Experimental Characterization and Computational Study of Unique C,N-Chelated Lithium Dianions

Jocelyn M. Gruver, Scott P. West, David B. Collum^{*}, and Richmond Sarpong^{*} University of California, Berkeley, CA 94720 Cornell University, Ithaca, NY 14853

Part I: Experimental Methods

1.	Reagents and Solvents	S3
2.	Sample Preparation	S3
3.	Spectroscopic Analysis	S 3

Part II: NMR Spectroscopic Studies

Figure 1.	⁶ Li spectra of [¹⁵ N]8 with [⁶ Li] <i>n</i> -BuLi in THF- d_8 at -90 °C	S4
Figure 2.	¹⁵ N NMR spectrum of [¹⁵ N]8 with [⁶ Li] <i>n</i> -BuLi in THF- d_8 at -90 °C	S5
Figure 3.	¹³ C NMR spectrum of 8 with [⁶ Li] <i>n</i> -BuLi in THF- d_8 at -100 °C	S5

Part III: DFT Computational Studies

Table 1.	Relative free energies (ΔG , kcal/mol) of 9 , 10 , and 11 at -78 °C calculated using B3LYP level of theory with 6-31G(d) basis set	S6
Figure 4.	The relative energies of the three most stable solvates of 9 , 10 , and 11	S9
Table 2.	Optimized geometries at B3LYP level of theory with 6-31G(d) basis set for the serial solvation of open dimer 9 with free energies (Hartrees) and Cartesian coordinates (X,Y,Z)	S10
Table 3.	Optimized geometries at B3LYP level of theory with 6-31G(d) basis set for the serial solvation of closed dimer 10 with free energies (Hartrees) and Cartesian coordinates (X,Y,Z)	S18

Table 4.	Optimized geometries at B3LYP level of theory with 6-31G(d) basis set for the serial solvation of open dimer 11 with free energies (Hartrees) and Cartesian coordinates (X,Y,Z)	S24
Part IV: S	ynthesis of [¹⁵ N] Tetracycle	S30
Part V: R	eference	S34

Part I: Experimental Methods

1. Reagents and Solvents.

[⁶Li]*n*-BuLi was prepared and recrystallized in *n*-pentane as described previously.¹ An aliquot was removed and the pentane was evaporated and replaced with freshly distilled cyclopentane. *n*-BuLi was then titrated using diphenylacetic acid to determine the precise molarity. THF-*d*₈ was distilled from a solution containing sodium benzophenone ketyl. Cyclopentane was distilled from a blue solution containing sodium benzophenone ketyl with approximately 1% tetraglyme to dissolve the ketyl. Air- and moisture-sensitive materials were manipulated under argon using standard glove box, vacuum line, and syringe techniques.

2. Sample Preparation.

A stock solution of **8** was prepared at room temperature. After flame drying the NMR tube under vacuum and flushing with argon, the tube was placed in a -78 °C dry ice/acetone bath. The appropriate amount of the amine and THF- d_8 was added via syringe, followed by dropwise addition *n*-BuLi. All samples had a total volume of 0.60 mL. The tube was sealed under partial vacuum and immediately vortexed for approximately 5 seconds before being replaced into a -78 °C bath. The samples were stored in a -94 °C freezer.

3. Spectroscopic Analysis.

NMR spectra were recorded at -90 °C or -100 °C on a 500 or 600 MHz spectrometer with a delay between scans set to >5 x T1 to ensure accurate integrations. ⁶Li chemical shifts are reported relative to a 0.30 M ⁶LiCl/MeOH standard (0.0 ppm) and ¹⁵N chemical shifts are reported relative to a neat *N*,*N*-dimethylethylamine (DMEA) standard (25.6 ppm).

Part II: NMR Spectroscopic Studies

Figure 1a. ⁶Li NMR spectrum of 0.05 M [¹⁵N]**8** and 2.0 equiv [⁶Li]*n*-BuLi in THF- d_8 at -90 °C. * Denotes an impurity from [⁶Li]*n*-BuLi.

Figure 1b. {¹⁵N}⁶Li NMR spectrum of 0.05 M [¹⁵N]8 and 2.0 equiv [⁶Li]*n*-BuLi in THF- d_8 at -90 °C. * Denotes an impurity from [⁶Li]*n*-BuLi.

Figure 2. ¹⁵N NMR spectrum of 0.05 M [¹⁵N]**8** and 2.0 equiv [⁶Li]*n*-BuLi in THF- d_8 at -90 °C.

Figure 3. ¹³C NMR spectrum of 0.025 M [¹⁴N]**8** and 2.0 equiv [⁶Li]*n*-BuLi in THF- d_8 at - 100 °C expanded around the benzylic carbon resonance. 2-D NMR techniques (COSY, HMBC, and HSQC) were used to identify the chemical shift of the benzylic carbon.

Part III: DFT Computational Studies

Structure	Free Energy (∆ <i>G,</i> kcal/mol)
Li Li OMe N + 4 THF	0.0
(THF)Li, Li, N N + 3 THF	-19.9
THF Li N + 3 THF	-19.5
THF (THF)Li, Li N + 2 THF	-32.0
(THF) ₂ Li, N + THF	-38.9 (see Fig. 4)

Table 1. Relative free energies (ΔG , kcal/mol) of **9**, **10**, and **11** at -78 °C calculated using B3LYP level of theory with 6-31G(d) basis set.

(THF) ₃ Li	-38.3
Li-Li N + 4 THF	+4.2
THF Li N + 3 THF	-13.7
THF, Li N N + 3 THF	-13.8
THF THF Li N + 2 THF	-33.7 (see Fig. 4)
Li N N + 4 THF	-3.2
THF, Li N Li N + 3 THF	-20.1

Figure 4. The relative energies of the three most stable solvates of 9, 10, and 11.

Table 2. Optimized geometries at B3LYP level of theory with 6-31G(d) basis set for the serial solvation of open dimer **9** at -78 °C with free energies (Hartrees), and Cartesian coordinates (X,Y,Z).

G = -232.349373				
Atom X	Y	Z		
C -0.73320 C -1.16581 O -0.00087 C 1.16504 C 0.73406 H -1.94955 H -1.53562 H 1.94831 H 1.53490 H 0.79733 H 1.34480 H -1.34309 H -0.79630	0.75864 -0.66851 -1.49011 -0.66980 0.75792 -1.06099 -0.72079 -1.06314 -0.72246 0.91645 1.52213 1.52360 0.91704	-0.22699 0.13194 -0.00008 -0.13184 0.22693 -0.52668 1.16790 0.52684 -1.16775 1.31025 -0.26387 0.26368 -1.31034		
$\begin{array}{c} \text{Li} \\ \text{N} \\ \text{M} \\ \text{C} \end{array} \\ G = -821.216489 \end{array}$				
Atom X	Y	Z		

С	1.97800	0.16056	-1.07595
С	1.08536	1.27946	-1.63224
С	0.06500	1.80926	-0.60906
С	0.82403	2.17404	0.70033
Ν	1.56463	1.04524	1.28409
Li	0.07796	-0.24644	1.35783
С	-1.16941	-0.53398	-0.33765
С	-1.15770	0.92251	-0.37087
С	-2.37975	1.57434	-0.18801
С	-3.57699	0.90717	0.05562
С	-3.48012	-0.49681	0.11532
Ν	-2.36783	-1.17142	-0.06179
0	-4.56014	-1.30534	0.36818

