Supporting Information

Structure Determination Using the Method of Continuous Variations: Lithium Phenolates Solvated by Protic and Dipolar Aprotic Ligands

Laura Tomasevich and David B. Collum*

Contribution from the Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853-1301

 X_{A} = the mole fraction of phenolate subunits **A** X_{B} = the mole fraction of phenolate subunits **B**

I. Combinations of phenolates with various solvents: Job plots.

For a full list of Job plots and their corresponding page numbers, please refer to pages S2-S6.

II. Solvent swaps.

For a full list of solvent swaps and their corresponding page numbers, please refer to page S7.

Substrate	Solvent Structure(s)		Page	
$ \begin{array}{c cccc} & OLi & OLi \\ & & & \\ & & & \\ & F & 1 & 2 \\ \end{array} $		dimer	S8	
$\begin{array}{c cccc} OLi & OLi \\ H_3C & CH_3 & H_3C & CH_3 \\ \hline & & & & \\ 3 & & & Cl & 4 \end{array}$	TMEDA	dimer	S9	
$\begin{array}{c ccc} OLi & OLi \\ \hline \\ \hline \\ F 1 & 2 \end{array}$		tetramer	5 equiv-S10 neat-S11	
$\begin{array}{c cccc} OLi & OLi \\ H_3C & CH_3 & H_3C & CH_3 \\ \hline & & & \\ 3 & & Cl & 4 \end{array}$	Et ₂ O	trimer	S12	
$\begin{array}{c cc} OLi & OLi \\ \hline \\ F & \hline \\ F & 2 \end{array}$		tetramer	S13	
$\begin{array}{c cccc} OLi & OLi \\ H_3C & CH_3 & H_3C & CH_3 \\ \hline & & & \\ 3 & & Cl & 4 \end{array}$	MeCN	tetramer	S14	
$\begin{array}{c cc} OLi & OLi \\ \hline \\ F & \hline \\ F & 2 \end{array}$	pyridine	tetramer	S15	
OLi OLi 2 9 Cl		tetramer	S16	

I. Combinations of lithium phenolates with various solvents: Job plots.

$\begin{array}{c cccc} OLi & OLi \\ H_3C & CH_3 & H_3C & CH_3 \\ \hline & & & \\ 3 & & Cl & 4 \end{array}$	pyridine	pyridine dimer	
$\begin{array}{c cc} OLi & OLi \\ \hline \\ F & \hline \\ F & 1 & 2 \end{array}$		tetramer	S18
$\begin{array}{c cccc} OLi & OLi \\ H_3C & CH_3 & H_3C & CH_3 \\ \hline & & & CI & 4 \end{array}$	DMA	tetramer	S19
$ \begin{array}{c cccc} & OLi & OLi \\ & & & & \\ & & & & \\ & & & & \\ & F & 1 & 2 \\ \end{array} $	DMF	tetramer	S 20
$ \begin{array}{cccc} & OLi & OLi \\ & & & & \\ & & & & \\ & & & & \\ & F & 1 & 2 \\ \end{array} $	DMGO	tetramer	⁶ Li-S21 ¹⁹ F-S22
$\begin{array}{c cccc} OLi & OLi \\ H_3C & CH_3 & H_3C & CH_3 \\ \hline & & & \\ 3 & & Cl & 4 \end{array}$	DMSO	trimer and tetramer	S23
$ \begin{array}{c ccc} & OLi & OLi \\ & & & & \\ & & & & \\ & & & & \\ & F & 1 & 2 \\ \end{array} $		tetramer	S24
$\begin{array}{c cccc} OLi & OLi \\ H_3C & CH_3 & H_3C & CH_3 \\ \hline & & & CI & 4 \end{array}$	DMPU	fast inter- and intra-aggregate exchange	S25
$\begin{array}{c cc} OLi & OLi \\ \hline \\ \hline \\ F & 1 & 2 \end{array}$	NMP	tetramer	S26

