prime}{ }_{1}(\boldsymbol{\square}) \mathbf{R}_{4} \mathbf{S}^{\prime}{ }_{2}+\mathbf{R}_{2} \mathbf{S}^{\prime}{ }_{4}(\bullet) \mathbf{R}_{3} \mathbf{S}^{\prime}{ }_{3}(\nabla) \mathbf{R}_{1} \mathbf{S}^{\prime}{ }_{5}(\diamond) \mathbf{S}_{6}{ }_{6}$ such that $\mathbf{S}^{\prime}=\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{7}$ and $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{5}$.

VI.C. (cont.) ${ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of mixtures of $\left[{ }^{6} \mathrm{Li}\right](S)-7$ and $\left[{ }^{6} \mathrm{Li}\right](R)$-5 at various mole fractions in $9.0 \mathrm{M} \mathrm{THF} /$ toluene at $-40^{\circ} \mathrm{C}$. Samples are 0.10 M in total enolate concentration. (\bullet) $\mathbf{R}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{S}^{\prime}{ }_{1}(\boldsymbol{\square}) \mathbf{R}_{4} \mathbf{S}^{\prime}{ }_{2}+\mathbf{R}_{2} \mathbf{S}^{\prime}{ }_{4}(\bullet) \mathbf{R}_{3} \mathbf{S}^{\prime}{ }_{3}(\nabla) \mathbf{R}_{1} \mathbf{S}^{\boldsymbol{\prime}}{ }_{5}(\diamond) \mathbf{S}^{\prime}{ }_{6}$ such that $\mathbf{S}^{\prime}=\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{7}$ and $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{5}$.

Pentane Cosolvent

Cyclopentane Cosolvent

$-40{ }^{\circ} \mathrm{C}$

VI.D. ${ }^{6} \mathrm{Li}$ NMR spectra $(73.6 \mathrm{MHz})$ of mixtures of $\left[{ }^{6} \mathrm{Li}\right](S)-7$ and $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{5}($ mole fraction of $7=0.3$) in non-aromatic cosolvents at various temperatures. All samples are 0.10 M total enolate concentration and 6.0 M THF .
\qquad Mole Fraction (S)-2=0.3

VI.E. ${ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of mixtures of $\left[{ }^{6} \mathrm{Li}\right](S)-7$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5$ with benzene or anisole as a co-solvent in various THF concentrations. All samples are 0.10 M in total enolate concentration and were recorded at $-40^{\circ} \mathrm{C}$.

VI.F. ${ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of mixtures of $\left[{ }^{6} \mathrm{Li}\right](S)-7$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5$ with tertbutylbenzene as a co-solvent at various THF concentrations. All samples are 0.10 M total enolate concentration.
Mole Fraction (S)-2=0.7
Mole Fraction (S)-2=0.3

6.0 M

VI.G. ${ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of mixtures of $\left[{ }^{6} \mathrm{Li}\right](S)-7$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5$ with toluene as a co-solvent at various THF concentrations. All samples are 0.10 M total enolate concentration and were recorded at $-40^{\circ} \mathrm{C}$.

[enolate] Relative Integrations

(M)	(\bullet)	$(■)$	(∇)	(\diamond)
0.05	0.24	0.40	0.21	0.15
0.10	0.24	0.40	0.21	0.15
0.20	0.27	0.35	0.21	0.18
0.30	0.26	0.38	0.21	0.16
0.50	0.25	0.39	0.20	0.15

VI.H. Variation of enolate concentration for a mixture of $\left[{ }^{6} \mathrm{Li}\right](S)-7$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5($ mole fraction of $7=0.70) .{ }^{6} \mathrm{Li}$ NMR spectra $(73.6 \mathrm{MHz})$ of a mixture of $\left[{ }^{6} \mathrm{Li}\right](S)-7$ and $\left[{ }^{6} \mathrm{Li}\right](R)$ 5 (mole fraction of $7=0.70$) at various enolate concentrations. All samples are 4.0 M THF/toluene and were recorded at $-30^{\circ} \mathrm{C}$. The relative integrations of the peaks are plotted versus the total enolate concentration. The lines represent a linear least squares fit. ($\bullet_{)} \mathbf{R}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{S}^{\prime}{ }_{1}(\boldsymbol{\square}) \mathbf{R}_{4} \mathbf{S}^{\prime}{ }_{2}+\mathbf{R}_{2} \mathbf{S}^{\boldsymbol{\prime}}{ }_{4}(\boldsymbol{\bullet}) \mathbf{R}_{3} \mathbf{S}^{\boldsymbol{\prime}}{ }_{3}(\nabla) \mathbf{R}_{1} \mathbf{S}^{\prime}{ }_{5}(\diamond) \mathbf{S}^{\prime}{ }_{6}$ such that $\mathbf{S}^{\boldsymbol{\prime}}=$ $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{7}$ and $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{5}$.