С	-5.82550	-0.69476	0.53221
С	-0.03579	-1.39625	-0.35170
С	1.29217	-1.22905	-1.07691
С	2.31111	-2.27048	-0.54857
С	2.83793	-1.92082	0.85109
С	3.48114	-0.52575	0.84944
С	2.57229	0.59600	0.29494
Li	2.54569	0.93106	2.82224
Η	-6.13322	-0.13966	-0.36469
Η	-6.53202	-1.50979	0.70642
Η	-5.84589	-0.01291	1.39417
Η	-4.50565	1.44819	0.18038
Η	-2.39512	2.66278	-0.24873
Η	-0.34480	-2.44062	-0.30360
Η	1.15068	-1.46174	-2.15099
Η	1.85128	-3.26593	-0.53059
Η	3.16450	-2.32860	-1.24167
Η	3.57247	-2.66651	1.18307
Η	2.00297	-1.96319	1.56476
Η	4.39248	-0.55789	0.23730
Η	3.86727	-0.28042	1.87035
Η	3.23669	1.45699	0.06100
Η	0.10385	2.55703	1.43713
Η	1.51212	3.01390	0.46069
Η	-0.32116	2.75893	-1.00724
Η	1.72729	2.12244	-1.92843
Η	0.57489	0.93560	-2.54074
Η	2.83930	0.06285	-1.75710

Ate	om X	Y	Z
C	-0 81251	2 61978	0 72957
C	-1.59588	2.07544	1.93227
С	-1.60155	0.53835	2.00677
С	-0.12942	0.04090	1.89639
Ν	0.55216	0.46565	0.66373
Li	-0.73130	-0.14367	-0.68249
С	-2.81619	0.21535	-0.33777
С	-2.54256	-0.17664	1.03936
С	-3.19573	-1.31131	1.52109

С	-4.04773	-2.09741	0.74661
С	-4.19679	-1.67814	-0.58876
Ν	-3.62716	-0.61231	-1.10113
0	-4.96644	-2.36188	-1.50070
С	-5.66155	-3.50849	-1.05378
С	-2.19301	1.26037	-1.07108
С	-1.62740	2.58818	-0.58922
С	-0.75854	3.21833	-1.70765
С	0.58957	2.50249	-1.87444
С	1.37470	2.49875	-0.55407
С	0.58732	1.94273	0.65065
Li	2.25446	-0.19297	0.28248
0	3.85554	-1.12731	-0.03982
С	4.36164	-2.21186	0.79214
С	5.80102	-2.43174	0.33157
С	5.72099	-2.07731	-1.16171
С	4.75409	-0.89393	-1.16415
Н	-6.37458	-3.27104	-0.25201
Н	-6.21227	-3.88401	-1.91988
Η	-4.97870	-4.29276	-0.69655
Η	-4.54705	-2.96291	1.16204
Η	-3.03364	-1.59249	2.56208
Η	-2.60353	1.32848	-2.07893
Η	-2.46116	3.29703	-0.41390
Η	-1.30732	3.20487	-2.65763
Η	-0.56864	4.27572	-1.46659
Η	1.18636	2.98747	-2.65915
Η	0.40738	1.47364	-2.21722
Η	2.32924	1.94733	-0.67538
Η	1.66893	3.53239	-0.32277
Η	1.12329	2.28616	1.56479
Η	5.30498	-2.91418	-1.73367
Η	6.69018	-1.81675	-1.59539
Η	5.27014	0.05841	-0.99680
Η	4.14986	-0.81884	-2.07253
Η	6.47928	-1.74811	0.85447
Η	6.13978	-3.45512	0.51399
Η	3.73690	-3.09644	0.62158
Η	4.27113	-1.90523	1.83773
Η	-0.12417	-1.05806	1.95901
Η	0.40926	0.41492	2.79740
Η	-1.93907	0.26772	3.01839
Η	-1.12388	2.44878	2.85359
Η	-2.62247	2.46426	1.92211
Η	-0.61795	3.68738	0.92532

THF OMe					
Li L					
	Ż	G = -	G = -1053.596858		
Ato	m X	Y	Z		
C C C C N C C C C	2.94948	-1.21605	0.20671		
	2.36883	-2.40472	-0.57313		
	1.07866	-2.05675	-1.33681		
	1.35510	-0.76866	-2.17061		
	1.75790	0.38141	-1.35363		
	3.02957	0.04968	-0.70303		
	3.61424	1.23527	0.08715		
	2.95822	1.46475	1.45695		
	2.95148	0.17788	2.29455		
C	2.24028	-0.99282	1.56789		
C	0.73869	-0.75715	1.58250		
Li	0.33474	0.55909	0.02708		
C	-0.30023	-1.30161	0.80356		
N	-1.58342	-1.01801	1.27723		
C	-2.65291	-1.48730	0.67462		
C	-2.63634	-2.25433	-0.50113		
C	-1.36882	-2.42042	-1.07565		
C	-0.19550	-1.93426	-0.50977		
O	-3.82356	-1.09504	1.29416		
C	-5.04179	-1.60764	0.78852		
Li	0.93187	1.93302	-1.89819		
O	-0.73145	2.15005	-0.83572		
C	-2.01317	1.58912	-1.31806		
C C C H H H	-2.01317 -3.04811 -2.51208 -1.00207 -2.19907 -1.89639 -3.07761	$\begin{array}{c} 1.38912\\ 2.04363\\ 3.41890\\ 3.19470\\ 2.00563\\ 0.50444\\ 1.34505\end{array}$	-0.29726 0.13168 0.16721 -2.31541 -1.38136 0.54486		
H	-4.04842	2.09921	-0.73637		
H	-2.89356	3.73988	1.10474		
H	-2.76944	4.18712	-0.60697		
H	-0.66556	2.81382	1.13682		
H	-0.41283	4.07679	-0.10012		
H	-5.06777	-2.70491	0.82011		
H	-5.82799	-1.21329	1.43710		
H	-5.23108	-1.28169	-0.24463		
H	-3.52323	-2.66671	-0.96356		
H	-1.29714	-2.95324	-2.02412		
H	0.37397	-0.38713	2.54172		

2.46876	-1.90369	2.15519
2.47381	0.36206	3.26558
3.99294	-0.10880	2.50487
3.48513	2.26665	1.99226
1.92114	1.81818	1.33540
4.68417	1.04309	0.25198
3.55854	2.14496	-0.53327
3.77142	-0.20226	-1.49089
0.44083	-0.52403	-2.74158
2.13408	-1.01764	-2.92365
0.90139	-2.86594	-2.06109
3.11111	-2.73067	-1.31695
2.20274	-3.25601	0.10057
3.99046	-1.47357	0.46193
	2.46876 2.47381 3.99294 3.48513 1.92114 4.68417 3.55854 3.77142 0.44083 2.13408 0.90139 3.11111 2.20274 3.99046	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

