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ABSTRACT: Benzylic C−H lithiation of 3,4-benzothiophane
and subsequent treatment with triphenyl- or trimethylchlor-
osilane under a variety of conditions leads to α,α- rather than
α,α′-bis-silylation products as a consequence of anion
stabilization by R3Si and very fast deprotonation of the
intermediate monosilylated product, even with a sterically bulky base such as lithium diisopropylamide.

The origin of the research reported herein was the question
of whether chiral cyclic sulfides of general structure 1 (or

enantiomers) might be useful for catalytic enantioselective
methylene transfer to CC or CO from methylene
precursors such as Et2Zn/ICH2Cl or Zn/CH2I2, following a
process in which 1 serves as a carrier to provide chiral ylide 2.1

Initial studies were directed toward the synthesis of α,α′-bis-
silanes such as 1, R = Me3Si, Ph3Si, and t-BuMe2Si, from the
readily available starting material 3 (Figure 1).2 It seemed

reasonable that rapid access to the series of silyl ligands 1 might
be secured simply by sequential, one-flask silylation of
monoanions derived from 3 or by one-step bis-silylation of
the α,α′-dianion of 3, a 12-π-electron (non-Hückel stabilized)
system. Surprisingly, however, access to the desired 2,5-bis-
silylated 3,4-benzothiophane structure proved to be difficult
because the behavior of anions desired from 3 was strongly
influenced by the electronic and steric effects of silyl
substituents.
Reaction of 3 in THF at −78 °C3 with 1.0 equiv of n-BuLi

(2.5 M in hexanes) for 3 h followed by slow addition of Ph3SiCl
(in THF at −78 °C) afforded as major product (along with
unreacted 3) the crystalline gem-bis-silane 4 in 31% yield.3 The
structure of 4 was established by X-ray crystallographic analysis
(Figure 2).4

The formation of 4 likely occurs via the C(2)-monosilylation
product 5 by further deprotonation at C(2) (either by
monolithiated 3 or residual BuLi) followed by a second

silylation (Scheme 1). The putative intermediate 5 could be
obtained by the gradual addition of a cold (−78 °C) solution of

lithium diisopropyl amide (LDA) in THF to a mixture of 3 and
1.0 equiv of Ph3SiCl in THF at −78 °C, which gave 5 in 42%
yield along with recovered 3 (40%).
Consistent with these observations was the finding that the

addition of 1.0 equiv of LDA in THF (at −78 °C) to a solution
of 5 and Ph3SiCl in THF at −78 °C afforded 4 (76%) as major
product, without the formation of a detectable amount of the α,
α′-silylated product 1, R = Ph (Scheme 2). Evidently even with
the use of the very bulky base LDA, the acidifying effect of an
C(2) Ph3Si group is sufficiently great to override its steric
shielding of the geminal C(2)-H proton. An α-triphenylsilyl
group has been found to increase the acidity of the C(9)-
proton of fluorene by about 104 in previous work.5,6 Despite
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Figure 1. Some 3,4-benzothiophanes.

Figure 2. X-ray crystallographic structure of 4.

Scheme 1. Facile Geminal Silylation
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extensive experimentation, no conditions could be found to
convert 3 to the α,α′-bis-silylated derivative 1, R = Ph.
The same preference for the formation of gem-bis-silylated

product was demonstrated using Me3SiCl as the silylation
reagent. Thus, the addition of 3 to a mixture of 2.0 equiv of
LDA and 6.0 equiv of TMSCl at −78 °C produced the gem-bis-
silylation product 7 in 64% yield with no measurable amount of
the isomeric α,α′-bis-TMS compound (Figure 3).

At this point, it should be mentioned that all of the above
silylation reactions must be carried out at low temperatures
because the intermediate 6 is unstable above −60 °C. There is
considerable precedent for decomposition via the cyclo-
elimination pathway shown in Scheme 3.7

1H, 6Li, and 13C NMR studies were carried out at −78 °C to
ascertain the nature of the lithiated intermediate (6) generated
from 3 under various lithium−hydrogen exchange conditions.
Reaction of 3 with n-butyllithium in THF at −78 °C occurred
with a half-life (t1/2) of greater than 1 h and gave only the
monolithiated form, 6 (Scheme 1).4 The 1H, 6Li, and 13C NMR
spectra on samples generated using [6Li] n-BuLi showed
asymmetry attesting to monolithiation, and the appearance of
the benzylic CH2 moiety as an A−B quartet showed that the 6Li
counterion differentiated the two faces. Although we observed
no evidence to indicate aggregation, it cannot be rigorously
excluded either. No other lithiated species could be observed
even using more than 2 equiv of n-BuLi at −78 °C for 12 h, and
quenching after 12 h with MeOD led to only monodeuterated
3.4

Although the reaction of monolithium intermediate 6 with
triphenylchlorosilane occurs readily at −78 °C to form 5, NMR
studies showed that proton transfer from 5 to 6 is even faster to
form the silyl stabilized lithio-anion 9. Further, NMR
measurements also revealed that the reaction of 9 with Ph3SiCl
(Scheme 4) is slower than expected and requires several hours
at −78 °C. The slower rate of the silylation 9 to 4 appears to be
a consequence of the anion-stabilizing effect (electron with-
drawal) of Ph3Si combined with the steric shielding by Ph3Si in
both 9 and Ph3SiCl.

The research described above has revealed significant
nuances in the behavior of lithiation products derived from
3,4-benzothophane involving surprising rates of C−H lithiation
and C−Li silylation.
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Scheme 2. Preferential Geminal Triphenylsilylation

Figure 3. Possible position isomers for disilyation.

Scheme 3. Possible Pathway for Anion Decomposition

Scheme 4. NMR Rate Studies
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