$\begin{array}{c cccc} OLi & OLi \\ H_3C & CH_3 & H_3C & CH_3 \\ \hline & & & & \\ 3 & & & Cl & 4 \end{array}$	NMP	tetramer	S27
$\begin{array}{c cc} OLi & OLi \\ \hline \\ \hline \\ F 1 & 2 \end{array}$		tetramer	S28
$\begin{array}{c cccc} OLi & OLi \\ H_3C & CH_3 & H_3C & CH_3 \\ \hline & & & \\ 3 & & Cl & 4 \end{array}$	<i>n</i> -PrNH ₂	dimer	S29
$\begin{array}{c c} OLi & OLi \\ \hline \\ \hline \\ F 1 & 2 \end{array}$		tetamer	⁶ Li-S30 ¹⁹ F-S31
$\begin{array}{c c} OLi & OLi \\ \hline \\ 2 & 9 & Cl \end{array}$ piperidine		trimer	S32
$\begin{array}{c cccc} OLi & OLi \\ H_3C & CH_3 & H_3C & CH_3 \\ \hline 3 & Cl & 4 \end{array}$		dimer	S33
$ \begin{array}{c ccc} OLi & OLi \\ \hline F & 1 & 2 \end{array} $		tetramer	S34
$\begin{array}{c c} OLi & OLi \\ H_3C & CH_3 & H_3C & CH_3 \\ \hline 3 & Cl & 4 \end{array}$	pyrrolidine	dimer	S35

$ \begin{array}{c ccc} & OLi & OLi \\ & & & & \\ & & & & \\ & & & & \\ & F & 1 & 2 \\ \end{array} $		tetramer	S36
$\begin{array}{c cccc} OLi & OLi \\ H_3C & CH_3 & H_3C & CH_3 \\ \hline & & & & \\ 3 & & & Cl & 4 \end{array}$	<i>i-</i> BuNH ₂	dimer	S37
$ \begin{array}{c ccc} & OLi & OLi \\ & & & & \\ & & & & \\ & & & & \\ & F & 1 & 2 \\ \end{array} $	sec-BuNH ₂	tetramer	S38
$ \begin{array}{c ccc} & OLi & OLi \\ & & & & \\ & & & & \\ & & & & \\ & F & 1 & 2 \\ \end{array} $	<i>t</i> -BuNH ₂	tetramer	S39
$\begin{array}{c c} OLi & OLi \\ \hline \\ 2 & 9 \\ Cl \end{array}$		trimer	S40
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(<i>i</i> -Pr)2NH	Does not form hetero aggregates	S41
$\begin{array}{c cccc} OLi & OLi \\ H_3C & CH_3 & H_3C & CH_3 \\ \hline & & & Cl & 4 \end{array}$		dimer	S42
$\begin{array}{c ccc} OLi & OLi \\ \hline \\ F & 1 & 2 \end{array}$		tetramer	S43
$\begin{array}{c cccc} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	Et ₂ NH	trimer	S44

$\begin{array}{c cc} OLi & OLi \\ \hline \\ F & \hline \\ F & 1 & 2 \end{array}$		tetramer	S45
$\begin{array}{c cccc} OLi & OLi \\ H_3C & CH_3 & H_3C & CH_3 \\ \hline & & & Cl & 4 \end{array}$	<i>n</i> -Pr ₂ NH	trimer	S46
$ \begin{array}{cccc} & OLi & OLi \\ & & & & \\ & & & & \\ & F & 1 & 2 \\ \end{array} $	<i>t</i> -BuOH	tetramer	S47
$\begin{array}{c cc} OLi & OLi \\ \hline \\ F & 1 & 2 \end{array}$	sec-BuOH	tetramer	S48
$\begin{array}{c c} OLi & OLi \\ \hline \\ \hline \\ F 1 2 \end{array}$	<i>n</i> -BuOH with toluene as cosolvent	fast inter- and intra-aggregate exchange	0.40
$ \begin{array}{c cccc} & OLi & OLi \\ & & & & \\ & & & & \\ & F & 1 & 2 \\ \end{array} $	<i>n</i> -BuOH with Et ₂ O as cosolvent	tetramer	549

II. Solvent Swaps

Substrate	Solvent 1	Solvent 2	Page
1	Pyridine	Et ₂ NH	S50
2	Ēt ₂ NH	TMEDA	S51
1	DMA	TMEDA	S52
1	DMF	TMEDA	S53
1	NMP	TMEDA	S54
1	NMP	TMEDA	S55
1	Pyridine	NMP	S56
1	Pyridine	NMP	S57
1	Pyridine	Et ₂ O	S58
1	Pyridine	Et ₂ O	S59
1	Pyridine	Et ₂ O	S60
1	Pyridine	TMEDA	S61
1	Pyridine	TMEDA	S62
2	Pyridine	TMEDA	S63
1	Pyridine	<i>n</i> -PrNH ₂	S64
1	Pyridine	Pyrrolidine	S65
1	Pyridine	t-BuOH	S66

Figure 1. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M $(CH_3)_2NCH_2CH_2N(CH_3)_2/$ toluene at -90 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.74, 0.56, 0.25, and 0.00, respectively.