A	tom	Х		Y	Z	
	1 (04070	0.20	= 20	0.07762	,
C	-1.	94920 04147	1.45	229	1 42264)
Ċ	-1.0	04147	1.45	296	1.43264	Ł
C	-0.0	04467	1.89	226	0.34764	Ł
С	-0.8	84906	2.11	093	-0.98902	2
Ν	-1.	59576	0.93	906	-1.4319	1
Li	0.2	27675	0.330)16	-1.66575	;
С	1.1	17796	0.970)62	0.21094	-
С	1.1	14263	-0.47	499	0.08524	Ł
С	-0.0	06834	-1.27	731	-0.05542	2
С	-1.2	25098	-1.08	056	0.93675	5
С	-2.	35868	-2.14	540	0.72134	1
С	-3.2	20520	-1.92	784	-0.55352	2
Li	-1.5	53203	-0.93	384	-1.61062	2
С	-3.	64017	-0.44	481	-0.75709	9
С	-2.	60348	0.66	025	-0.38875	5
Ν	2.	31362	-1.16	053	-0.0892	9
С	3.4	47768	-0.53	848	-0.11368	3
С	3.6	52221	0.853	310	0.03068	;
С	2.4	44305	1.573	355	0.18873	•
0	4.	53038	-1.38	709	-0.29032	7
С	5.8	83918	-0.84	148	-0.30303	3
Η	6.	08141	-0.34	255	0.64462	1
Η	6.	51326	-1.68	861	-0.4443	0

Η	5.97733	-0.13016	-1.12850
Η	4.58307	1.35133	0.03002
Η	2.50430	2.65429	0.30813
Η	0.23044	-2.32952	-0.05668
Η	-0.86798	-1.25464	1.95765
Η	-1.92468	-3.15290	0.70537
Η	-3.03602	-2.10827	1.58525
Η	-4.10704	-2.54880	-0.51259
Η	-2.68225	-2.35298	-1.43589
Η	-4.50249	-0.28414	-0.10029
Η	-3.99713	-0.28259	-1.78416
Η	-3.21175	1.57381	-0.23363
Η	-0.14667	2.43680	-1.78252
Η	-1.50924	2.98895	-0.82703
Η	0.35380	2.87519	0.63637
Η	-1.67808	2.31724	1.67293
Η	-0.51066	1.18331	2.35552
Η	-2.75396	0.21841	1.72658

Atom X			Y	Ζ
 C	0 1 4 2 5	<u> </u>	0441	
C	-0.1425	6 -2.	84415	1./558/
C	-0.6979	8 -3.	69209	0.60475
С	-1.0157	5 -2.	86277	-0.65290
С	0.2353	2 -1.9	99347	-0.98694
Ν	0.6803	5 -1.	10768	0.09055
С	1.0230	3 -1.9	94678	1.24523
С	1.5995	2 -1.	13164	2.42060
С	0.5393	1 -0.3	37493	3.23387
С	-0.5693	0 -1.	32553	3.70803
С	-1.2435	4 -2.	07923	2.53362
С	-2.1565	5 -1.	12917	1.77466
Li	-0.9172	4 0.0	00494	0.45899
С	-2.7874	1 -1.	28306	0.52132
Ν	-3.9153	60 -0.	48834	0.33418
С	-4.5941	4 -0.	52358	-0.79064
С	-4.2693	6 -1.	31599	-1.90020
С	-3.0922	5 -2.	06580	-1.76302
С	-2.3123	2 -2.	06619	-0.61476
Ο	-5.6737	5 0.	34542	-0.78697

С	-6.57585	0.27406	-1.87440
Ο	-1.45892	1.80457	-0.14748
С	-2.36207	2.47232	0.78171
С	-3.01751	3.56554	-0.05373
С	-3.22775	2.84030	-1.39364
С	-1.99604	1.92534	-1.49719
Li	2.11940	0.07233	-0.41532
0	3.68236	-0.55649	-1.38824
Č	3.92552	-1.97622	-1.56693
Č	5.41395	-2.07979	-1.88635
Č	5.64430	-0.80604	-2.71544
Č	4 73538	0 21313	-2 01763
$\tilde{0}$	2 57677	1 95635	-0.03258
C	1 70593	3 08966	-0 32250
C	2 01961	1 15686	0.52250
C	2.01901	3 35315	1 85111
C	2.71043	2 30540	1.03111
С Ц	1 20265	2.30340	2 11057
	-1.20203	2.33731	-2.11957
П	-2.246/2	0.92886	-1.8/162
П	-4.13898	2.23855	-1.34437
H	-3.30306	3.52374	-2.24529
H	-3.95450	3.91788	0.38742
H	-2.34324	4.42404	-0.16827
H	-3.09394	1.74055	1.14019
Н	-1.75182	2.84016	1.61163
H	-6.99672	-0.73383	-1.98882
Н	-7.38249	0.97558	-1.64588
Η	-6.10536	0.56795	-2.82393
Н	-4.86004	-1.35628	-2.80597
Η	-2.77067	-2.68197	-2.60316
Η	-2.76602	-0.52802	2.45216
Η	-1.85990	-2.87531	2.99829
Η	-1.32562	-0.76823	4.27602
Η	-0.12964	-2.05808	4.40262
Η	1.01192	0.11855	4.09543
Η	0.09385	0.42625	2.62648
Η	2.37106	-0.43500	2.05012
Η	2.12086	-1.82521	3.09687
Η	1.82362	-2.66861	0.94451
Η	1.98453	2.86245	2.49975
Η	3.37840	3.96367	2.47431
Н	0.67467	2.73058	-0.26860
Н	1.91800	3.43759	-1.33964
H	2.69804	4.91785	0.33973
H	1.11576	4.66483	1.08893
H	4.40701	2.71270	0.62299
H	3.70419	1.39113	1.59534
H	0.01376	-1.39860	-1 88765
H	1 03826	-2 71566	-1 27676
* *	1.00020		1.2,0,0

Η	-1.12086	-3.57307	-1.48720
Η	0.06251	-4.43769	0.32591
Η	-1.58368	-4.25216	0.93383
Η	0.30236	-3.54045	2.48707
Η	6.68911	-0.48289	-2.73543
Η	5.31955	-0.96420	-3.75017
Η	6.00658	-2.05416	-0.96418
Η	5.66267	-2.99730	-2.42724
Η	3.30496	-2.34136	-2.39421
Η	3.61726	-2.48231	-0.64974
Η	4.28095	0.93176	-2.70673
Η	5.26736	0.76776	-1.23567

