SUPPORTING INFORMATION

Preferential Geminal Bis-silylation of 3,4-Benzothiophane is Caused by the Dominance of Electron Withdrawal by $\mathbf{R}_{3} \mathrm{Si}$ Over Steric Shielding Effects

Yifeng Han, ${ }^{\dagger}$ Yun Ma, ${ }^{\ddagger}$ Ivan Keresztes, ${ }^{\ddagger}$ David B. Collum ${ }^{\ddagger}{ }^{\ddagger}$ and E. J. Corey ${ }^{\dagger} *$
Contribution from the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02138 and Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853-1301
† corey@chemistry.harvard.edu; ${ }^{\dagger}$ dbc6@cornell.edu

Experimental Section

Reagents and Solvents. THF, THF- $d_{8}, N, N, N^{\prime}, N^{\prime}$-tetramethyethylenediamine (TMEDA) and hexanes were distilled from blue or purple solutions containing sodium benzophenone ketyl. The hexanes contained 1% tetraglyme to dissolve the ketyl. [$\left.{ }^{6} \mathrm{Li}\right] n-\mathrm{BuLi}$ used for the spectroscopic studies was prepared and recrystallized as described previously [Hoffmann, D.; Collum, D. B. J. Am. Chem. Soc. 1998, 120, 5810.
]. 1,3-dihydrobenzo[c]thiophene was prepared according to a literature procedure [Kawabata, K. Goto, H. J. Mater. Chem. 2012, 22, 23514.] Solutions of n-BuLi were titrated using a literature method [Kofron, W. G.; Baclawski, L. M. J. Org. Chem. 1976, 41, 1879].

NMR Spectroscopic Analyses.

All NMR samples were prepared using stock solutions and sealed under partial vacuum. Standard ${ }^{6} \mathrm{Li},{ }^{13} \mathrm{C}$, and ${ }^{15} \mathrm{~N}$ NMR spectra were recorded on a 500 MHz spectrometer at 73.57 , 125.79, and 50.66 MHz (respectively). The ${ }^{1} \mathrm{H},{ }^{6} \mathrm{Li}$, and ${ }^{13} \mathrm{C}$ resonances are referenced to THF- d_{8} (3.58 ppm), $0.30 \mathrm{M}\left[{ }^{6} \mathrm{Li}\right] \mathrm{LiCl} / \mathrm{MeOH}$ at $-90{ }^{\circ} \mathrm{C}(0.0 \mathrm{ppm})$, and the $\mathrm{CH}_{2} \mathrm{O}$ resonance of THF at $90^{\circ} \mathrm{C}(67.57 \mathrm{ppm})$, respectively.

Figure 1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 1,3-dihydrobenzo $[c]$ thiophene $\mathbf{3}$ in THF- d_{8} recorded at $-80^{\circ} \mathrm{C}$.

Figure 2. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of (1,3-dihydrobenzo[$\left.c\right]$ thiophen1 -yl)-triphenylsilane 5 in THF- d_{8} recorded at $-80^{\circ} \mathrm{C}$.

Preparation of deuterated 1,3-dihydrobenzo[c]thiophene (3- \boldsymbol{d}_{1})

Figure 3. ${ }^{1} \mathrm{H}$ NMR spectrum of 1-deuterio-1,3-dihydrobenzo $[c]$ thiophene-(3- $\boldsymbol{d}_{\mathbf{1}}$) in THF- d_{8}.

Figure 4. ${ }^{13} \mathrm{C}$ NMR spectra of 1-deuterio-1,3-dihydrobenzo[$\left.c\right]$ thiophene (3-d $)^{\text {). }}$

Figure 5. ${ }^{1} \mathrm{H}$ NMR spectra of 1-lithio-1,3-dihydrobenzo $[c]$ thiophene (6) in THF- d_{8} with aging for 12 hr at $-78^{\circ} \mathrm{C}$.