Figure 2. Job plot showing the relative integrations versus the measured mole fractions of **2** for 0.10 M mixtures of [6 Li]**2** (**A**) and [6 Li]**1** (**B**) in 0.50 M (CH₃)₂NCH₂CH₂N(CH₃)₂/toluene at -90 °C.

Dimer Job Plots in TMEDA

Figure 3. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**3** (**A**) and [⁶Li]**4** (**B**) in 0.50 M $(CH_3)_2NCH_2CH_2N(CH_3)_2/$ toluene at -80 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.66, 0.48, 0.30, and 0.00, respectively.

Figure 4. Job plot showing the relative integrations versus the measured mole fractions of **3** for 0.10 M mixtures of [6 Li]**3** (**A**) and [6 Li]**4** (**B**) in 0.50 M (CH₃)₂NCH₂CH₂N(CH₃)₂/toluene at -80 °C.

Tetramer Job Plots in Diethyl Ether

Figure 5. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M $Et_2O/toluene$ at -90°C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.70, 0.43, 0.17, and 0.00, respectively.

Figure 6. Job plot showing the relative integrations versus the measured mole fractions of **2** for 0.10 M mixtures of [6 Li]**2** (**A**) and [6 Li]**1** (**B**) in 0.50 M Et₂O/toluene at -90 °C.

Tetramer Job Plots in Diethylether

Figure 7. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in neat Et_2O at +22 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.72, 0.48, 0.25, and 0.00, respectively.

Figure 8. Job plot showing the relative integrations versus the measured mole fractions of **2** for 0.10 M mixtures of [6 Li]**2** (**A**) and [6 Li]**1** (**B**) in 0.50 M Et₂O/toluene at +22 °C.

Trimer Job Plots in Diethylether

Figure 9. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**3** (**A**) and [⁶Li]**4** (**B**) in 0.50 M $Et_2O/toluene$ at -90°C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.86, 0.54, 0.32, and 0.00, respectively. † indicates unknown aggregate.

Figure 10. Job plot showing the relative integrations versus the measured mole fractions of **3** for 0.10 M mixtures of [6 Li]**3** (**A**) and [6 Li]**4** (**B**) in 0.50 M Et₂O/toluene at -90 °C.

Tetramer Job Plots in Acetonitrile

Figure 11. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M H₃CCN/toluene at -80 °C. The mole fractions of **A** in (a)-(e) are roughly 1.00, 0.75, 0.50, 0.25, and 0.00, respectively. The intermolecular exchange rate is fast except for when the ratio of **1** to **2** is 3:1.

Tetramer Job Plots in Acetonitrile

Figure 12. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**3** (**A**) and [⁶Li]**4** (**B**) in 0.50 M $H_3CCN/toluene$ at -80 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.71, 0.47, 0.27, and 0.00, respectively.

Figure 13. Job plot showing the relative integrations versus the measured mole fractions of **3** for 0.10 M mixtures of [6 Li]**3** (**A**) and [6 Li]**4** (**B**) in 0.50 M H₃CCN/toluene at -80 °C.

Tetramer Job Plots in Pyridine

Figure 14. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M pyridine / toluene at -80 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.80, 0.50, 0.13, and 0.00, respectively. **†** indicates unknown aggregate.

Figure 15. Job plot showing the relative integrations versus the measured mole fractions of **2** for 0.10 M mixtures of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M pyridine/toluene at -80 °C.

Tetramer Job Plots in Pyridine

Figure 16. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M pyridine / toluene at -80 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.63, 0.49, 0.29, and 0.00, respectively. † indicates unknown aggregate.

Figure 17. Job plot showing the relative integrations versus the measured mole fractions of **2** for 0.10 M mixtures of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M pyridine/toluene at -80 °C.

Dimer Job Plots in Pyridine

Figure 18. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**3** (**A**) and [⁶Li]**4** (**B**) in 0.50 M pyridine / toluene at -100 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.66, 0.56, 0.33, and 0.00, respectively.

Figure 19. Job plot showing the relative integrations versus the measured mole fractions of **3** for 0.10 M mixtures of [⁶Li]**3** (**A**) and [⁶Li]**4** (**B**) in 0.50 M pyridine/toluene at -100 °C.