Ato	om	Х	Y	Z
	0.2	27008	_3 /020 ⁻	1 _0 53640
C	0.2	2/100	-3.7925	7 0.85397
C	1.0	01225	-2 51859	8 1.63560
C	_0 (12202	-1 5547	7 1 58299
N	-0.0	47221	_1 1815	2 0.24411
\hat{C}	-0.8	85881	-2 4217	7 -0.43850
C	-1.4	15124	-2 1798	7 -1 83977
C	-04	40102	-1 8749	1 -2.91740
č	0.6	67621	-2.96876	6 -2.95786
Č	1.3	36401	-3.16958	8 -1.58381
Č	2.3	31918	-2.01689	9 -1.31548
Li	1.1	3445	-0.37266	6 -0.60520
C	2.9	97808	-1.64330	0 -0.12488
N	4.	13449	-0.8896	1 -0.31041
С	4.8	34367	-0.46752	7 0.71236
С	4.5	52439	-0.69089	9 2.05847
С	3.3	32333	-1.38464	4 2.27065
С	2.5	51394	-1.85013	3 1.24409
0	5.9	95496	0.26423	3 0.32226
С	6.8	38198	0.63245	5 1.32510
0	1.8	81939	1.46662	2 -0.94108
С	2.6	66034	1.52356	6 -2.12961
С	3.4	12449	2.83427	7 -1.98793
С	3.7	72821	2.84621	-0.48038
С	2.4	17881	2.19231	l 0.13397
Li	-1.8	32108	0.28609	9 0.24311

0	-1.72346	1.66736	1.79272
С	-0.59612	2.07535	2.58234
С	-1.02909	1.83521	4.03507
С	-2.57383	1.99948	3.98566
С	-2.88120	2.16536	2.48198
0	-3.77815	-0.29864	0.54241
С	-3.97732	-1.42112	1.43859
С	-4.97736	-2.33093	0.72985
С	-5.86318	-1.31200	-0.00425
С	-4.84567	-0.24920	-0.43286
0	-2.02437	1.69576	-1.28718
С	-2.40167	1.50670	-2.67002
С	-1.63725	2.56798	-3.46126
С	-1.56062	3.72032	-2.44933
С	-1.34970	2.97226	-1.13121
Η	1.76132	2.93336	0.50771
Η	2.72911	1.49225	0.93657
Η	4.60962	2.23218	-0.27777
Η	3.90057	3.85216	-0.08434

Table 3. Optimized geometries at B3LYP level of theory with 6-31G(d) basis set for the serial solvation of closed dimer **10** at -78 °C with free energies (Hartrees), and Cartesian coordinates (X,Y,Z).

Li	-1.53203	-0.93384	-1.61062
С	-3.64017	-0.44481	-0.75709
С	-2.60348	0.66025	-0.38875
Ν	2.31362	-1.16053	-0.08929
С	3.47768	-0.53848	-0.11368
С	3.62221	0.85310	0.03068
С	2.44305	1.57355	0.18873
0	4.53038	-1.38709	-0.29037
С	5.83918	-0.84148	-0.30303
Η	6.08141	-0.34255	0.64461
Η	6.51326	-1.68861	-0.44430
Η	5.97733	-0.13016	-1.12850
Η	4.58307	1.35133	0.03002
Η	2.50430	2.65429	0.30813
Η	0.23044	-2.32952	-0.05668
Η	-0.86798	-1.25464	1.95765
Η	-1.92468	-3.15290	0.70537
Η	-3.03602	-2.10827	1.58525
Η	-4.10704	-2.54880	-0.51259
Η	-2.68225	-2.35298	-1.43589
Η	-4.50249	-0.28414	-0.10029
Η	-3.99713	-0.28259	-1.78416
Η	-3.21175	1.57381	-0.23363
Η	-0.14667	2.43680	-1.78252
Η	-1.50924	2.98895	-0.82703
Η	0.35380	2.87519	0.63637
Η	-1.67808	2.31724	1.67293
Η	-0.51066	1.18331	2.35552
Н	-2.75396	0.21841	1.72658

С	1.12040	-1.37369	-2.11410
С	0.66697	-2.50583	-1.13841
С	1.87350	-2.86536	-0.25880
Ċ	2.54809	-1.63949	0.37333
Ĉ	2.74430	-0.50892	-0.68627
Ň	1.50522	-0.15889	-1.40561
Li	0.81908	0.83629	0.12451
$\hat{\mathbf{O}}$	-0 78709	1 77581	-0 75727
č	-0.39255	2 90261	-1 58887
C	-0 48431	4 13338	-0.66569
C	-1 36675	3 65939	0.52607
C	-1 85798	2 27282	0.02007
C	3 46256	0.60738	0.10474
C	2 02205	1 1/616	-0.03307 1 34774
C	2.93293	0.04224	1.34774
C	1 27227	-0.04234	2.29703
C O	1.02002	-1.13710	1.03790
C	-4.17035		1.10076
	-5.42/44	-1.01958	0.59300
H	2.23407	0.31117	3.22898
H	3.67335	-0.46499	2.57078
H	3.65082	1.84739	1.79258
H	2.01101	1.75770	1.27607
H	4.51082	0.40558	0.11477
H	3.46986	1.53715	-0.74188
Н	3.47090	-0.90744	-1.42475
H	-1.09767	2.97275	-2.42697
Η	0.60322	2.67310	-1.97358
Н	-0.92678	4.98130	-1.19609
Η	0.50654	4.44416	-0.32158
Η	-2.20106	4.33714	0.72672
Η	-0.77227	3.58653	1.44226
Η	-1.99013	1.53555	0.89961
Η	-2.77379	2.33006	-0.49777
Η	0.29290	-1.17368	-2.83463
Η	1.93583	-1.75970	-2.76065
Η	-1.78037	-3.14270	-1.84912
Η	-3.98782	-2.40677	-0.99384
Η	-5.58024	-2.10010	0.71279
Η	-6.17810	-0.48518	1.17973
Η	-5.54887	-0.75950	-0.46792
Η	0.41338	-3.39416	-1.73679
Н	2.60543	-3.37246	-0.90478
Н	1.58843	-3.58609	0.51982
Η	3.55351	-1.95528	0.69783
Н	1.87060	-2.01505	2.35695
Н	0.01821	-0.20473	2.44125

At	om X	Y	Z
С	0.38604	-0.68139	1.52950
С	-0.67918	-1.22069	0.77177
Ν	-1.93932	-0.77565	1.16375
С	-3.03930	-1.17778	0.56468
С	-3.07306	-2.05975	-0.53008
С	-1.81758	-2.47399	-0.99003
С	-0.60857	-2.08272	-0.41205
Li	-0.49939	-0.07510	-1.40252
С	1.12147	-1.37149	-2.11423
С	0.66927	-2.50469	-1.13905
С	1.87623	-2.86371	-0.25989
С	2.54990	-1.63762	0.37275
С	2.74512	-0.50645	-0.68635
Ν	1.50560	-0.15678	-1.40518
Li	0.81862	0.83765	0.12544
Ο	-0.78864	1.77493	-0.75551
С	-0.39727	2.90152	-1.58870
С	-0.48769	4.13218	-0.66559
С	-1.37342	3.65994	0.52453
С	-1.86039	2.27076	0.10617
С	3.46290	0.69991	-0.03286
С	2.93331	1.14775	1.34820
С	2.69670	-0.04118	2.29786
С	1.83045	-1.15628	1.65770
Ο	-4.16942	-0.61100	1.10146
С	-5.42604	-1.02334	0.59314
Η	2.23485	0.31175	3.22914
Η	3.67456	-0.46334	2.57067
Н	3.65096	1.84905	1.79332
Н	2.01127	1.75899	1.27675
Н	4.51138	0.40868	0.11450
Η	3.46946	1.54001	-0.74129
Η	3.47167	-0.90420	-1.42529
Н	-1.10485	5 2.97086	-2.42484
Н	0.59769	2.67279	-1.97598
Н	-0.92657	4.98163	-1.19649
Н	0.50344	4.43980	-0.31944
Н	-2.21016	4.33633	0.71966
Н	-0.78225	3.59191	1.44318
Η	-1.98999	1.53472	0.90258