Figure 6. ${ }^{13} \mathrm{C}$ NMR spectrum of 1-lithio-1,3-dihydrobenzo $[c]$ thiophene (6) in THF- d_{8} with aging 12 hr at $-78^{\circ} \mathrm{C}$.

Figure 7. ${ }^{6} \mathrm{Li}$ NMR spectra of 1-lithio-1,3-dihydrobenzo $[c]$ thiophene (6) in THF- d_{8} with aging for 12 hr at $-78^{\circ} \mathrm{C}$.

Figure 8. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra with selective ${ }^{6} \mathrm{Li}$ decoupling and ${ }^{6}$ Li decoupling 1-lithio-1,3-dihydrobenzo[$\left.c\right]$ thiophene (6).

Figure 9. Multiplicity-edited HSQCAD spectrum of 1-lithio-1,3dihydrobenzo[$c]$ thiophene (6) (full display).

Figure 10. Multiplicity-edited HSQCAD spectrum of 1-lithio-1,3dihydrobenzo[c]thiophene (6) showing regions of interest with assignments.

Figure 11. Full ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HMBC spectrum of 1-lithio-1,3-dihydrobenzo [c]thiophene (6).

Figure 12. HMBC spectrum of 1-lithio-1,3-dihydrobenzo[c]thiophene (6) showing regions of interest with assignments.

Figure 13. ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HMBC spectrum of 1-lithio-1,3-dihydrobenzo[c]thiophene (6) showing regions of interest with assignments.

Figure 14. ${ }^{1} \mathrm{H}$ NMR spectra of 1-lithio-1,3-dihydrobenzo[c]thiophene (6) generated with n - BuLi and 4.0 equiv TMEDA in THF- d_{8} with aging for 12 hr at $-78^{\circ} \mathrm{C}$.

Figure 15. ${ }^{13} \mathrm{C}$ NMR spectra of 1-lithio-1,3-dihydrobenzo $[c]$ thiophene (6) with $n-\mathrm{BuLi}$ and 4.0 equiv TMEDA in THF- d_{8} with aging at $-78^{\circ} \mathrm{C}$ for 12 hr .

Figure 16. ${ }^{6} \mathrm{Li}$ NMR spectra of 1-lithio-1,3-dihydrobenzo $[c]$ thiophene (6) and 4.0 equiv TMEDA in THF- d_{8} with aging at $-78^{\circ} \mathrm{C}$ for 12 hr .

Figure 17. ${ }^{1} \mathrm{H}$ NMR spectra of 1-lithio-1,3-dihydrobenzo $[c]$ thiophene (6) with 2.0 equiv n - BuLi in THF- d_{8} with aging at $-78{ }^{\circ} \mathrm{C}$ for 12 hr .

Figure 18. ${ }^{6}$ Li NMR spectra of 1-lithio-1,3-dihydrobenzo $[c]$ thiophene (6) with 2.0 equiv n - BuLi in THF- d_{8} with aging at $-78^{\circ} \mathrm{C}$ for 12 hr .

Figure 19. Plot of concentration versus time for lithiation of 1,3-dihydrobenzo $[c]$ thiophene 3 with 4.0 equiv of n-BuLi in THF- d_{8} monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy at $-78{ }^{\circ} \mathrm{C}$.

Figure 20. Plot of concentration versus time for lithiation of 1,3-dihydrobenzo $[c]$ thiophene 3 with 4.0 equiv of n - BuLi and 4.0 equiv TMEDA in THF- d_{8} monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy at $-78{ }^{\circ} \mathrm{C}$.