[enolate]	Relative Integrations			
(M)	(\bullet)	$(\boldsymbol{\square})$	$(\boldsymbol{\nabla})$	(\bullet)
0.05	0.24	0.40	0.21	0.15
0.10	0.24	0.40	0.21	0.15
0.20	0.27	0.35	0.21	0.18
0.30	0.26	0.38	0.21	0.16
0.50	0.25	0.39	0.20	0.15

VI.I. Variation of enolate concentration for a mixture of $\left[{ }^{6} \mathrm{Li}\right](S)-7$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5($ mole fraction of $7=0.30$). ${ }^{6} \mathrm{Li}$ NMR spectra $(73.6 \mathrm{MHz})$ of a mixture of $\left[{ }^{6} \mathrm{Li}\right](S)-7$ and $\left[{ }^{6} \mathrm{Li}\right](R)-$ 5 (mole fraction of $7=0.30$) at various enolate concentrations. All samples are 4.0 M THF/toluene and were recorded at $-30^{\circ} \mathrm{C}$. The relative integrations of the peaks are plotted versus the total enolate concentration. The lines represent a linear least squares fit. (\bullet) $\mathbf{R}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{S}^{\prime}{ }_{1}(\boldsymbol{\square}) \mathbf{R}_{4} \mathbf{S}^{\prime}{ }_{2}+\mathbf{R}_{2} \mathbf{S}^{\prime}{ }_{4}(\bullet) \mathbf{R}_{3} \mathbf{S}^{\prime}{ }_{3}(\nabla) \mathbf{R}_{1} \mathbf{S}^{\prime}{ }_{5}(\diamond) \mathbf{S}_{6}{ }_{6}$ such that $\mathbf{S}^{\prime}=$ $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{7}$ and $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{5}$.

VI.J. ${ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of mixtures of $\left[{ }^{6} \mathrm{Li}\right](S)-7$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5$ at various mole fractions in $4.0 \mathrm{M} \mathrm{THF} /$ toluene at $-30^{\circ} \mathrm{C}$. Samples are 0.10 M in total enolate concentration. ($) \mathbf{R}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{S}^{\prime}{ }_{1}(\boldsymbol{\square}) \mathbf{R}_{4} \mathbf{S}^{\prime}{ }_{2}+\mathbf{R}_{2} \mathbf{S}^{\prime}{ }_{4}(\bullet) \mathbf{R}_{3} \mathbf{S}^{\prime}{ }_{3}(\nabla) \mathbf{R}_{1} \mathbf{S}^{\prime}{ }_{5}(\diamond) \mathbf{S}^{\prime}{ }_{6}$ such that $\mathbf{S}^{\prime}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{7}$ and $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{5}$.

VI.J. (cont.) ${ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of mixtures of $\left[{ }^{6} \mathrm{Li}\right](S)-7$ and $\left[{ }^{6} \mathrm{Li}\right](R)-5$ at various mole fractions in $4.0 \mathrm{M} \mathrm{THF} /$ toluene at $-30^{\circ} \mathrm{C}$. Samples are 0.10 M in total enolate concentration. (\bullet) $\mathbf{R}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{S}^{\prime}{ }_{1}(\boldsymbol{\square}) \mathbf{R}_{4} \mathbf{S}^{\prime}{ }_{2}+\mathbf{R}_{2} \mathbf{S}^{\prime}{ }_{4}(\bullet) \mathbf{R}_{3} \mathbf{S}^{\prime}{ }_{3}(\nabla) \mathbf{R}_{1} \mathbf{S}^{\prime}{ }_{5}(\diamond) \mathbf{S}^{\prime}{ }_{6}$ such that $\mathbf{S}^{\prime}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{7}$ and $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{5}$.
VI.K. Table of the relative integrations for the spectra in VI.J ${ }^{a}$

	Relative Integrations			
Mole Frac. $(S)-7$	$\mathbf{S}^{\prime}{ }_{6}$ (\diamond)	$\mathbf{R}_{1} \mathbf{S}^{\prime}{ }_{5}$ (∇)	$\mathbf{R}_{2} \mathbf{S}^{\prime}{ }_{4}$ (\square)	$\mathbf{R}_{3} \mathbf{S}^{\prime}{ }_{3}$ $(\boldsymbol{\bullet})$
		0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
1.00	1.00 ± 0.00	0.25 ± 0.03	0.159 ± 0.010	0.036 ± 0.002
0.90	0.55 ± 0.03	0.270 ± 0.002	0.28 ± 0.05	0.1075 ± 0.0004
0.80	0.34 ± 0.05	0.270 .02	0.41 ± 0.05	0.236 ± 0.008
0.70	0.16 ± 0.04	0.20 ± 0.02	0.40 ± 0.05	0.39 ± 0.11
0.60	0.10 ± 0.04	0.11 ± 0.06	0.36 ± 0.03	0.61 ± 0.04
0.50	0.00 ± 0.00	0.03 ± 0.05	0.39 ± 0.04	0.49 ± 0.12
0.40	0.00 ± 0.00	0.00 ± 0.00	0.34 ± 0.02	0.33 ± 0.07
0.30	0.00 ± 0.00	0.00 ± 0.00	0.30 ± 0.04	0.17 ± 0.06
0.20	0.00 ± 0.00	0.00 ± 0.00	0.14 ± 0.04	0.05 ± 0.02
0.10	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
0.00	0.00 ± 0.00	0.00 ± 0.00		