Tetramer Job Plots in Dimethylacetamide

Figure 20. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M dimethylacetamide/toluene at -80 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.64, 0.45, 0.25, and 0.00, respectively.

Figure 21. Job plot showing the relative integrations versus the measured mole fractions of **2** for 0.10 M mixtures of $[^{6}Li]2$ (**A**) and $[^{6}Li]1$ (**B**) in 0.50 M dimethylacetamide/toluene at -80 °C.

Tetramer Job Plots in Dimethylacetamide

Figure 22. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**3** (**A**) and [⁶Li]**4** (**B**) in 0.50 M dimethylacetamide/toluene at -80 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.61, 0.50, 0.29, and 0.00, respectively.

Figure 23. Job plot showing the relative integrations versus the measured mole fractions of **3** for 0.10 M mixtures of $[^{6}Li]$ **3** (**A**) and $[^{6}Li]$ **4** (**B**) in 0.50 M dimethylacetamide/toluene at -80 °C.

Tetramer Job Plots in Dimethylformamide

Figure 24. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M dimethylforamide/toluene at -80 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.65, 0.44, 0.23, and 0.00, respectively.

Figure 25. Job plot showing the relative integrations versus the measured mole fractions of **2** for 0.10 M mixtures of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M dimethylformamide/toluene at -80 °C.

Tetramer Job Plots in Dimethylsulfoxide

Figure 26. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M DMSO/toluene at -80 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.76, 0.46, 0.37, and 0.00, respectively.

Figure 27. Job plot showing the relative integrations versus the measured mole fractions of **2** for 0.10 M mixtures of $[^{6}Li]2$ (**A**) and $[^{6}Li]1$ (**B**) in 0.50 M DMSO/toluene at -80 °C.

¹⁹F Spectra in Dimethylsulfoxide

Figure 28. ¹⁹F NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M dimethylsulfoxide/toluene at -80 °C. The mole fractions of **A** in (a)-(e) are roughly 0.90, 0.70, 0.40, 0.20, and 0.00, respectively. The naphtholate homoaggregate is invisible by ¹⁹F NMR, so the A_3B_1 is the last observable species. At high naphtholate mole fraction, resolution becomes difficult and the A_2B_2 aggregate becomes a minor shoulder on the A_3B_1 peak. \dagger appears to be a minor trimer component.

Figure 29. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**3** (**A**) and [⁶Li]**1** (**B**) in 0.50 M DMSO/toluene at -80 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.69, 0.54, 0.32, and 0.00, respectively.

Figure 30. Job plot showing the relative integrations versus the measured mole fractions of **3** for 0.10 M mixtures of [6 Li]**3** (**A**) and [6 Li]**4** (**B**) in 0.50 M DMSO/toluene at -80 °C.

Tetramer Job Plots in DMPU

Figure 31. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M DMPU/toluene at -80 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.70, 0.46, 0.15, and 0.00, respectively.

Figure 32. Job plot showing the relative integrations versus the measured mole fractions of **2** for 0.10 M mixtures of $[^{6}Li]2$ (**A**) and $[^{6}Li]1$ (**B**) in 0.50 M DMPU/toluene at -80 °C.

Tetramer Job Plots in DMPU

Figure 33. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**3** (**A**) and [⁶Li]**4** (**B**) in 0.50 M DMPU/toluene at -80 °C. The measured mole fractions cannot be calculated, but tubes (a) and (d) are **3** and **4**, respectively, whereas tubes (b) and (c) are mixtures.

Tetramer Job Plots in N-Methylpyrrolidone

Figure 34. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M *N*-methylpyrrolidone/toluene at -85 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.65, 0.44, 0.30, and 0.00, respectively.

Figure 35. Job plot showing the relative integrations versus the measured mole fractions of **2** for 0.10 M mixtures of $[^{6}Li]2$ (**A**) and $[^{6}Li]1$ (**B**) in 0.50 M *N*-methylpyrrolidone/ toluene at -85 °C.

Tetramer Job Plots in N-Methylpyrrolidone

Figure 36. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**3** (**A**) and [⁶Li]**4** (**B**) in 0.50 M *N*-methylpyrrolidone/toluene at -80 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.68, 0.53, 0.33, and 0.00, respectively.