Figure 21. ${ }^{1} \mathrm{H}$ NMR spectra of 1-lithio-1,3-dihydrobenzo $[c]$ thiophene (6) with 0.50 equiv n - BuLi in THF- d_{8} with aging at $-78{ }^{\circ} \mathrm{C}$ for 12 hr and varying aging from -20 to $-115^{\circ} \mathrm{C}$ and recorded $-115^{\circ} \mathrm{C}$

Figure 22. Plot of concentration versus time for lithiation of (1,3-dihydrobenzo[c]thiophen-1yl)triphenylsilane 9 with 1-lithio-1,3dihydrobenzo $c c]$ thiophene (6) in THF- d_{8} monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy at $-78^{\circ} \mathrm{C}$.

Figure 23. Plot of concentration versus time for silylation of 1,3-dihydrobenzo[c]thiophene $\mathbf{5}$ with 2.0 equiv triphenylsilylchloride in THF- d_{8} monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy at $-78{ }^{\circ} \mathrm{C}$.

Figure 24. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of (1-lithio-1,3-dihydrobenzo[c]-thiophen-1-yl)triphenylsilane (9) in THF- d_{8} recorded at $-80^{\circ} \mathrm{C}$.

Figure 25. Multiplicity-edited ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HSQCAD spectrum of (1-lithio-1,3-dihydrobenzo[c]thiophen-1-yl)triphenylsilane (9). Red contours indicate $\mathrm{CH} / \mathrm{CH}_{3}$, blue contours are CH_{2} (full display).

Figure 26. Multiplicity-edited ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HSQCAD spectrum of (1-lithio-1,3-dihydrobenzo[c]thiophen-1-yl)triphenylsilane (9) with assignments displaying regions of interest.

Figure 27. Multiplicity-edited ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HSQCAD spectrum of (1-lithio-1,3-dihydrobenzo[c]thiophen-1-yl)triphenylsilane (9) with assignments displaying regions of interest.

Figure 28. Full ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HMBC spectrum of (1-lithio-1,3-dihydrobenzo $[c]$ -thiophene-1-yl)triphenylsilane (9).

Figure 29. ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HMBC spectrum of (1-lithio-1,3-dihydrobenzo $[c]$ -thiophen-1-yl)triphenylsilane (9) with assignment showing only regions of interest.

Figure 30. ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HMBC spectrum of (1-lithio-1,3-dihydrobenzo $[c]$ -thiophen-1-yl)triphenylsilane (9) with assignments $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$
showing only regions of interest.
Figure 31. ${ }^{6} \mathrm{Li}$ NMR spectrum of (1-lithio-1,3-dihydrobenzo $[c]$ -thiophen-1-yl)-triphenylsilane (9) in THF- d_{8} with aging for 12 hr at $-78^{\circ} \mathrm{C}$.

Figure 32. ${ }^{1} \mathrm{H}$ NMR spectra of (1-lithio-1,3-dihydrobenzo $[c]$ -thiophen-1-yl)triphenylsilane (9) 4.0 equiv $n-\mathrm{BuLi}$ in THF- d_{8} with aging for 12 hr at $-78^{\circ} \mathrm{C}$.

Figure 33. ${ }^{6} \mathrm{Li}$ NMR spectra of (1-lithio-1,3-dihydrobenzo $[c]$ -thiophene-1-yl)triphenylsilane (9) in THF- d_{8} with aging for 12 hr at $-78^{\circ} \mathrm{C}$.

Figure 34. Plot of concentration versus time for silylation of (1-lithio-1,3-dihydrobenzo[c]thiophen-1-yl)triphenylsilane $\mathbf{4}$ with 3.0 equiv triphenylsilylchloride in THF- d_{8} monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy at $-78{ }^{\circ} \mathrm{C}$.

Figure 35. ${ }^{1} \mathrm{H}$ NMR spectrum of (1,3-dihydrobenzo[$\left.c\right]$ thiophen-1-yl)triphenylsilane and 3.0 equiv triphenylsilylchloride with varying $n-\mathrm{BuLi}$ in THF- d_{8} recorded at $-80^{\circ} \mathrm{C}$.