	Relative Integrations		
Mole Frac. $(S)-\mathbf{7}$	$\mathbf{R}_{4} \mathbf{S}^{\prime}{ }_{2}$ $(\boldsymbol{\square})$	$\mathbf{R}_{5} \mathbf{S}^{\prime}{ }_{1}$ $(\boldsymbol{\nabla})$	\mathbf{R}_{6} (\bullet)
1.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
0.90	0.036 ± 0.002	0.00 ± 0.00	0.00 ± 0.00
0.80	0.1075 ± 0.0005	0.00 ± 0.00	0.00 ± 0.00
0.70	0.236 ± 0.009	0.00 ± 0.00	0.00 ± 0.00
0.60	0.39 ± 0.11	0.00 ± 0.00	0.00 ± 0.00
0.50	0.61 ± 0.04	0.00 ± 0.00	0.00 ± 0.00
0.40	0.49 ± 0.12	0.08 ± 0.07	0.05 ± 0.04
0.30	0.33 ± 0.07	0.16 ± 0.02	0.17 ± 0.05
0.20	0.17 ± 0.06	0.21 ± 0.02	0.33 ± 0.07
0.10	0.05 ± 0.02	0.20 ± 0.03	0.61 ± 0.08
0.00	0.00 ± 0.00	0.00 ± 0.00	1.00 ± 0.00

${ }^{a}(\bullet) \mathbf{R}_{6}(\mathbf{\nabla}) \mathbf{R}_{5} \mathbf{S}^{\prime}{ }_{1}(\boldsymbol{\square}) \mathbf{R}_{4} \mathbf{S}^{\prime}{ }_{2}+\mathbf{R}_{2} \mathbf{S}^{\prime}{ }_{4}(\bullet) \mathbf{R}_{3} \mathbf{S}^{\prime}{ }_{3}(\nabla) \mathbf{R}_{1} \mathbf{S}^{\prime}{ }_{5}(\diamond) \mathbf{S}^{\prime}{ }_{6}$ such that $\mathbf{S}^{\prime}=$ $\left[{ }^{6} \mathrm{Li}\right](S)-7$ and $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{5}$.

VI.L. Job Plot of $\left[{ }^{6} \mathrm{Li}\right](S)-7 /\left[{ }^{6} \mathrm{Li}\right](R)-5\left(4.0 \mathrm{M} \mathrm{THF} /\right.$ toluene; $\left.-30^{\circ} \mathrm{C}\right)$ hexamers. The relative integrations are plotted as a function of the mole fraction of $\left[{ }^{6} \mathrm{Li}\right](S)-7$. The relative integrations of the $\mathbf{R}_{2} \mathbf{S}^{\prime}{ }_{4}$ and $\mathbf{R}_{4} \mathbf{S}^{\prime}{ }_{2}$ aggregates are summed due to poor resolution of their resoncances. (\bullet) $\mathbf{R}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{S}^{\prime}{ }_{1}(\boldsymbol{\square}) \mathbf{R}_{4} \mathbf{S}^{\prime}{ }_{2}+\mathbf{R}_{2} \mathbf{S}^{\boldsymbol{\prime}}{ }_{4}(\bullet) \mathbf{R}_{3} \mathbf{S}^{\prime}{ }_{3}(\nabla) \mathbf{R}_{1} \mathbf{S}^{\boldsymbol{\prime}}{ }_{5}(\diamond) \mathbf{S}_{6}$ such that $\mathbf{S}^{\prime}=\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{7}$ and $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{5}$. The curves result from a parametric fit, affording $\phi_{0}=1.2 ; \phi_{1}=0.85 ; \phi_{2}=3.0 ; \phi_{3}=8.8 ; \phi_{4}=3.9 ; \phi_{5}=1.11 ; \phi_{6}=1.0$.
VII. (S)- β-Phenylglycine/(R)- β-Phenylglycine

VII.A. ${ }^{6} \mathrm{Li}$ NMR spectra of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}(58.8 \mathrm{MHz})$ and a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}$ (mole fraction of $\left.\mathbf{R}=0.70\right)(73.6 \mathrm{MHz})$ at various temperatures. The $\left.{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ sample is $9.0 \mathrm{M} \mathrm{THF} /$ toluene. The mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}$ sample is 3.0 M THF/toluene. Both samples are 0.10 M total enolate concentration.

