Lithium Enolates Derived from Pyroglutaminol: Mechanism and Stereoselectivity of an Azaaldol Addition

Michael J. Houghton,^Y Christopher J. Huck,^Y Stephen W. Wright,[‡]* and David B. Collum^Y*

> ^vDepartment of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853–1301 E–mail: dbc6@cornell.edu

[‡] Worldwide Medicinal Chemistry, Pfizer Global Research and Development, 445 Eastern Point Road, Groton, CT 06340

Part 1: NMR Characterization

Figure 1.	¹ H NMR of 8 in THF- d_8 .	S8
Figure 2.	COSY of 8 in THF- d_8 .	S9
Figure 3.	HSQC of 8 in THF- d_8 .	S10
Figure 4.	HMBC of 8 in THF- d_8 .	S11
Figure 5.	ROESY of 8 in THF- d_8 .	S12
Figure 6.	¹ H NMR of 10 in THF- d_8 .	S13
Figure 7.	COSY of 10 in THF- d_8 .	S14
Figure 8.	HSQC of 10 in THF- d_8 .	S15
Figure 9.	HMBC of 10 in THF- d_8 .	S16
Figure 10.	ROESY of 10 in THF- d_8 .	S17
Figure 11.	¹ H NMR of 6 in $CDCl_3$.	S18

Figure 12.	COSY of 6 in $CDCl_3$.	S19
Figure 13.	HSQC of 6 in $CDCl_3$.	S20
Figure 14.	HMBC of 6 in $CDCl_3$.	S21
Figure 15.	NOESY of 6 in $CDCl_3$.	S22
Figure 16.	¹⁹ F NMR of 6 in CDCl ₃ .	S23
Figure 17.	¹ H NMR of 4 in $CDCl_3$.	S24
Figure 18.	¹³ C NMR of 4 in CDCl ₃ .	S25
Figure 19.	¹⁹ F NMR of 4 in $CDCl_3$.	S26
Figure 20.	¹ H NMR of 7 in $CDCl_3$.	S27
Figure 21.	1 H- 13 C HSQC of 7 in CDCl ₃ .	S28
Figure 22.	¹ H- ¹³ C HMBC of 7 in $CDCl_3$.	S29
Figure 23.	¹⁹ F NMR of 7 in CDCl ₃ .	S30
Figure 24.	¹ H NMR of 15 in $CDCl_3$.	S31
Figure 25.	¹³ C NMR of 15 in CDCl ₃ .	S32
Figure 26.	¹ H- ¹ H NOESY of 15 in $CDCl_3$.	S33
Figure 27.	¹⁹ F NMR of 15 in CDCl ₃ .	S34
Figure 28.	¹ H NMR of 16 in $CDCl_3$.	S35
Figure 29.	¹³ C NMR of 16 in CDCl ₃ .	S36
Figure 30.	¹⁹ F NMR of 16 in CDCl ₃ .	S37

Part 2: Rapid–inject Fluorine NMR Kinetics

Figure 31.	Representative ¹⁹ F NMR spectra of the condensation of lithium enolate 3 with imine 2 at -70 °C.	S38
Figure 32.	Representative plot of the decay of imine 2 during the condensation reaction with lithium enolate 3 at -70 °C.	S39

Figure 33.	Plot of k_{obsd} vs [3] (M) at -70 °C for the condensation of lithium enolate 3 with imine 2 .	S40
Figure 34.	Plot of k_{obsd} vs [THF] (M) at -70 °C for the condensation of lithium enolate 3 with imine 2 .	S41
Figure 35.	Plot of k_{obsd} vs [2] (M) at -70 °C for the condensation of lithium enolate 3 with imine 2 .	S42
Figure 36.	Plot of k_6/k_4 vs [THF] (M) at -78 °C for the condensation of lithium enolate 3 with imine 2 measured by the crude product ratios determined by ¹⁹ F NMR.	S43
Figure 37.	Plot of k_6/k_4 vs [3] (M) at -78 °C for the condensation of lithium enolate 3 with imine 2 measured by the crude product ratios determined by ¹⁹ F NMR.	S44