Figure 1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 1,3-dihydrobenzo $[c]$ thiophene $\mathbf{3}$ in THF- d_{8} recorded at -80 ${ }^{\circ} \mathrm{C}$: (a) ${ }^{1} \mathrm{H}$ NMR $\delta 7.30(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{~s}, 4 \mathrm{H}) ;(\mathrm{b}){ }^{13} \mathrm{C}$ NMR $\delta 141.8,127.0,126.0$, 38.8.

Figure 2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of (1,3-dihydrobenzo[c]thiophen-1-yl)triphenylsilane 5 in THF- d_{8} recorded at $-80{ }^{\circ} \mathrm{C}$: (a) ${ }^{1} \mathrm{H}$ NMR $\delta 7.49(\mathrm{~m}, 6 \mathrm{H}) ; 7.43(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~m}, 6 \mathrm{H}), 7.06(\mathrm{~m}$, $2 \mathrm{H}), 6.91(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=13.0 \mathrm{~Hz}$, $1 \mathrm{H})$; (b) ${ }^{13} \mathrm{C}$ NMR $\delta 137.7,135.0,130.9,128.9,127.3,127.0,126.2,125.7,38.9,38.7$.

Figure 3. ${ }^{1} \mathrm{H}$ NMR spectrum of deuterated 1,3-dihydrobenzo[$\left.c\right]$ thiophene (3- $\boldsymbol{d}_{\mathbf{1}}$) in THF- $\boldsymbol{d}_{8} \delta$ $7.20(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{~s}, 3 \mathrm{H})$.

Figure 4. ${ }^{13} \mathrm{C}$ NMR spectra of 1-deutero-1,3-dihydrobenzo $[c]$ thiophene (3- $\boldsymbol{d}_{\mathbf{1}}$) in THF- d_{8} : (A) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\delta 142.1,127.4,125.6,38.8,38.6(\mathrm{t}, J=21.60 \mathrm{~Hz}) ;(\mathrm{B}){ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{2} \mathrm{H}\right\}$ NMR $\delta 142.1$, 127.4, 125.6, 38.8, 38.6 (s).

A

B

Figure 5. ${ }^{1} \mathrm{H}$ NMR spectra of 1-lithio-1,3-dihydrobenzo $[c]$ thiophene (6) in THF- d_{8} with aging for 12 hr at $-78{ }^{\circ} \mathrm{C}$: (A) recorded at $-80^{\circ} \mathrm{C}: \delta 6.57(\mathrm{t}, J=6.80 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{t}, J=6.80 \mathrm{~Hz}, 1 \mathrm{H})$, $6.31(\mathrm{~d}, J=7.29 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{t}, J=7.29 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 1 \mathrm{H})$. (B) recorded at $-115^{\circ} \mathrm{C}$.

Figure 6. ${ }^{13} \mathrm{C}$ NMR spectrum of 1-lithio-1,3-dihydrobenzo[c]thiophene (6) in THF- d_{8} with aging 12 hr at $-78{ }^{\circ} \mathrm{C}$ recorded at $-80^{\circ} \mathrm{C}: \delta 162.8,132.6,126.0,123.7,116.1,111.7,44.2$, 39.8 .

A

Figure 7. ${ }^{6} \mathrm{Li}$ NMR spectra of 1 -lithio-1,3-dihydrobenzo $[c]$ thiophene (6) in THF- d_{8} with aging for 12 hr at $-78^{\circ} \mathrm{C}$: (A) recorded at $-80^{\circ} \mathrm{C} \delta 0.42$; (B) recorded at $-115^{\circ} \mathrm{C}$.

Figure $8{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectra of 1-lithio-1,3-dihydrobenzo[c]thiophene 6 with (A) selective ${ }^{6} \mathrm{Li}$ decoupling at $\delta 0.42 \mathrm{ppm}$; (B) broadband ${ }^{6} \mathrm{Li}$ decoupling; (C) without ${ }^{6} \mathrm{Li}$ decoupling.