VII.B. ${ }^{6} \mathrm{Li}$ NMR spectra $(73.6 \mathrm{MHz})$ of a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}$ (mole fraction $\mathbf{S}=0.30$) at various THF/toluene concentrations. All samples are 0.10 M total enolate and were recorded at $-50^{\circ} \mathrm{C}$.

VII.C. Variation of enolate concentration for a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}$ (mole fraction of $\mathbf{R}=0.70$). ${ }^{6} \mathrm{Li}$ NMR spectra $\left(73.6 \mathrm{MHz}\right.$) of a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}$ (mole fraction of $\mathbf{R}=0.70$) at various enolate concentrations. All samples are 3.0 M THF/toluene and were recorded at $-50^{\circ} \mathrm{C}$. The relative integrations of the peaks are plotted versus the total enolate concentration. The lines represent a linear least squares fit. $(\bullet) \mathbf{R}_{6}+\mathbf{S}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{S}_{1}+\mathbf{R}_{1} \mathbf{S}_{5}(\boldsymbol{\bullet}) \mathbf{R}_{2} \mathbf{S}_{4}+\mathbf{R}_{4} \mathbf{S}_{2}(\bullet) \mathbf{R}_{3} \mathbf{S}_{3}$ such that $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)$-8 and $\mathbf{S}=\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}$.

Mole
Fraction
$(S)-\mathbf{8}$ $\mathbf{1 . 0 0}$
PPM 1.8

VII.D. ${ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}$ at various mole fractions in $9.0 \mathrm{M} \mathrm{THF} /$ toluene at $-40^{\circ} \mathrm{C}$. Samples are 0.10 M in total enolate concentration. ($\bullet \mathbf{R}_{6}+\mathbf{S}_{6}+\mathbf{R}_{5} \mathbf{S}_{1}+\mathbf{R}_{1} \mathbf{S}_{5}(\boldsymbol{\square}) \mathbf{R}_{2} \mathbf{S}_{4}+\mathbf{R}_{4} \mathbf{S}_{2}(\bullet) \mathbf{R}_{3} \mathbf{S}_{3}$ such that $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\mathbf{S}=\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}$.

VII.D. (cont.) ${ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}$ at various mole fractions in $9.0 \mathrm{M} \mathrm{THF} /$ toluene at $-40^{\circ} \mathrm{C}$. Samples are 0.10 M in total enolate concentration. $(\bullet) \mathbf{R}_{6}+\mathbf{S}_{6}+\mathbf{R}_{5} \mathbf{S}_{1}+\mathbf{R}_{1} \mathbf{S}_{5}(\boldsymbol{\square}) \mathbf{R}_{2} \mathbf{S}_{4}+\mathbf{R}_{4} \mathbf{S}_{2}(\bullet) \mathbf{R}_{3} \mathbf{S}_{3}$ such that $\mathbf{R}=$ $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\mathbf{S}=\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}$.
VII.E. Table of the relative integrations for the spectra in VII.D. ${ }^{a}$

Relative Integrations

Mole Frac. $(S) \mathbf{8}$	$\mathbf{R}_{3} \mathbf{S}_{3}$ (\bullet)	$\mathbf{R}_{4} \mathbf{S}_{2}+\mathbf{R}_{2} \mathbf{S}_{4}$ $(\mathbf{\square})$	$\mathbf{R}_{6}+\mathbf{S}_{6}+$ $\mathbf{R}_{5} \mathbf{S}_{1}+\mathbf{R}_{1} \mathbf{S}_{5}{ }^{b}$ (\bullet)
1.00	0.00	0.00	1.00
0.90	0.09	0.09	0.82
0.80	0.29	0.17	0.53
0.70	0.49	0.20	0.31
0.60	0.71	0.18	0.11
0.50	0.86	0.14	0.00
0.40	0.67	0.19	0.15
0.30	0.45	0.20	0.35
0.20	0.26	0.15	0.59
0.10	0.08	0.07	0.85
0.00	0.00	0.00	1.00

${ }^{a}(\bullet) \mathbf{R}_{6}+\mathbf{S}_{6}+\mathbf{R}_{5} \mathbf{S}_{1}+\mathbf{R}_{1} \mathbf{S}_{5}(\boldsymbol{\square}) \mathbf{R}_{2} \mathbf{S}_{4}+\mathbf{R}_{4} \mathbf{S}_{2}(\bullet) \mathbf{R}_{3} \mathbf{S}_{3}$ such that $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\mathbf{S}=$ $\left.{ }^{6}{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}$.
${ }^{b}$ The $\mathbf{R}_{6}, \mathbf{S}_{6}, \mathbf{R}_{5} \mathbf{S}_{1}$, and $\mathbf{R}_{1} \mathbf{S}_{5}$ aggregates are spectroscopically indistinguishable.