Figure 37. Job plot showing the relative integrations versus the measured mole fractions of **3** for 0.10 M mixtures of [⁶Li]**3** (**A**) and [⁶Li]**4** (**B**) in 0.50 M *N*-methylpyrrolidone/toluene at -80 °C.

Tetramer Job Plots in *n*-Propylamine

Figure 38. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M n-PrNH₂/toluene at -80 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.76, 0.56, 0.28, and 0.00, respectively.

Figure 39. Job plot showing the relative integrations versus the measured mole fractions of **2** for 0.10 M mixtures of [6 Li]**2** (**A**) and [6 Li]**1** (**B**) in 0.50 M *n*-PrNH₂/ toluene at -80 °C.

Figure 40. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**3** (**A**) and [⁶Li]**4** (**B**) in 0.50 M n-PrNH₂/toluene at -110 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.73, 0.58, 0.34, and 0.00, respectively.

Figure 41. Job plot showing the relative integrations versus the measured mole fractions of **3** for 0.10 M mixtures of [6 Li]**3** (**A**) and [6 Li]**4** (**B**) in 0.50 M *n*-PrNH₂/ toluene at -110 °C.

Tetramer Job Plots in Piperidine

Figure 42. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M piperidine/toluene at -60 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.74, 0.48, 0.21, and 0.00, respectively.

Figure 43. Job plot showing the relative integrations versus the measured mole fractions of **2** for 0.10 M mixtures of $[^{6}Li]2$ (**A**) and $[^{6}Li]1$ (**B**) in 0.50 M piperidine/toluene at -60 °C.

¹⁹F Spectra in Piperidine

Figure 44. ¹⁹F NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M piperidine / toluene at -80 °C. The mole fractions of **A** in (a)-(e) are roughly 0.90, 0.60, 0.40, 0.20, and 0.00, respectively. The naphtholate homoaggregate is invisible by ¹⁹F NMR, so the A_3B_1 is the last observable species. **1** has three additional resonances, which form the unidentifiable ensembles denoted by †.

Trimer Job Plots in Piperidine

Figure 45. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**9** (**B**) in 0.50 M piperidine/toluene at -90 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.64, 0.43, 0.24, and 0.00, respectively.

Figure 46. Job plot showing the relative integrations versus the measured mole fractions of **2** for 0.10 M mixtures of [6 Li]**2** (**A**) and [6 Li]**9** (**A**) in 0.50 M piperidine/toluene at -90 °C.

Figure 47. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**9** (**B**) in 0.50 M piperidine/toluene at -90 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.78, 0.52, 0.33, and 0.00, respectively. † indicates unknown aggregate.

Figure 48. Job plot showing the relative integrations versus the measured mole fractions of **2** for 0.10 M mixtures of $[^{6}Li]2$ (**A**) and $[^{6}Li]1$ (**B**) in 0.50 M piperidine/toluene at -90 °C.

Job Plots in Pyrrolidine

Figure 49. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**9** (**B**) in 0.50 M pyrrolidine/toluene at -90 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.69, 0.52, 0.35, and 0.00, respectively. † indicates unknown aggregate.

Figure 50. Job plot showing the relative integrations versus the measured mole fractions of **2** for 0.10 M mixtures of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M pyrrolidine/toluene at -90 °C.

Job Plots in Pyrrolidine

Figure 51. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**9** (**B**) in 0.50 M pyrrolidine/toluene at -90 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.58, 0.45, 0.29, and 0.00, respectively. † indicates unknown aggregate.

Figure 52. Job plot showing the relative integrations versus the measured mole fractions of **2** for 0.10 M mixtures of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M pyrrolidine/toluene at -90 °C.

Tetramer Job Plots in *i*-Butylamine

Figure 53. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M *i*-BuNH₂/toluene at -80 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.66, 0.53, 0.73, and 1.00, respectively.

Figure 54. Job plot showing the relative integrations versus the measured mole fractions of **2** for 0.10 M mixtures of [6 Li]**2** (**A**) and [6 Li]**1** (**B**) in 0.50 M *i*-BuNH₂/ toluene at -80 °C.

Figure 55. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**3** (**A**) and [⁶Li]**4** (**B**) in 0.50 M *i*-BuNH₂/toluene at -110 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.62, 0.48, 0.46, and 0.00, respectively.

Figure 56. Job plot showing the relative integrations versus the measured mole fractions of **3** for 0.10 M mixtures of [6 Li]**3** (**A**) and [6 Li]**4** (**B**) in 0.50 M *i*-BuNH₂/toluene at -110 °C.