Parameter	Value
Experiment	HSQC-EDITED
Pulse Sequence	HSQCAD
Solvent	thf
Temperature	-92.0
Number of Scans	2
Receiver Gain	50
Relaxation Delay	1.0000
Nucleus	(H1, C13)
Spectrometer Frequency	$(499.76,125.68)$
Spectral Width	$(4740.5,25133.5)$
Acquisition Time	$(0.15,0.01)$
Acquired Size	$(711,200)$
Pulse Width	$(11.75,7.90)$
Spectral Size	$(2048,1024)$

Figure 9 Multiplicity-edited HSQCAD spectrum 1-lithio-1,3-dihydrobenzo[c]thiophene 6. Red contours indicate $\mathrm{CH} / \mathrm{CH}_{3}$, blue contours are CH_{2} (full display).

Parameter	Value
Experiment	HSQC-EDITED
Pulse Sequence	HSQCAD
Solvent	thf
Temperature	-92.0
Number of Scans	2
Receiver Gain	50
Relaxation Delay	1.0000
Nucleus	(H1, C13)
Spectrometer Frequency	$(499.76,125.68)$
Spectral Width	$(4740.5,25133.5)$
Acquisition Time	$(0.15,0.01)$
Acquired Size	$(711,200)$
Pulse Width	$(11.75,7.90)$
Spectral Size	$(2048,1024)$

Figure 10. Multiplicity-edited HSQCAD spectrum of 1-lithio-1,3-dihydrobenzo-
[c]thiophene 6 showing regions of interest with assignments. Red contours indicate $\mathrm{CH} / \mathrm{CH}_{3}$, blue contours are CH_{2}.

Parameter	Value
Experiment	HMBC
Pulse Sequence	gHMBCAD
Solvent	thf
Temperature	-92.0
Number of Scans	2
Receiver Gain	50
Relaxation Delay	1.0000
Nucleus	$($ H1, C13)
Spectrometer Frequency	$(499.76,125.68)$
Spectral Width	$(4740.5,30154.5)$
Acquisition Time	$(0.15,0.01)$
Acquired Size	$(711,400)$
Pulse Width	$(10.75,7.90)$
Spectral Size	$(2048,1024)$

Figure 11. Full ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HMBC spectrum of 1-lithio-1,3-dihydrobenzo [c]thiophene 6.

Parameter	Value
Experiment	HMBC
Pulse Sequence	gHMBCAD
Solvent	thf
Temperature	-92.0
Number of Scans	2
Receiver Gain	50
Relaxation Delay	1.0000
Nucleus	(H1, C13)
Spectrometer Frequency	$(499.76,125.68)$
Spectral Width	$(4740.5,30154.5)$
Acquisition Time	$(0.15,0.01)$
Acquired Size	$(711,400)$
Pulse Width	$(10.75,7.90)$
Spectral Size	$(2048,1024)$

Figure 12. ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HMBC spectrum of 1-lithio-1,3-dihydrobenzo $[c]$ thiophene $\mathbf{6}$ showing regions of interest with assignments.

Parameter	Value
Experiment	HMBC
PHMBCAD	
Pulse Sequence	thf
Solvent	-92.0
Temperature	2
Number of Scans	50
Receiver Gain	1.0000
Relaxation Delay	(H1, C13)
Nucleus	$(4990.5125 .68)$
Spectrometer Frequency	$(499.764 .5)$
Spectral Width	$(0.15,0.01)$
Acquisition Time	$(711,400)$
Acquired Size	$(10.75,7.90)$
Pulse Width	$(2048,1024)$
Spectral Size	

Figure 13. ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HMBC spectrum of 1-lithio-1,3-dihydrobenzo $[c]$ thiophene $\mathbf{6}$ showing regions of interest with assignments.