VII.F. Job Plot of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8} /\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}\left(9.0 \mathrm{M} \mathrm{THF} /\right.$ toluene; $\left.-40^{\circ} \mathrm{C}\right)$ hexamers. The relative integrations are plotted as a function of the mole fraction of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$. The \mathbf{R}_{6}, $\mathbf{S}_{6}, \mathbf{R}_{5} \mathbf{S}_{1}$, and $\mathbf{R}_{1} \mathbf{S}_{5}$ aggregates are assigned as spectroscopically indistinguishable.
$\mathbf{R}_{6}+\mathbf{S}_{6}+\mathbf{R}_{5} \mathbf{S}_{1}+\mathbf{R}_{1} \mathbf{S}_{5}(\boldsymbol{\square}) \mathbf{R}_{2} \mathbf{S}_{4}+\mathbf{R}_{4} \mathbf{S}_{2}(\bullet) \mathbf{R}_{3} \mathbf{S}_{3}$ such that $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\mathbf{S}=\left[{ }^{6} \mathrm{Li}\right](S) \mathbf{- 8}$. The curves result from a parametric fit (p. Sxx), affording $\phi_{0}=0.70 ; \phi_{1}=0.11 ; \phi_{2}=0.93$; $\phi_{2}=10$

VII.G. Job Plot of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8} /\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}\left(9.0 \mathrm{M}\right.$ THF/toluene; $\left.-40{ }^{\circ} \mathrm{C}\right)$ fit to tetramer model. The relative integrations are plotted as a function of the mole fraction of $(R)-\mathbf{8}$. $(\bullet) \mathbf{R}_{4}+\mathbf{S}_{4} \quad(\boldsymbol{\bullet}) \mathbf{R}_{3} \mathbf{S}_{1}+\mathbf{R}_{1} \mathbf{S}_{3}(\bullet) \mathbf{R}_{2} \mathbf{S}_{2}$ such that $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\mathbf{S}=\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}$. The curves result from a parametric fit, affording $\phi_{0}=1 ; \phi_{1}=0.63 ; \phi_{2}=5.86$.

VII.H. ${ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ at various mole fractions in $3.0 \mathrm{M} \mathrm{THF} /$ toluene at $-50^{\circ} \mathrm{C}$. Samples are 0.10 M in total enolate concentration. ($) \mathbf{R}_{6}+\mathbf{S}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{S}_{1}+\mathbf{R}_{1} \mathbf{S}_{5}$ $(\boldsymbol{\square}) \mathbf{R}_{2} \mathbf{S}_{4}+\mathbf{R}_{4} \mathbf{S}_{2}(\bullet) \mathbf{R}_{3} \mathbf{S}_{3}$ such that $\mathbf{R}=$ $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\mathbf{S}=\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}$.

VII.H. (cont.) ${ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ at various mole fractions in $3.0 \mathrm{M} \mathrm{THF} /$ toluene at $-50^{\circ} \mathrm{C}$. Samples are 0.10 M in total enolate concentration. (\bullet) $\mathbf{R}_{6}+\mathbf{S}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{S}_{1}+\mathbf{R}_{1} \mathbf{S}_{5}(\boldsymbol{\square}) \mathbf{R}_{2} \mathbf{S}_{4}+\mathbf{R}_{4} \mathbf{S}_{2}(\bullet) \mathbf{R}_{3} \mathbf{S}_{3}$ such that $\mathbf{R}=$ $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\mathbf{S}=\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}$.
VII.I. Table of the relative integrations for the spectra in VII.H. ${ }^{a}$

	Relative Integrations			
Mole Frac. (S).	$\mathbf{R}_{3} \mathbf{S}_{3}$ (\bullet)	$\mathbf{R}_{4} \mathbf{S}_{2}+\mathbf{R}_{2} \mathbf{S}_{4}$ $(\mathbf{\square})$	$\mathbf{R}_{5} \mathbf{S}_{1}+\mathbf{R}_{1} \mathbf{S}_{5}$ $(\boldsymbol{\nabla})$	$\mathbf{R}_{6}+\mathbf{S}_{6}$ (\bullet)
1.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	1.00 ± 0.00
0.90	0.11 ± 0.01	0.100 ± 0.001	0.07 ± 0.02	0.72 ± 0.03
0.80	0.26 ± 0.03	0.166 ± 0.004	0.09 ± 0.02	0.48 ± 0.06
0.70	0.43 ± 0.01	0.21 ± 0.06	0.11 ± 0.07	0.25 ± 0.11
0.60	0.67 ± 0.01	0.171 ± 0.001	0.07 ± 0.01	0.092 ± 0.003
0.50	0.85 ± 0.02	0.15 ± 0.02	0.00 ± 0.00	0.007 ± 0.002
0.40	0.71 ± 0.00	0.17 ± 0.00	0.00 ± 0.00	0.13 ± 0.00
0.30	0.42 ± 0.01	0.180 ± 0.001	0.07 ± 0.02	0.33 ± 0.02
0.20	0.265 ± 0.001	0.144 ± 0.005	0.045 ± 0.003	0.55 ± 0.01
0.10	0.11 ± 0.01	0.095 ± 0.003	0.06 ± 0.06	0.73 ± 0.05
0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	1.00 ± 0.00