Η	-2.77671	2.32377	-0.49591
Η	0.29350	-1.17172	-2.83430
Η	1.93690	-1.75647	-2.76138
Η	-1.77761	-3.14327	-1.84970
Η	-3.98555	-2.40929	-0.99395
Η	-5.57857	-2.10395	0.71240
Η	-6.17704	-0.48942	1.17987
Η	-5.54724	-0.76284	-0.46771
Η	0.41634	-3.39284	-1.73798
Η	2.60849	-3.36984	-0.90625
Η	1.59187	-3.58509	0.51839
Η	3.55560	-1.95280	0.69699
Η	1.87302	-2.01449	2.35633
Η	0.01920	-0.20580	2.44184

Atom		Х		Y		Z
С	2.0	9242	1.8	8821	().65619
Ċ	2.4	2116	0.9	3273	-().32537
Li	0.5	6999	0.4	6714	С).66269
Ν	-1.()0095	1.1	19399	_	0.26824
С	-0.7	4153	0.9	7299	-	1.69081
С	0.6	2296	1.5	4880	-2	2.18029
С	0.6	2236	3.0	6060	-1	1.89069
С	0.2	2288	3.4	0060	-().44765
С	-1.0	7993	2.6	53835	-(0.04779
С	-1.4	7861	2.9	9415]	1.39635
С	-0.3	3205	2.8	37415	2	2.41130
С	0.8	9973	3.6	7027	1	.95641
С	1.3	9676	3.2	3679	().55337
С	1.8	0426	0.7	5291	-]	1.63920
С	2.3	0688	-0.2	6213	-2	2.44432
С	3.3	0717	-1.1	5571	-2	2.03663
С	3.7	3837	-0.9	9032	-(0.71069
Ν	3.3	32347	-0.0)4344	(0.09983
0	4.6	62627	-1.8	35693	-	0.10149
С	5.2	2027	-2.8	36105	-(0.90067
Li	-1.7	7091	-0.3	86869	().44408
0	-0.1	1954	-1.3	34861		1.27767
С	0.5	5914	-2.4	1938	().53044

С	1.57930	-2.99394	1.50544
С	0.85211	-2.86490	2.85367
С	0.11715	-1.53098	2.71599
Ο	-3.44532	-1.23476	0.13850
С	-4.42535	-0.35853	-0.49264
С	-4.99055	-1.17793	-1.64783
С	-4.99253	-2.59837	-1.05940
С	-3.70806	-2.61659	-0.22202
H	1.71051	3.56447	2.68908
H	0.63629	4.73867	1.93042
H	-0.66920	3.22202	3.39772
H	-0.04798	1.81842	2.54720
Н	-1.83488	4.03465	1.40858
H	-2.33460	2.36988	1.69811
H	-1.87522	3.05726	-0.70612
H	-3.89736	0.55120	-0.78808
H	-5.19636	-0.11072	0.24744
Н	-4.32656	-1.11793	-2.51764
H	-5.98468	-0.83836	-1.95189
H	-4.99764	-3.38253	-1.82159
H	-5.86934	-2.74394	-0.41834
H	-3.79737	-3.20501	0.69616
Н	-2.85065	-2.98568	-0.79791
H	-0.85178	-1.50265	3.22322
Н	0.72814	-0.68888	3.05751
Н	0.13714	-3.68493	2.99085
Н	1.53471	-2.86287	3.70791
Н	2.49470	-2.39426	1.48422
Н	1.83664	-4.02884	1.26111
Н	1.00076	-1.97253	-0.36342
Н	-0.20057	-3.15762	0.24277
Н	-0.75384	-0.11007	-1.91439
Н	-1.53701	1.43100	-2.32549
Н	1.89475	-0.37038	-3.44802
Н	3.68683	-1.91923	-2.70270
Η	5.77821	-2.43472	-1.74516
Η	5.91481	-3.39623	-0.24808
Η	4.47854	-3.57160	-1.29423
Η	0.64257	1.42773	-3.27416
Η	-0.10687	3.52425	-2.57211
Η	1.60024	3.50067	-2.12864
Η	-0.02906	4.47391	-0.42575
Н	2.13809	3.99921	0.24197
Η	2.75073	1.81627	1.52325

Table 4. Optimized geometries at B3LYP level of theory with 6-31G(d) basis set for the serial solvation of open dimer **11** at -78 °C with free energies (Hartrees), and Cartesian coordinates (X,Y,Z).

Li N				
	Z	<i>G</i> = -	821.221522	
At	om X	Y	Z	
C C N	-0.04831 1.09130	-1.28687 -0.36630	0.36150 0.27578	
Li	2.20040	-1.04204 -2.50059	-0.67832	
Li	-0.78124	-0.75706	-1.61410	
Ν	-1.60479	0.85167	-1.45276	
С	-0.85716	2.03225	-1.11054	
С	-0.13673	1.94701	0.28859	
С	-1.17739	1.56158	1.35737	
С	-2.07920	0.39323	0.93866	
C	-2.66454	0.66804	-0.47741	
C	-3.63816	-0.45932	-0.87067	
C	-3.04858	-1.87009	-0.70926	
C	-2.43825	-2.08179	0.68497	
C	-1.39914	-0.99560	1.06405	
C	1.09393	1.06404	0.24945	
C	2.34056	1.67725	0.13483	
C	3.54593	0.97877	-0.00044	
C	3.44001	-0.40832	-0.04546	
C	4.48921 E 79772	-1.26449	-0.24802	
С U	J./0//J 1 096E4	-0.70557	-0.39339	
п u	-1.90034	-3.06160	0.75055	
н Ц	-3.23103	-2.03424	0.89463	
H	-2 29157	-2.02520	-0.07403	
н	-4 52951	-0.39252	-0.23000	
H	-3 96848	-0.29856	-1 90456	
H	-3 27674	1 59426	-0.38313	
H	-0.09812	2.23994	-1.87938	
Н	-1.50186	2.93953	-1.05683	
H	2.37711	2.76470	0.14900	
Η	4.48922	1.50221	-0.08333	
H	6.08711	-0.15103	0.50591	
Η	6.46283	-1.54809	-0.54016	

Η	5.84276	-0.03684	-1.26339
Η	0.22363	2.95777	0.53171
Η	-1.81974	2.43902	1.51981
Η	-0.68644	1.35088	2.31898
Η	-2.91675	0.35975	1.65671
Η	-1.20655	-1.11453	2.14472
Η	0.30890	-2.20409	0.86598