Figure 14. ${ }^{1} \mathrm{H}$ NMR spectra of 1,3-dihydrobenzo[c]thiophene 3 treated with varying quantities of n-BuLi and 4.0 equiv TMEDA in THF- d_{8} with aging for 12 hr at $-78{ }^{\circ} \mathrm{C}$ and recorded at $-80^{\circ} \mathrm{C}$ to generate 6: (A) no $n-\mathrm{BuLi}$; (B) 0.50 equiv $n-\mathrm{BuLi}$; (C) 2.0 equiv $n-\mathrm{BuLi}$; (D) 5.0 equiv n BuLi.

Figure 15. ${ }^{13} \mathrm{C}$ NMR spectra of 1,3-dihydrobenzo $[c]$ thiophene $\mathbf{3}$ treated with varying quantities of n-BuLi in 4.0 equiv TMEDA in THF- d_{8} with aging at $-78{ }^{\circ} \mathrm{C}$ for 12 hr and recorded at $-80^{\circ} \mathrm{C}$ to generate 6: (A) no $n-\mathrm{BuLi}$; (B) 0.25 equiv $n-\mathrm{BuLi}$; (C) 0.50 equiv n - BuLi ; (D) 2.0 equiv n BuLi; (E) 5.0 equiv n-BuLi.

Figure 16. ${ }^{6} \mathrm{Li}$ NMR spectra of 1,3-dihydrobenzo $[c]$ thiophene 3 generated with varying quantities of n-BuLi in 4.0 equiv TMEDA in THF- d_{8} with aging at $-78^{\circ} \mathrm{C}$ for 12 hr and recorded at $-80^{\circ} \mathrm{C}$: (A) n-BuLi without substrate 3; (B) 0.50 equiv $n-\mathrm{BuLi}$ (C) 2.0 equiv $n-\mathrm{BuLi}$; (D) 4.0 equiv n-BuLi; (E) 5.0 equiv $n-\mathrm{BuLi}$.

Figure 17. ${ }^{1} \mathrm{H}$ NMR spectra of 1-lithio-3-dihydrobenzo $[c]$ thiophene 6 generated with 2.0 equiv n-BuLi and varying TMEDA in THF- d_{8} with aging at $-78{ }^{\circ} \mathrm{C}$ for 12 hr and recorded at $-80^{\circ} \mathrm{C}$: (A) no TMEDA; (B) 2.0 equiv TMEDA; (C) 8.0 equiv TMEDA.

$\begin{array}{ll}2.9 & 2.8 & 2.7 & 2.6 & 2.5 & 2.4 & 2.3 & 2.2 & 2.1 & 2.0 & 1.9 & 1.8 & 1.7 & 1.6 & 1.5 & 1.4 & 1.3 & 1.2 & 1.1 & 1.0 & 0.9 & 0.8 & 0.7 & 0.6 & 0.5 & 0.4 & 0.3 & 0.2 & 0.1 & 0.0\end{array}$

Figure 18. ${ }^{6} \mathrm{Li}$ NMR spectra of 1-lithio-1,3-dihydrobenzo $[c]$ thiophene $\mathbf{6}$ generated with 2.0 equiv n-BuLi in THF- d_{8} with aging at $-78^{\circ} \mathrm{C}$ for 12 hr and recorded at $-80^{\circ} \mathrm{C}$: (A) no TMEDA; (B) 2.0 equiv TMEDA; (C) 4.0 equiv TMEDA; (D) 8.0 equiv TMEDA.

Figure 19. Plot of concentration versus time for lithiation of 1,3-dihydrobenzo-[c]thiophene 3 with 4.0 equiv of n-BuLi in THF- d_{8} monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy at $-78{ }^{\circ} \mathrm{C}$.

Figure 20 Plot of concentration versus time for lithiation of 1,3-dihydrobenzo[c]thiophene 3 with 4.0 equiv of $n-\mathrm{BuLi}$ and 4.0 equiv TMEDA in THF- d_{8} monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy at $-78^{\circ} \mathrm{C}$.