${ }^{a}(\bullet) \mathbf{R}_{6}+\mathbf{S}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{S}_{1}+\mathbf{R}_{1} \mathbf{S}_{5}(\boldsymbol{\bullet}) \mathbf{R}_{2} \mathbf{S}_{4}+\mathbf{R}_{4} \mathbf{S}_{2}(\bullet) \mathbf{R}_{3} \mathbf{S}_{3}$ such that $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R) \mathbf{- 8}$ and $\mathbf{S}=$ $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}$.

VII.J. Job Plot of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8} /\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}\left(3.0 \mathrm{M} \mathrm{THF} /\right.$ toluene; $\left.-50{ }^{\circ} \mathrm{C}\right)$ hexamers. The relative integrations are plotted as a function of the mole fraction of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$. (\bullet) $\mathbf{R}_{6}+\mathbf{S}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{S}_{1}+\mathbf{R}_{1} \mathbf{S}_{5}(\boldsymbol{\square}) \mathbf{R}_{4} \mathbf{S}_{2}+\mathbf{R}_{2} \mathbf{S}_{4}(\bullet) \mathbf{R}_{3} \mathbf{S}_{3}$ such that $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\mathbf{S}=$ $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}$. The curves result from a parametric fit, affording $\phi_{0}=0.090 ; \phi_{1}=0.018$; $\phi_{2}=0.101 ; \phi_{3}=1$.
VIII. (S)- β-Phenylglycine and (R)- β-Alanine *Note this is $\mathbf{R} / \mathbf{R}^{\prime}$ mix

Mole Fraction $(R)-\mathbf{8}=0.7$
Mole Fraction $(R)-8=0.5$

VIII.A. ${ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\left[{ }^{6} \mathrm{Li}\right](S)-5$ at various temperatures. All samples are 0.10 M total enolate concentration and 3.0 M THF/toluene.

[enolate]		Relative Integrations			
(M)	(\diamond)	(∇)	(\square)	(\bullet)	(\square)
0.050	0.079	0.261	0.334	0.223	0.085
0.200	0.083	0.272	0.337	0.220	0.079
0.300	0.092	0.276	0.331	0.216	0.085

VIII.B. Variation of enolate concentration for a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\left[{ }^{6} \mathrm{Li}\right](S)-5$ (mole fraction of $\mathbf{R}^{\prime}=0.70$). ${ }^{6} \mathrm{Li}$ NMR spectra $(73.6 \mathrm{MHz})$ of a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\left[{ }^{6} \mathrm{Li}\right](S)-5$ (mole fraction of $\left.\mathbf{R}^{\prime}=0.70\right)$ at various enolate concentrations. All samples are 3.0 M THF/toluene and were recorded at $-40^{\circ} \mathrm{C}$. The relative integrations of the peaks are plotted versus the total enolate concentration. The lines represent a linear least squares fit. (\bullet) $\mathbf{R}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{R}^{\prime}{ }_{1}(\boldsymbol{\square}) \mathbf{R}_{4} \mathbf{R}^{\prime}{ }_{2}(\bullet) \mathbf{R}_{3} \mathbf{R}^{\prime}{ }_{3}$ (■) $\mathbf{R}_{2} \mathbf{R}^{\prime}{ }_{4}(\nabla) \mathbf{R}_{1} \mathbf{R}^{\prime}{ }_{5}(\diamond) \mathbf{R}_{6}{ }_{6}$ such that $\mathbf{R}^{\prime}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{5}$.

[enolate]
Relative Integrations

(M)	(\square)	(\bullet)	$(\boldsymbol{\square})$	$(\boldsymbol{\nabla})$	(\bullet)
0.05	0.04	0.17	0.33	0.34	0.13
0.20	0.04	0.17	0.34	0.32	0.13
0.30	0.04	0.17	0.32	0.32	0.14

VIII.C. Variation of enolate concentration for a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{5}$ (mole fraction of $\mathbf{R}^{\prime}=0.30$). ${ }^{6} \mathrm{Li}$ NMR spectra $\left(73.6 \mathrm{MHz}\right.$) of a mixture of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\left[{ }^{6} \mathrm{Li}\right](S)-5$ (mole fraction of $\left.\mathbf{R}^{\prime}=0.30\right)$ at various enolate concentrations. All samples are 3.0 M THF/toluene and were recorded at $-40^{\circ} \mathrm{C}$. The relative integrations of the peaks are plotted versus the total enolate concentration. The lines represent a linear least squares fit. (\bullet) $\mathbf{R}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{R}^{\prime}{ }_{1}(\boldsymbol{\square}) \mathbf{R}_{4} \mathbf{R}_{2}(\boldsymbol{\bullet}) \mathbf{R}_{3} \mathbf{R}^{\prime}{ }_{3}(\square) \mathbf{R}_{2} \mathbf{R}^{\prime}{ }_{4}(\nabla) \mathbf{R}_{1} \mathbf{R}^{\prime}{ }_{5}(\diamond) \mathbf{R}^{\prime}{ }_{6}$ such that $\mathbf{R}^{\prime}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{5}$.