At	om X	Y	Z
С	-0.22661	-0.95184	-1.50516
С	0.89495	-1.22052	-0.64299
Li	1.17093	0.71857	-1.86312
Li	-0.75521	0.73993	-0.23691
0	0.72577	2.16329	-0.57080
С	1.44353	2.23696	0.70585
C	0.48851	3.02812	1.58867
C	-0.07436	4.09489	0.61902
C	0.10766	3.47166	-0.78339
N	-1.67385	0.10007	1.21746
C	-0.97020	-0.73540	2.15860
C	-0.33555	-2.03254	1.53360
C	-1.44356	-2.81097	0.80064
C	-2.30279	-1.92727	-0.11362
C	-2.78344	-0.66702	0.67139
C	-3.70229	0.18335	-0.22676
C	-3.10383	0.49846	-1.60750
C	-2.61466	-0.77014	-2.32446
C	-1.62337	-1.60235	-1.47210
C	0.90003	-1.73165	0.70736
C	2.14393	-1.91590	1.29547
C	3.36292	-1.57160	0.68370
C	3.26373	-0.96643	-0.56222
N	2.10149	-0.79265	-1.19095
0 C	4.31852	-0.45527	-1.26859
C	5.61878	-0.63042	-0.72602
H	-2.15901	-0.51071	-3.29082
H	-3.49094	-1.39472	-2.55120
H	-3.84546	1.01771	-2.22981
Н	-2.27241	1.22472	-1.52260

Н	-4.64147	-0.36550	-0.38894
Η	-3.95712	1.11056	0.30289
Η	-3.42668	-1.05616	1.49506
Η	-0.16540	-0.16451	2.65087
Η	-1.63409	-1.09745	2.97911
Η	2.17732	-2.35177	2.29240
Η	4.30748	-1.74846	1.18083
Η	5.86352	-1.69363	-0.60876
Η	6.30664	-0.17834	-1.44301
Η	5.72407	-0.12908	0.24526
Η	0.00586	-2.66001	2.37093
Η	-2.10191	-3.24167	1.56908
Η	-1.02158	-3.65737	0.23915
Η	-3.19724	-2.51546	-0.38204
Η	-1.52713	-2.57906	-1.97956
Η	0.11773	-0.96583	-2.55072
Η	1.63031	1.21056	1.02540
Η	2.39719	2.75341	0.53597
Η	0.77136	4.06555	-1.42157
Η	-0.83068	3.29253	-1.31503
Η	0.48424	5.03326	0.68911
Η	-1.12435	4.31173	0.83041
Η	0.99183	3.46996	2.45341
Η	-0.31306	2.36644	1.93703

Ate	om X	Y	Ζ
С	0.76082	-0.14560	-1.04856
С	0.34107	1.16581	-0.57334
Ν	-1.01291	1.38336	-0.76569
Li	-1.38633	-0.51425	-0.72952
Li	0.99034	-0.86132	0.96709
Ν	2.57849	-0.26833	1.61954
С	2.74754	1.14570	1.83561
С	2.56288	2.01802	0.53765
С	3.49601	1.47222	-0.55944
С	3.43406	-0.05389	-0.70844
С	3.59798	-0.72174	0.68974
С	3.61392	-2.25467	0.53767

С	2.43045	-2.80510	-0.27413
С	2.28158	-2.09123	-1.62701
С	2.18833	-0.54978	-1.49196
С	1.10821	2.15567	0.13080
С	0.43569	3.31732	0.49540
С	-0.92781	3.54006	0.25604
С	-1.61035	2.50024	-0.36417
0	-2.95934	2.49739	-0.61947
С	-3.69080	3.66974	-0.28898
0	-2.91715	-1.51967	-0.31574
С	-4.21787	-0.86905	-0.28119
С	-4.93705	-1.53312	0.88680
С	-4.46035	-2.99075	0.76275
С	-3.00821	-2.84174	0.28414
Η	1.40645	-2.47822	-2.16924
Η	3.16102	-2.33370	-2.24116
Η	2.55174	-3.88522	-0.43326
Η	1.48739	-2.72709	0.30075
Η	4.54058	-2.54853	0.02299
Η	3.63783	-2.70975	1.53591
Η	4.61289	-0.43073	1.04809
Η	2.03646	1.50300	2.59599
Η	3.76394	1.39681	2.21960
Η	1.00242	4.09909	0.99751
Η	-1.40458	4.46393	0.55578
Η	-3.31223	4.54340	-0.83364
Η	-4.72207	3.47618	-0.59064
Η	-3.65911	3.87625	0.78876
Η	2.90478	3.03587	0.77949
Η	4.52436	1.74027	-0.27662
Η	3.29635	1.96648	-1.52177
Η	4.29412	-0.35270	-1.33275
Η	2.31929	-0.14204	-2.51029
Η	0.12001	-0.42245	-1.90358
Η	-2.72173	-3.58674	-0.46430
Η	-2.29127	-2.87971	1.11167
Η	-4.04064	0.20332	-0.17534
Η	-4.73188	-1.05760	-1.23289
Η	-4.60665	-1.09421	1.83526
Η	-6.02415	-1.43196	0.82169
Η	-4.52674	-3.54642	1.70205
Η	-5.05774	-3.52285	0.01434

	THF		
THF、	Ĺi	OMe	
	`Li√√ ^{N=}	\rightarrow	
N		_	
\square		<i>G</i> =	-1285.969673
At	om X	Y	Z
С	0.41673	-0.40731	-1.29588
С	0.10538	0.98000	-1.14063
Ν	-1.24650	1.20878	-0.88814
Li	-1.36952	-0.39714	0.20848
Li	1.19591	-0.32929	0.73346
0	-0.38129	-0.09716	1.98793
С	-0.21949	1.23672	2.56287
С	0.83265	1.02023	3.64267
С	0.42681	-0.34665	4.23946
С	-0.33544	-1.04944	3.09333
Ν	2.93850	0.26398	0.64784
С	3.12855	1.64315	0.27281
С	2.52357	2.02349	-1.12876
С	3.10876	1.06723	-2.18465
С	3.05202	-0.40803	-1.76528
С	3.62956	-0.56738	-0.32406
С	3.63001	-2.05676	0.07146
С	2.27667	-2.75370	-0.13791
С	1.74177	-2.54293	-1.56283
С	1.64970	-1.04594	-1.95598
С	1.00878	2.11176	-1.09805
С	0.42987	3.36566	-0.97702
C	-0.95371	3.58402	-0.82813
C	-1.73410	2.43873	-0.75279
0	-3.08795	2.43760	-0.50516
C	-3.73322	3.69638	-0.38968
0	-2.85922	-1.62444	0.26168
C	-4.15418	-1.00682	-0.01432
C	-4.81925	-1.86499	-1.10688
C	-3.65366	-2.69881	-1.66914
C	-2.77996	-2.88919	-0.43435
H	0.75983	-3.02613	-1.67859
H	2.42069	-3.04984	-2.26426
H	2.36907	-3.82825	0.07335
H	1.53214	-2.39342	0.59627
H	4.37644	-2.58450	-0.54067
H	3.94906	-2.14440	1.11816
H	4.70101	-0.26526	-0.40011
Н	0.07642	1.90156	1.75018