Tetramer Job Plots in sec-Butylamine

Figure 57. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M *sec*-BuNH₂/toluene at -60 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.76, 0.43, 0.28, and 1.00, respectively.

Figure 58. Job plot showing the relative integrations versus the measured mole fractions of **2** for 0.10 M mixtures of [6 Li]**2** (**A**) and [6 Li]**1** (**B**) in 0.50 M sec-BuNH₂/toluene at -60 °C.

Tetramer Job Plots in *t*-Butylamine

Figure 59. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M *t*-BuNH₂/toluene at -80 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.68, 0.53, 0.32, and 1.00, respectively.

Figure 60. Job plot showing the relative integrations versus the measured mole fractions of **2** for 0.10 M mixtures of [6 Li]**2** (**A**) and [6 Li]**1** (**B**) in 0.50 M *t*-BuNH₂/ toluene at -80 °C.

Figure 61. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**9** (**B**) in 1.0 M i-Pr₂NH/toluene at -60 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.89, 0.53, 0.23, and 0.00, respectively.

Figure 62. Job plot showing the relative integrations versus the measured mole fractions of **2** for 0.10 M mixtures of [6 Li]**2** (**A**) and [6 Li]**9** (**B**) in 1.0 M *i*-Pr₂NH/ toluene at -60 °C.

⁶Li Spectra in Diisopropylamine

Figure 63. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 1.0 M diisopropylamine/toluene at -40 °C. The mole fractions of **2** in (a)-(e) are approximately 1.00, 0.75, 0.50, 0.25, 0.00, respectively. The absence of heteroaggregate formation indicates that **2** and **1** are not the same aggregation state. **2** was characterized as a trimer (previous page). † indicates unknown aggregate.

Figure 64. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**3** (**A**) and [⁶Li]**4** (**B**) in 1.0 M i-Pr₂NH/toluene at -80 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.73, 0.54, 0.31, and 0.00, respectively.

Figure 65. Job plot showing the relative integrations versus the measured mole fractions of **3** for 0.10 M mixtures of [6 Li]**3** (**A**) and [6 Li]**4** (**B**) in 1.0 M *i*-Pr₂NH/toluene at -80 °C.

Tetramer Job Plots in Diethylamine

Figure 66. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M $\text{Et}_2\text{NH}/\text{toluene}$ at -60 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.65, 0.47, 0.29, and 0.00, respectively.

Figure 67. Job plot showing the relative integrations versus the measured mole fractions of **2** for 0.10 M mixtures of [6 Li]**2** (**A**) and [6 Li]**1** (**B**) in 0.50 M Et₂NH/toluene at -60 °C.

Figure 68. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**3** (**A**) and [⁶Li]**4** (**B**) in 0.50 M $\text{Et}_2\text{NH}/\text{toluene}$ at -80 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.69, 0.53, 0.31, and 0.00, respectively. † indicates unknown aggregate.

Figure 69. Job plot showing the relative integrations versus the measured mole fractions of **3** for 0.10 M mixtures of [6 Li]**3** (**A**) and [6 Li]**4** (**B**) in 0.50 M Et₂NH/toluene at -80 °C.

Tetramer Job Plots in *n*-Dipropylamine

Figure 70. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M n-Pr₂NH/toluene at -80 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.68, 0.52, 0.31, and 0.00, respectively.

Figure 71. Job plot showing the relative integrations versus the measured mole fractions of **2** for 0.10 M mixtures of [6 Li]**2** (**A**) and [6 Li]**1** (**B**) in 0.50 M *n*-Pr₂NH/ toluene at -80 °C.

Trimer Job Plots in *n*-Dipropylamine

Figure 72. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**3** (**A**) and [⁶Li]**4** (**B**) in 0.50 M *n*-Pr₂NH/toluene at -80 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.62, 0.46, 0.27, and 0.00, respectively. \dagger indicates unknown aggregate.

Figure 73. Job plot showing the relative integrations versus the measured mole fractions of **3** for 0.10 M mixtures of [6 Li]**3** (**A**) and [6 Li]**4** (**B**) in 0.50 M *n*-Pr₂NH/toluene at -80 °C.

Figure 74. ⁶Li NMR spectra of 0.10 M solutions of $[^{6}Li]2$ (**A**) and $[^{6}Li]1$ (**B**) in 0.50 M *t*-BuOH/toluene at -95 °C. The measured mole fractions of **A** in (a)-(e) are 1.00, 0.75, 0.41, 0.21, and 0.00, respectively.