Figure 21. ${ }^{1} \mathrm{H}$ NMR spectra of 1-lithio-1,3-dihydrobenzo[c]thiophene 6 with 0.50 equiv $n-\mathrm{BuLi}$ in THF- d_{8} with aging at $-78^{\circ} \mathrm{C}$ for 12 hr with varying temperature and recorded at $-115^{\circ} \mathrm{C}$: (A) $115^{\circ} \mathrm{C}$; (B) $-80^{\circ} \mathrm{C}$; (C) $-60^{\circ} \mathrm{C}$ for 20 mins ; (D) $-40^{\circ} \mathrm{C}$ for 10 mins ; (E) $-20^{\circ} \mathrm{C}$ for 5 mins .

Figure 22. Plot of concentration versus time for lithiation of (1,3-dihydrobenzo[c]thiophen-1yl)triphenylsilane 5 with 0.5 equiv 1-lithio-1,3-dihydrobenzo[c]thiophene 9 in THF- d_{8} monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy at $-78{ }^{\circ} \mathrm{C}$.

Figure 23. Plot of concentration versus time for silylation of 1-lithio-1,3dihydrobenzo $[c]$ thiophene 5 with 2.0 equiv triphenylsilylchloride in THF- d_{8} monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy at $-78{ }^{\circ} \mathrm{C}$.

Figure 24. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of (1-lithio-1,3-dihydrobenzo[c]thiophen-1yl)triphenylsilane 9 in THF- d_{8} recorded at $-80{ }^{\circ} \mathrm{C}$: (a) ${ }^{1} \mathrm{H}$ NMR $\delta 7.60(\mathrm{~m}, 6 \mathrm{H}) ; 7.32-7.50(\mathrm{~m}$, $3 \mathrm{H}), 7.20(\mathrm{~m}, 6 \mathrm{H}), 5.72(\mathrm{~d}, J=7.20 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{t}, J=7.80 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=7.80 \mathrm{~Hz}, 1 \mathrm{H})$, $5.42(\mathrm{t}, J=7.20 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 3 \mathrm{H}) ;(\mathrm{b}){ }^{13} \mathrm{C}$ NMR $\delta 157.4,142.5,138.3,137.4,135.9,135.0$, 132.2, 128.1, 127.4, 126.4, 123.4, 113.2, 105.2, 43.3, 40.3.

Figure 25. Multiplicity-edited ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HSQCAD spectrum of (1-lithio-1,3-dihydrobenzo[c]thiophen-1-yl)triphenylsilane 9 . Red contours indicate $\mathrm{CH} / \mathrm{CH}_{3}$, blue contours are CH_{2} (full display).

Parameter	Value
Experiment	HSQC-EDITED
Pulse Sequence	HSCCAD
Solvent	tht
Temperature	-92.0
Number of Scans	2
Receiver Gain	46
Relaxation Delay	1.0000
Nucleus	(H1, C13)
Spectrometer Frequency	$(499.76,125.68)$
Spectral Width	$(4191.3,23873.5)$
Acquisition Time	$(0.15,0.02)$
Acquired Size	$(628,400)$
Pulse Width	$(10.75,7.90)$
Spectral Size	$(2048,1024)$

Figure 26 Multiplicity-edited ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HSQCAD spectrum of (1-lithio-1,3dihydrobenzo $[c]$ thiophen-1-yl)triphenylsilane 9 with assignments displaying regions of interest. Red contours indicate $\mathrm{CH} / \mathrm{CH}_{3}$, blue contours are CH_{2}.