Η	-1.18651	1.55959	2.97161
Η	0.83857	1.82099	4.38790
Η	1.82094	0.95775	3.17333
Η	-0.22852	-0.22093	5.10733
Η	1.29903	-0.92286	4.55851
Η	-1.36414	-1.30780	3.36692
Η	0.16550	-1.94534	2.71672
Η	2.68372	2.31127	1.02917
Η	4.20826	1.92213	0.21687
Η	-1.72516	-3.07952	-0.64985
Η	-3.16291	-3.68659	0.21768
Η	-3.97754	-3.64718	-2.10777
Η	-3.10394	-2.13424	-2.43017
Η	-5.58116	-2.52117	-0.67191
Η	-5.30305	-1.24918	-1.86988
Η	-4.73191	-0.98995	0.91610
Η	-3.95535	0.01896	-0.33549
Η	1.08544	4.23466	-0.99775
Η	-1.35772	4.58498	-0.75468
Η	-3.63270	4.28405	-1.31096
Η	-4.78893	3.48010	-0.21289
Η	-3.33643	4.27994	0.45140
Η	2.88135	3.03599	-1.37141
Η	4.16623	1.33933	-2.31788
Η	2.62213	1.21503	-3.16012
Η	3.71142	-0.96481	-2.45352
Η	1.47577	-1.02567	-3.04796
Η	-0.47477	-0.95102	-1.63799

Part IV: Synthesis of [¹⁵N] Tetracycle Materials and Methods

Unless otherwise stated, reactions were performed in flame-dried glassware fitted with rubber septa under a nitrogen atmosphere and were stirred with Teflon-coated magnetic stirring bars. Liquid reagents and solvents were transferred via syringe using standard Schlenk techniques. Dichloromethane (CH₂Cl₂) was distilled over calcium hydride. N,N-Diisopropylethylamine (DIPEA) was distilled over calcium hydride prior to use. All other solvents and reagents were used as received unless otherwise noted. Reaction temperatures above 23 °C refer to oil bath temperature, which was controlled by an OptiCHEM temperature modulator. Thin layer chromatography was performed using SiliCycle silica gel 60 F-254 precoated plates (0.25 mm) and visualized by UV irradiation and anisaldehyde stain. SiliCycle Silia-P silica gel (particle size 40-63 µm) was used for flash chromatography. ¹H and ¹³C NMR spectra were recorded on Bruker DRX-500, AV-500 and AV-600 MHz spectrometers with ¹³C operating frequencies of 125, 125 and 150 MHz, respectively. ¹⁵N NMR spectra were recorded on Bruker AVB-400 with ¹⁵N operating frequency of 40 MHz. Chemical shifts (δ) are reported in ppm. ¹⁵N NMR spectra are reported relative to ¹⁵NH₄Cl in D₂O (δ = 20.0 ppm). Chemical shifts (δ) are reported in ppm relative to the residual solvent signal ($\delta = 7.26$ for ¹H NMR and $\delta = 77.0$ for ¹³C NMR). Data for ¹H NMR spectra are reported as follows: chemical shift (multiplicity, coupling constants, number of hydrogens). Abbreviations are as follows: s (singlet), d (doublet), t (triplet), g (quartet), m (multiplet), br (broad). IR spectra were recorded on a Nicolet MAGNA-IR 850 spectrometer and are reported in frequency of absorption (cm⁻¹). Only selected IR absorbencies are reported. High resolution mass spectral data were obtained from the Mass Spectral Facility at the University of California, Berkeley.

Amide (6): To a solution of acid 5 (500 mg, 1.43 mmol) in N,N-dimethylformamide (DMF, 14 mL) was added ¹⁵N-labeled ammonium chloride (¹⁵NH₄Cl, 156 mg, 2.86 mmol), 1-ethyl-3-(3dimethylaminopropyl) carbodiimide (EDCI, 412 mg, 2.15 mmol), and 1-hydroxybenzotriazole (HOBt. 291 mg, 2.15 mmol) followed by N.N-diisopropylethylamine (DIPEA, 0.996 mL, 5.72 mmol). The reaction mixture was stirred at rt for 12 h. The reaction mixture was diluted with CH₂Cl₂/Et₂O (1:3, 50 mL) and poured on H₂O (50 mL). The aqueous layer was extracted with CH₂Cl₂/Et₂O (1:3, 25 mL). The combined organic layers were washed with water (3 x 25 mL), saturated NH₄Cl (2 x 25 mL), saturated NaCl (25 mL), dried over MgSO₄ and concentrated under vacuum to afford amide 6 (456 mg) in 91% yield. This material was >95% pure and was taken on to the next step without purification. Rf 0.10 (9:1 CH₂Cl₂/MeOH); ¹H NMR (500 MHz, 7.26 (d, J = 8.4 Hz, 1H), 6.50 (d, J = 8.4 Hz, 1H), 5.72 (d, $J(^{15}N,H) = 88.4$ Hz, 1H), CDCl₃) 5.61 (d, $J(^{15}N,H) = 88.6$ Hz, 1H), 4.68 (d, J = 6.7 Hz, 1H), 4.62 (d, J = 6.70 Hz, 1H), 3.87 (s, 3H), 3.61-3.55 (m, 1H), 3.37 (s, 3H), 3.35-3.29 (m, 1H), 3.25-3.19 (m, 1H), 2.90 (dd, J = 13.7, 7.0 Hz, 1H), 2.69 (dd, J = 14.8, 6.2 Hz, 1H), 2.52 (dd, J = 14.8, 8.8 Hz, 1H), 2.40-2.32 (m, 1H), 1.92-1.81 (m, 2H), 1.67-1.54 (m, 2H), 1.35-1.18 (m, 4H), 0.66-0.54 (m, 1H); ¹³C NMR (125

MHz, CDCl₃) 173.76 (d, $J(C, {}^{15}N) = 13.8$ Hz), 161.56, 157.03, 134.73, 131.05, 106.53, 94.42, 78.07, 55.33, 53.34, 45.18, 42.54, 41.08, 36.30, 35.89, 27.13, 25.11, 24.22, {}^{15}N NMR (40 MHz, CDCl₃) 105.5; **IR** (film) v_{max} 2929, 1673, 1595, 1477, 1299, 1150, 1102, 1010, 915, 825 cm⁻¹; **HRMS** (ESI) m/z 350.2104 [(M+H)⁺; calculated for [C₁₉H₂₉¹⁵NNO₄]⁺: 350.2092].