VIII.D. ${ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{5}$ at various mole fractions in $3.0 \mathrm{M} \mathrm{THF} /$ toluene at $-40^{\circ} \mathrm{C}$. Samples are 0.10 M in total enolate concentration. (\bullet) $\mathbf{R}_{6}(\mathbf{\nabla}) \mathbf{R}_{5} \mathbf{R}^{\prime}{ }_{1}(\boldsymbol{\nabla}) \mathbf{R}_{4} \mathbf{R}^{\prime}{ }_{2}(\boldsymbol{\bullet}) \mathbf{R}_{3} \mathbf{R}^{\prime}{ }_{3}(\square) \mathbf{R}_{2} \mathbf{R}^{\prime}{ }_{4}(\nabla) \mathbf{R}_{1} \mathbf{R}^{\prime}{ }_{5}(\diamond) \mathbf{R}^{\prime}{ }_{6}$ such that $\mathbf{R}^{\prime}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{5}$.

VIII.D. (cont.) ${ }^{6} \mathrm{Li}$ NMR spectra (73.6 MHz) of mixtures of $\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\left[{ }^{6} \mathrm{Li}\right](S)-5$ at various mole fractions in 3.0 M THF/toluene at $-40^{\circ} \mathrm{C}$. Samples are 0.10 M in total enolate concentration. $(\boldsymbol{\bullet}) \mathbf{R}_{6}(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{R}^{\prime}{ }_{1}(\boldsymbol{\square}) \mathbf{R}_{4} \mathbf{R}^{\prime}{ }_{2}(\bullet) \mathbf{R}_{3} \mathbf{R}^{\prime}{ }_{3}(\square) \mathbf{R}_{2} \mathbf{R}^{\prime}{ }_{4}(\nabla) \mathbf{R}_{1} \mathbf{R}^{\prime}{ }_{5}(\diamond)$ $\mathbf{R}^{\prime}{ }_{6}$ such that $\mathbf{R}{ }^{\prime}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{8}$ and $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](S) \mathbf{- 5}$.
VIII.E. Table of the relative integrations for the spectra in VIII.D. ${ }^{a}$

Relative Integrations

Mole Frac. $(S) \mathbf{- 8}$	$\mathbf{R}^{\prime}{ }_{6}$ (\diamond)	$\mathbf{R}^{\prime}{ }_{5} \mathbf{R}_{1}$ (∇)	$\mathbf{R}^{\prime}{ }_{4} \mathbf{R}_{2}$ (\square)	$\mathbf{R}^{\prime}{ }_{3} \mathbf{R}_{3}$ $(\boldsymbol{\bullet})$
1.00	1.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
0.90	0.47 ± 0.04	0.36 ± 0.03	0.12 ± 0.01	0.04 ± 0.06
0.80	0.21 ± 0.01	0.37 ± 0.01	0.27 ± 0.01	0.11 ± 0.02
0.70	0.09 ± 0.002	0.25 ± 0.01	0.32 ± 0.01	0.22 ± 0.01
0.60	0.03 ± 0.001	0.15 ± 0.01	0.29 ± 0.001	0.29 ± 0.01
0.50	0.002 ± 0.003	0.08 ± 0.03	0.21 ± 0.04	0.31 ± 0.01
0.40	0.00 ± 0.00	0.03 ± 0.003	0.11 ± 0.01	0.26 ± 0.01
0.30	0.00 ± 0.00	0.01 ± 0.02	0.07 ± 0.004	0.19 ± 0.01
0.20	0.00 ± 0.00	0.00 ± 0.00	0.02 ± 0.01	0.10 ± 0.03
0.10	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.01 ± 0.01
0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00

Relative Integrations

	Relative Integrations		
Mole Frac.	$\mathbf{R}^{\prime}{ }_{2} \mathbf{R}_{4}$	$\mathbf{R}^{\prime} \mathbf{R}_{5}$	

(S)-8
(

1.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
0.90	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
0.80	0.04 ± 0.003	0.00 ± 0.00	0.00 ± 0.00
0.70	0.10 ± 0.03	0.02 ± 0.02	0.00 ± 0.00
0.60	0.17 ± 0.002	0.07 ± 0.005	0.00 ± 0.00
0.50	0.25 ± 0.02	0.12 ± 0.02	0.03 ± 0.04
0.40	0.32 ± 0.003	0.21 ± 0.02	0.07 ± 0.01
0.30	0.33 ± 0.02	0.29 ± 0.01	0.12 ± 0.01
0.20	0.26 ± 0.02	0.38 ± 0.02	0.24 ± 0.03
0.10	0.10 ± 0.008	0.37 ± 0.01	0.52 ± 0.01
0.00	0.00 ± 0.00	0.00 ± 0.00	1.00 ± 0.00