Figure 75. Job plot showing the relative integrations versus the measured mole fractions of **2** for 0.10 M mixtures of [6 Li]**2** (**A**) and [6 Li]**1** (**B**) in 0.50 M *t*-BuOH/toluene at -95 °C.

Tetramer Job Plots in sec-Butanol

Figure 76. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M *sec*-BuOH/toluene at -80 °C. The mole fractions of **A** in (a)-(e) are 1.00, 0.65, 0.46, 0.27, 0.00, respectively.

Figure 77. Job plot showing the relative integrations versus mole fractions of **2** for 0.10 M mixtures of [6 Li]**2** (**A**) and [6 Li]**1** (**B**) in 0.50 M *sec*-BuOH/toluene at -80 °C.

⁶Li Spectra in *n*-Butanol

Figure 78. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (a) and [⁶Li]**1** (e) in 0.50 M *n*-BuOH/toluene at -110 °C. The measured mole fractions cannot be calculated, but the mole fraction of **2** in tubes (b), (c), and (d) are roughly 0.75, 0.50, and 0.25, respectively.

Figure 79. ⁶Li NMR spectra of 0.10 M solutions of [⁶Li]**2** (**A**) and [⁶Li]**1** (**B**) in 0.50 M *n*-BuOH/ether at -60 °C. The mole fractions of **A** in tubes (a)-(e) are roughly 1.00, 0.75, 0.50, 0.25, 0.00, respectively. The ether cosolvent provides the aggregate resolution, however, *n*-BuOH has been shown to bind to lithium preferentially over ether. \dagger denotes unknown aggregate. * denotes ⁶LiHMDS.

Solvent Swap

Figure 80. Solvent swap on 0.10 M of [⁶Li]**1** in various pyridine and Et_2NH concentrations with toluene as cosolvent at -80 °C. The chemical shift more closely resembles pyridine even at high Et_2NH concentrations. The peak migration, however, indicates that Et_2NH is also functioning as a ligand to the tetramer. The medium dependent chemical shift is clearly demonstrated going from 1.0 equiv to 10 equiv of Et_2NH . † denotes unknown aggregate.

Figure 81. Solvent swap on 0.10 M of [⁶Li]**2** in various ratios of Et_2NH and TMEDA with toluene as cosolvent at -40 °C. Addition up to 15 equiv of Et_2NH does not move the naphtholate aggregate from being solely a TMEDA-bound dimer.

Figure 82. Solvent swap on 0.10 M of [⁶Li]**1** in 1 equiv dimethylacetamide and various TMEDA concentrations with toluene as cosolvent at -80 °C. Addition of up to 15 equiv of TMEDA does not affect the chemical shift, indicting that the tetramer is solely DMA-bound. The appearance of a small peak at high TMEDA concentrations may be the concentration-dependent chemical shift of the TMEDA-solvated dimer.

Figure 83. Solvent swap on 0.10 M of [⁶Li]**1** in 1 equiv dimethylformamide and various TMEDA concentrations with toluene as cosolvent at -80 °C. Addition of up to 15 equiv of TMEDA does not affect the chemical shift, indicting the tetramer is solely DMF-bound. The appearance of a small blip at high TMEDA concentrations may be the concentration-dependent chemical shift of the TMEDA-solvated dimer.

Figure 84. Solvent swap on 0.10 M of [⁶Li]**1** in *N*-methylpyrrolidone and TMEDA with toluene as cosolvent at -80 °C. At a 1:1 ligand ratio, the chemical shift closely resembles the chemical shift of NMP, indicating that it is solely a NMP bound tetramer. The slight chemical shift difference is probably due to the difference in ligand concentration (medium effect).

Figure 85. Solvent swap on 0.10 M of [⁶Li]**1** in 1 equiv *N*-methylpyrrolidone and various TMEDA concentrations with toluene as cosolvent at -80 °C. Addition of up to 15 equiv of TMEDA does not affect the chemical shift, indicting the tetramer is solely NMP-bound. The appearance of a small peak at high TMEDA concentrations may be the concentration-dependent chemical shift of the TMEDA-solvated dimer.