Cbz-amine (7): To a solution of amide 6 (320 mg, 0.92 mmol) in N,N-dimethylformamide (DMF, 14 mL) was added lead (IV) tetraacetate (2.45 g, 5.5 mmol) and benzyl alcohol (574 L, 5.5 mmol). The reaction vial was sealed and heated at 100 °C for 48 h. The reaction was allowed to cool to rt, poured on saturated NaHCO₃ (30 mL), and extracted with Et₂O (3 x 25 mL). The combined organic layers were washed with saturated NaHCO₃ (25 mL), water (2 x 25 mL), and saturated NaCl (25 mL), dried over MgSO₄, and concentrated under vacuum. The crude product was purified by flash chromatography (8:1 hexanes/EtOAc to 4:1 hexanes/EtOAc) to provide Cbz-amine 7 (193 mg) in 46% yield. Rf 0.35 (2:1 hexanes/EtOAc); ¹H NMR (600 MHz, CDCl₃) δ 7.37-7.21 (m, 6H), 6.50 (d, J = 8.4 Hz, 1H), 5.11-5.04 (m, 2H), 4.95-4.77 (dt, $J(^{15}N,H) = 90.8$ Hz, J(H,H) = 5.6 Hz, 1H), 4.67-4.61 (m, 2H), 3.86 (s, 3H), 3.65-3.43 (m, 3H), 3.39-3.29 (m, 3H), 3.13-2.98 (m, 1H), 2.96-2.78 (m, 2H), 2.32-2.15 (m, 1H), 1.92-1.80 (m, 1H), 1.67-1.51 (m, 2H), 1.40-1.14 (m, 5H), 0.68-0.53 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) 161.71, 157.23, $156.30 (d, J(C, {}^{15}N) = 26.9 Hz), 136.46, 129.30, 128.49, 128.10, 128.09, 128.06, 106.84, 94.88,$ 78.69, 66.72, 55.30, 53.30, 44.75 (d, $J(C, {}^{15}N) = 12.0$ Hz), 42.37, 40.22, 34.63, 27.09, 24.75, 24.14, 23.51; ¹⁵N NMR (40 MHz, CDCl₃) 80.9; IR (film) v_{max} 3336, 2937, 2146, 1701, 1594, 1533, 1474, 1299, 1254, 1032, 915, 823 cm⁻¹; **HRMS** (ESI) m/z 456.2530 [(M+H)⁺; calculated for $[C_{26}H_{35}^{-15}NNO_5]^+$: 456.2511].

Ketone (S1): Cbz-protected amine 7 (100 mg, 0.22 mmol) was dissolved in MeOH (4 mL). To this solution was added concentrated HCl (0.2 mL) and the resultant reaction mixture was heated at reflux for 6 h. The reaction mixture was allowed to cool to rt and the solvent was removed under reduced pressure. The residue was neutralized with saturated aq. NaHCO₃ (10 mL) which was extracted with CH_2Cl_2 (3 X 5 mL). The combined organic layers were dried over MgSO₄ and concentrated under vacuum to afford the intermediate alcohol as a colorless oil. This material was used in the next step without further purification.

A flame-dried round-bottom flask was charged with DMSO (62 µL, 0.88 mmol), CH₂Cl₂ (3 mL) and cooled to -78 °C. To this solution, oxalyl chloride (38 µL, 0.44 mmol) in CH₂Cl₂ (0.5 mL) was added dropwise via syringe over 2 min. After stirring for 20 min at -78 °C, the crude intermediate alcohol in CH₂Cl₂ (1.5 mL) was added dropwise to the reaction mixture over 2 min and stirred at -78 °C for 2.5 h. Triethylamine (245 µL, 1.8 mmol) was added to the reaction mixture dropwise and it was slowly allowed to warm to rt. After stirring at rt for 1.5 h, the reaction mixture was diluted with CH₂Cl₂, poured into a separatory funnel and washed with water (10 mL). The aqueous layer was extracted with CH₂Cl₂ (2 X 5 mL). The combined organic extracts were dried over MgSO₄ and concentrated under vacuum. The crude product was purified by flash chromatography (4:1 hexanes/EtOAc) to afford 72 mg (80% yield) of S1 as a white foam. \mathbf{R}_{f} 0.70 (1:1 hexanes/EtOAc); ¹H NMR (500 MHz, CDCl₃, major rotamer) δ 7.38-7.25 (m, 6H), 6.53 (d, J = 8.3 Hz, 1H), 5.08 (br s, 2H), 3.88 (s, 3H), 3.61-3.28 (m, 2H), 3.11-2.96 (m, 2H), 2.96-2.87 (m, 1H), 2.73-2.58 (m, 1H), 2.33-2.15 (m, 3H), 2.00-1.87 (m, 1H), 1.76-1.54 (m, 4H), 1.26-1.12 (m, 1H); ¹³C NMR (125 MHz, CDCl₃, major rotamer) 213.53, 161.97, 156.46, 156.28, 140.44, 136.40, 128.42, 128.04, 128.01, 127.99, 107.37, 66.69, 53.28, 52.72, 44.36 (d, $J(C, {}^{15}N) = 10.7$ Hz), 41.22, 38.66, 37.27, 30.56, 28.92, 24.59, 19.03; ${}^{15}N$ NMR (40 MHz, 80.4; **IR** (film) v_{max} 3335, 2937, 1709, 1595, 1477, 1301, 1255, 1032, 734, 698 cm⁻¹; CDCl₃) **HRMS** (ESI) m/z 410.2102 $[(M+H)^+$; calculated for $[C_{24}H_{29}^{15}NNO_4]^+$: 410.2092].

Tetracyclic amine (8): Amino ketone **S1** (72 mg, 0.18 mmol) was dissolved in EtOAc (5 mL) and sparged with nitrogen for 5 min. 10% Pd on activated carbon (18 mg) was added and the mixture was sparged with hydrogen and placed under a hydrogen atmosphere (1 atm. balloon). The reaction mixture was stirred at rt for 24 h then sparged with nitrogen. The reaction mixture was filtered through a pad of celite, washed with EtOAc (15 mL), and concentrated under vacuum to provide 43 mg of **8** (92% yield, >95% pure) as a white foam. **R**_f 0.15 (10% MeOH in CH₂Cl₂); ¹**H NMR** (600 MHz, CDCl₃) δ 7.22 (d, *J* = 8.1 Hz, 1H), 6.43 (d, *J* = 8.1 Hz, 1H), 4.66 (m, 1H), 3.89 (s, 3H), 3.27-3.15 (m, 2H), 3.02 (br s, 1H), 2.74 (dd, *J* =15.5, 4.5 Hz, 1H), 2.66 (m, 1H), 2.13-2.06 (m, 1H), 2.00 (m, 1H), 1.95-1.79 (m, 3H), 1.79-1.54 (m, 4H), 1.43-1.33 (m, 1H); ¹³**C NMR** (150 MHz, CDCl₃) δ 161.36, 158.96, 141.21, 134.32, 106.19, 56.50 (d, *J*(C, ¹⁵N) = 3.0 Hz), 54.25(d, *J*(C, ¹⁵N) = 3.3 Hz), 53.12, 45.54 (d, *J*(C, ¹⁵N) = 2.2 Hz), 38.84, 37.73, 35.58, 34.12, 33.75, 33.37, 16.01; ¹⁵N NMR (40 MHz, CDCl₃) 48.1; **IR** (film) υ_{max} 2928, 2865, 1596, 1478, 1425, 1307, 1283, 1034, cm⁻¹; **HRMS** (ESI) m/z 260.1774 [(M+H)⁺; calculated for [C₁₆H₂₃¹⁵NNO]⁺: 260.1775].

Part IV. References

1. (a) Rennels, R. A.; Maliakal, A. J.; Collum, D. B. J. Am. Chem. Soc. **1998**, 120, 421. (b) Kottke, T.; Stalke, D. Angew. Chem., Int. Ed. Engl. **1993**, 32, 580.

The complete listing for reference 10 from the manuscript appears below:

(10) Gaussian 03, Revision B.04, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.