Parameter	Value
Experiment	HSQC-EDITED
Pulse Sequence	HSQCAD
Solvent	thf
Temperature	-92.0
Number of Scans	2
Receiver Gain	46
Relaxation Delay	1.0000
Nucleus	(H1, C13)
Spectrometer Frequency	$(499.76,125.68)$
Spectral Width	$(4191.3,23873.5)$
Acquisition Time	$(0.15,0.02)$
Acquired Size	$(628,400)$
Pulse Width	$(10.75,7.90)$
Spectral Size	$(2048,1024)$

Figure 27 Multiplicity-edited ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C} \quad \mathrm{HSQCAD}$ spectrum of (1-lithio-1,3-dihydrobenzo[c]thiophen-1-yl)triphenylsilane 9 with assignments displaying regions of interest. Red contours indicate $\mathrm{CH} / \mathrm{CH}_{3}$, blue contours are CH_{2}.

Figure 28. Full ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HMBC spectrum of (1-lithio-1,3-dihydrobenzo[c]thiophene-1yl)triphenylsilane 9.

Parameter	Value			
Experiment	HMBC	,	gHMBCAD	
:---	:---			
Pulse Sequence	thf			
Solvent	-92.0			
Temperature	2			
Number of Scans	46			
Receiver Gain	1.0000			
Relaxation Delay	(H1, C13)			
Nucleus	$(4191.3,30154.5)$			
Spectrometer Frequency	$(499.76,125.68)$			
Spectral Width	$(0.30,0.03)$			
Acquisition Time	$(1257,800)$			
Acquired Size	$(10.75,7.90)$			
Pulse Width	$(2048,2048)$			
Spectral Size				

Figure $29 \quad{ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HMBC spectrum of (1-lithio-1,3-dihydrobenzo[c]thiophene-1yl)triphenylsilane 9 with assignment showing only regions of interest.

Parameter	Value
Experiment	HMBC

Figure 30. ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C} \quad \mathrm{HMBC}$ spectrum of (1-lithio-1,3-dihydrobenzo[c]thiophen-1yl)triphenylsilane $\mathbf{9}$ with assignments $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ showing only regions of interest.

Figure $31{ }^{6} \mathrm{Li}$ NMR spectrum of (1-lithio-1,3-dihydrobenzo[c]thiophen-1-yl)triphenylsilane 9 in THFd_{8} with aging for 12 hr at $-78^{\circ} \mathrm{C}: \delta-0.47$.

Figure 32. ${ }^{1} \mathrm{H}$ NMR spectra of (1-lithio-1,3-dihydrobenzo[c]thiophen-1-yl)-triphenylsilane 9 in THF- d_{8} with aging for 12 hr at $-78{ }^{\circ} \mathrm{C}$ and recorded at $-80^{\circ} \mathrm{C}$: (A) no TMEDA; (B) 4.0 equiv TMEDA.

Figure 33. ${ }^{6} \mathrm{Li}$ NMR spectra of (1-lithio-1,3-dihydrobenzo[c]thiophen-1-yl)triphenylsilane 9 with $0.40 \mathrm{M} n$-BuLi in THF- d_{8} with aging for 12 hr at $-78{ }^{\circ} \mathrm{C}$ and recorded at $-80^{\circ} \mathrm{C}$: (A) no TMEDA; (B) 4.0 equiv TMEDA.

Figure 34. Plot of concentration versus time for silylation of (1-lithio-1,3- dihydrobenzo[c]-thiophen-1-yl)triphenylsilane $\mathbf{9}$ with 3.0 equiv triphenylsilylchloride in THF- d_{8} monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy at $-78{ }^{\circ} \mathrm{C}$.

Figure 35. ${ }^{1} \mathrm{H}$ NMR spectrum of (1,3-dihydrobenzo[c]thiophen-1-yl)triphenylsilane 3 and 3.0 equiv triphenylsilylchloride with varying n - BuLi in THF- d_{8} recorded at $-80^{\circ} \mathrm{C}$. (A) no n - BuLi ; (B) 0.50 equiv n-BuLi; (C) 1.0 equiv n-BuLi; (D) 2.0 equiv n-BuLi. *Unknown impurity.