Part 3: Selectivity Studies

Figure 38.	Crude ¹⁹ F spectra from the condensation of lithium enolate 3 (0.10 M) with imine 2 (0.13 M) with varying temperature.	S45
Figure 39.	Crude ¹⁹ F spectra from the condensation of lithium enolate 3 (0.10 M) with imine 2 (0.13 M) at -78 °C with varying [THF].	S46
Figure 40.	Crude ¹⁹ F spectra from the condensation of lithium enolate 3 (0.10 M) with imine 2 (0.13 M) at -55 °C with varying [THF].	S47
Figure 41.	Crude ¹⁹ F spectra from the condensation of lithium enolate 3 (0.10 M) with imine 2 (0.13 M) at -78 °C in 12.3 M THF with quenching at different % conversions throughout the reaction	S48
Figure 42.	Crude ¹⁹ F spectra from the condensation of lithium enolate 3 (0.10 M) with imine 2 (0.13 M) in 12.3 M THF varying temperature.	S50
Figure 43.	¹⁹ F NMR spectroscopy following the 4 : 6 product ratio in <i>situ</i> from the condensation of lithium enolate 3 (0.10 M) with imine 2 (0.13 M).	S5 1
Figure 44.	Crude ¹⁹ F spectrum from the condensation of lithium enolate 3 (0.10 M) with imine 2 (0.13 M) at $-55 \degree C \ 0.15$ M THF/toluene.	S52

Figure 45.	Crude ¹⁹ F spectrum from the condensation of lithium enolate 3 (0.10 M) with imine 2 (0.13 M) at -78 °C in 12.3 M THF warmed to varying temperatures before quenching.	S 53
Figure 46.	Crude ¹⁹ F spectra from the condensation of lithium enolate 3 (0.10 M) with imine 2 (0.13 M) at -78 °C with varying [LDA].	S54
Figure 47.	Crude ¹⁹ F spectra from the condensation of lithium enolate 3 (0.10 M) with imine 2 (0.13 M) at -78 °C with 0.40 M LDA and various quenching conditions.	S55
Figure 48.	Crude ¹⁹ F spectra from the condensation of lithium enolate 3b (0.10 M) with imine 2 (0.13 M) at -55 °C with 12.3 M THF for the top spectrum and 1.0 M THF for the bottom spectrum.	
Part 4: Solut	ion Structural Studies	
Figure 49.	⁶ Li NMR spectra for a 0.10 M solution of [⁶ Li, ¹⁵ N] 8 in 12.3 M THF with 0.11 M [⁶ Li]LDA at –80 °C.	S56
Figure 50.	¹⁵ N NMR spectra for a 0.10 M solution of [⁶ Li, ¹⁵ N] 8 in 12.3 M THF with 0.11 M [⁶ Li]LDA at -80 °C.	S57
Figure 51.	¹⁹ F NMR spectra for 0.10 M solutions of: (a) [⁶ Li] 10 in 12.3 M THF with 0.11 M [⁶ Li]LDA at -80 °C; (b) [⁶ Li] 8 in 12.3 M THF with 0.11 M [⁶ Li]LDA at -80 °C.	S58
Figure 52.	⁶ Li NMR spectra for 0.10 M total concentration solutions of [⁶ Li]. 8 and [⁶ Li] 10 in 12.3 M THF with 0.11 M [⁶ Li]LDA at –80 °C.	S59
Figure 53.	⁶ Li NMR spectra for a 0.10 M solution of [⁶ Li, ¹⁵ N] 13 in 12.3 M THF with 0.20 M [⁶ Li]LDA at -80 °C: (a) ⁶ Li spectrum; and (b) ⁶ Li{ ¹⁵ N} spectrum.	S60
Figure 54.	¹⁵ N NMR spectra for a 0.10 M solution of [6 Li, 15 N] 13 in 12.3 M THF with 0.20 M [6 Li]LDA at -80 °C.	S61
Figure 55.	⁶ Li NMR spectra for 0.10 M solutions of [⁶ Li] 13 in 12.3 M THF with 0.40 M [⁶ Li]LDA at -80 °C generated from 4 and 6 .	S62
Figure 56.	⁶ Li NMR spectra for a 0.10 M solution of [⁶ Li] 13 in 12.3 M THF with 0.60 M [⁶ Li]LDA recorded at varying temperatures.	S63
Figure 57.	⁶ Li NMR spectra for a 0.10 M solution of [⁶ Li, ¹⁵ N] 13 in 12.3 M	S64

THF with 0.60 M [6 Li]LDA at -120 °C.