${ }^{a}(\diamond) \mathbf{R}_{6}(\mathbf{\nabla}) \mathbf{R}_{5} \mathbf{R}^{\prime}{ }_{1}(\mathbf{\square}) \mathbf{R}_{4} \mathbf{R}^{\prime}{ }_{2}(\bullet) \mathbf{R}_{3} \mathbf{R}^{\prime}{ }_{3}(\mathbf{\square}) \mathbf{R}_{2} \mathbf{R}^{\prime}{ }_{4}(\nabla) \mathbf{R}_{1} \mathbf{R}^{\prime}{ }_{5}(\diamond) \mathbf{R}_{6}$ such that $\mathbf{R}^{\prime}=$ $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}$ and $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{5}$.

Mole Fraction (S)-8

VIII.F. A Plot of $\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8} /\left[{ }^{6} \mathrm{Li}\right](R) \mathbf{- 5}\left(3.0 \mathrm{M} \mathrm{THF} /\right.$ toluene; $\left.-40^{\circ} \mathrm{C}\right)$ hexamers. The relative integrations are plotted as a function of the mole fraction of $\left.{ }^{6} \mathrm{Li}\right](S) \mathbf{- 8}$. ($\left.\hookleftarrow\right) \mathbf{R}_{6}$ $(\boldsymbol{\nabla}) \mathbf{R}_{5} \mathbf{R}^{\prime}{ }_{1}(\boldsymbol{\square}) \mathbf{R}_{4} \mathbf{R}^{\prime}{ }_{2}(\bullet) \mathbf{R}_{3} \mathbf{R}^{\prime}{ }_{3}(\square) \mathbf{R}_{2} \mathbf{R}^{\prime}{ }_{4}(\nabla) \mathbf{R}_{1} \mathbf{R}^{\prime}{ }_{5}(\diamond) \mathbf{R}^{\prime}{ }_{6}$ such that $\mathbf{R}^{\prime}=\left[{ }^{6} \mathrm{Li}\right](S)-\mathbf{8}$ and $\mathbf{R}=\left[{ }^{6} \mathrm{Li}\right](R)-\mathbf{5}$. The curves result from a parametric fit, affording $\phi_{0}=1.00 ; \phi_{1}=1.53$; $\phi_{2}=2.28 ; \phi_{3}=3.15 ; \phi_{4}=4.32 ; \phi_{5}=6.09 ; \phi_{6}=8.76$.

VIII.G. The fit in VIII.F. is overlaid with the expected statistical distribution of an ensemble of hexamers.
\qquad) Fit to data $\left(\phi_{0}=1.00 ; \phi_{1}=1.53 ; \phi_{2}=2.28 ; \phi_{3}=3.15 ; \phi_{4}=4.32 ; \phi_{5}=6.09 ; \phi_{6}=8.76\right)$
(- - -) Statistical distribution ($\phi_{0}=1 ; \phi_{1}=6 ; \phi_{2}=15 ; \phi_{3}=20 ; \phi_{4}=15 ; \phi_{5}=6 ; \phi_{6}=1$)

IX. Multi-author References

13. (a) Guertin, K. R.; Gardner, C. J.; Klein, S. I.; Zulli, A. L.; Czekaj, M.; Gong, Y.; Spada, A. P.; Cheney, D. L.; Maignan, S.; Guilloteau, J.-P.; Brown, K. D.; Colussi, D. J.; Chu, V.; Heran, C. L.; Morgan, S. R.; Bentley, R. G.; Dunwiddie, C. T.; Leadley, R. J.; Pauls, H. W. Bioorg. Med. Chem. Lett. 2002, 12, 1671. (b) Czekaj, M.; Klein, S. I.; Guertin, K. R.; Gardner, C. J.; Zulli, A. L.; Pauls, H. W.; Spada, A. P.; Cheney, D. L.; Brown, K. D.; Colussi, D. J.; Chu, V.; Leadley, R. J.; Dunwiddie, C. T. Bioorg. Med. Chem. Lett. 2002, 12, 1667.

[^0]: ${ }^{1}$ Podlech, J.; Seebach, D. Liebigs Ann. 1995, 1217-1228.
 ${ }^{2}$ Davis, F. A.; Reddy, R. E.; Szewczyk, J. M. J. Org. Chem. 1995, 60, 7037; Davis, F. A.; Reddy, R. E.; Szewczyk, J. M.; Reddy, G. V.; Portonovo, P. S.; Zhang, H.; Fanelli, D.; Reddy, R. T.; Zhou, P.; Carroll, P. J. J. Org. Chem. 1997, 62, 2555-2563.