Figure 86. Solvent swap on 0.10 M of [⁶Li]**1** in pyridine and *N*-methylpyrrolidone with toluene as cosolvent at -80 °C. At a 1:1 ligand ratio, the chemical shift closely resembles the chemical shift of NMP, indicating that it is predominantly a NMP bound tetramer. The slight chemical shift difference may be due to minor pyridine binding. † denotes an aggregate present only at high pyridine concentration; it is assumed to be a highly solvated dimer.

Figure 87. Solvent swap on 0.10 M of [⁶Li]**1** in 1 equiv *N*-methylpyrrolidone and various pyridine concentrations with toluene as cosolvent at -80 °C. Addition of up to 10 equiv of pyridine does not affect the chemical shift, indicting the tetramer is solely NMP-bound.

Figure 88. Solvent swap on 0.10 M of [⁶Li]**1** in pyridine and diethyl ether with a toluene cosolvent as needed at -40 °C. At a 1:1 ligand ratio, the chemical shift closely resembles the chemical shift of pyridine, indicating that it is predominantly a pyridine bound tetramer. The slight chemical shift difference may be due to minor ether binding. † denotes an aggregate present only at high pyridine concentration; it is assumed to be a highly solvated dimer.

Figure 89. Solvent swap on 0.10 M of [⁶Li]**1** in ether with increasing pyridine concentrations at -40 °C. Using ether as the cosolvent enables ether to compete with pyridine as the ligand for the tetramer.

Figure 90. Solvent swap on 0.10 M of [${}^{6}Li$]**1** in toluene with 1 equiv pyridine and increasing Et₂O concentrations at -80 °C. Up to 15 equiv of Et₂O yields no impact on the pyridine-solvated tetramer.

Figure 91. Solvent swap on 0.10 M of [⁶Li]**1** in pyridine and TMEDA with toluene as cosolvent at -40 °C. At a 1:1 ligand ratio, there is broadening and minor inward shift of both the pyridine solvated tetramer and the TMEDA solvated dimer. This change indicates the possibility of mixed ligand aggregates. † denotes an aggregate present only at high pyridine concentration; it is assumed to be a highly solvated dimer.

Figure 92. Solvent swap on 0.10 M of [⁶Li]**1** in pyridine and various TMEDA concentrations with toluene as cosolvent at -80 °C. Addition of TMEDA causes both the appearance of a TMEDA solvated dimer around 0.2 ppm and a slight shift of the pyridine solvated tetramer. The slight shift may be due to incorporation of TMEDA into the tetramer. The chemical shift variation at increasing TMEDA concentration is due to a medium effect.

Figure 93. Solvent swap on 0.10 M of [⁶Li]**2** in TMEDA and various pyridine concentrations with toluene as cosolvent at -40 °C. Addition of pyridine causes both the appearance of a pyridine solvated tetramer around 2.75 ppm and the migration of the TMEDA solvated dimer.

Figure 94. Solvent swap on 0.10 M of [⁶Li]**1** in various pyridine and *n*-PrNH concentrations with toluene as cosolvent at -80 °C. The chemical shift more closely resembles *n*-PrNH even at high pyridine concentrations. The medium dependent chemical shift is clearly demonstrated going from 1.0 equiv to 15 equiv of *n*-PrNH.

Figure 95. Solvent swap on 0.10 M of [⁶Li]**1** in various pyridine and pyrrolidine concentrations with toluene as cosolvent at -80 °C. The chemical shift more closely resembles pyrrolidine even at high pyridine concentrations. The medium dependent chemical shift is clearly demonstrated going from 1.0 equiv to 10 equiv of pyrrolidine.

 Pyridine : t-Butanol

 1 equiv: 0 equiv

 10 equiv: 1 equiv

 5 equiv: 1 equiv

 2 equiv: 1 equiv

 1 equiv: 2 equiv

 1 equiv: 2 equiv

 1 equiv: 5 equiv

 1 equiv: 10 equiv

 0 equiv: 1 equiv

 1 equiv: 2 equiv

 1 equiv: 1 equiv

 0 equiv: 1 equiv

 0 equiv: 10 equiv

Figure 96. Solvent swap on 0.10 M of [⁶Li]**1** in various pyridine and *t*-BuOH concentrations with toluene as cosolvent at -80 °C. The chemical shift more closely resembles pyridine even at high *t*-BuOH concentrations. The medium dependent chemical shift is barely present going from 1.0 equiv to 10 equiv of *t*-BuOH.

1.0

0.5

0.0

3.0

2.5

2.0

1.5