Figure 58.	¹⁵ N NMR spectra for a 0.10 M solution of [6 Li, 15 N] 13 in 12.3 M THF with 0.60 M [6 Li]LDA at -120 °C.	S65
Figure 59.	⁶ Li NMR spectra for a 0.10 M solution of [⁶ Li] 13 in 12.3 M THF with 0.60 M [⁶ Li, ¹⁵ N]LDA at -120 °C.	S66
Figure 60.	¹⁵ N NMR spectra for a 0.10 M solution of [⁶ Li] 13 in 12.3 M THF with 0.60 M [⁶ Li, ¹⁵ N]LDA at -120 °C.	S67
Part 5: Com	putational Studies	
Table 1.	Optimized geometries at B3LYP level of theory with $6-31G(d)$ basis set for the azaaldol reagents and products at -70 °C.	S70
Table 2.	Optimized geometries at B3LYP level of theory with $6-31G(d)$ basis set for the azaaldol transition states at -70 °C.	S79

Part 6: Full References

S86

Part 1: NMR Spectroscopic Studies

Chart 1

7

16

17

Figure 1. ¹H NMR of **8** in THF- d_8 .

Figure 2. ¹H-¹H COSY of **8** in THF- d_8 .

Figure 3. 1 H- 13 C HSQC of **8** in THF- d_{8} .

Figure 4. ¹H-¹³C HMBC of **8** in THF- d_8 .

Figure 6. ¹H NMR of 10 in THF- d_8 in a two : one ratio of 10 : 7.

Figure 7. ¹H-¹H COSY of 10 in THF- d_8 in a two : one ratio of 10 : 7.

Figure 8. ¹H-¹³C HSQC of **10** in THF- d_8 in a two : one ratio of **10** : **7**..

Figure 9. ${}^{1}\text{H}{}^{-13}\text{C}$ HMBC of 10 in THF- d_{8} in a two : one ratio of 10 : 7.

Figure 10. ¹H-¹H ROESY of 10 in THF- d_8 in a two : one ratio of 10 : 7.

Figure 11. ¹H NMR of 6 in CDCl₃.

Figure 12. ¹H-¹H COSY of 6 in CDCl₃.

Figure 13. ¹H-¹³C HSQC of 6 in CDCl₃.

Figure 14. ¹H-¹³C HMBC of 6 in CDCl₃.

Figure 15. ¹H-¹H NOESY of 6 in CDCl₃.

Figure 16. ¹⁹F NMR of 6 in CDCl₃.

Figure 17. ¹H NMR of 4 in CDCl₃.

Figure 18. ¹³C NMR of 4 in CDCl₃.

-54.7 -54.8 -54.9 -55.0 -55.1 -55.2 -55.3 -55.4 -55.5 -55.6 -55.7 -55.8 -55.9 -56.0 -56.1 -56.2 -56.3 f1 (ppm)

Figure 19. ¹⁹F NMR of 4 in CDCl₃.

Figure 20. ¹H NMR of 7 in CDCl₃.

Figure 21. ¹H-¹³C HSQC of 7 in CDCl₃.

Figure 22. $^{1}H^{-13}C$ HMBC of 7 in CDCl₃.

-57.80 -57.85 -57.90 -57.95 -58.00 -58.05 -58.10 -58.15 -58.20 -58.25 -58.30 -58.35 -58.40 -58.45 f1 (ppm)

Figure 23. ¹⁹F NMR of 7 in CDCl₃.

Figure 24. ¹H NMR of 15 in CDCl₃.

Figure 25. ¹³C NMR of 15 in CDCl₃.

Figure 26. ¹H-¹H NOESY of 15 in CDCl₃.

Figure 27. ¹⁹F NMR of 15 in CDCl₃.

Figure 28. ¹H NMR of 16 in CDCl₃.

Figure 29. ¹³C NMR of 16 in CDCl₃.

Figure 31. Representative ¹⁹F NMR spectra for the condensation of lithium enolate **3** with imine **2** under pseudo-first-order conditions at -70 °C. * α , α , α -trifluorotoluene standard.

Figure 32. Representative curve fitting for the condensation of lithium enolate 3 with imine 2 under pseudo-first-order conditions observed using 19 F NMR spectroscopy.

Figure 33. Plot of k_{obsd} vs concentration of enolate **3** for the addition of lithium enolate **3** to imine **2** (0.003 M) in 12.3 M THF at -70 °C. The curve depicts an unweighted least-squares fit to $y = k[\mathbf{3}]^n$ [$k = 0.017 \pm 0.001$, $n = 0.57 \pm 0.05$].

[Enolate] (M)	$k_{\rm obsd} \ 1 \ {\rm x} \ 10^{-3} \ ({\rm s}^{-1})$	$k_{\text{obsd}} \ 1 \ \text{x} \ 10^{-3} \ (\text{s}^{-1})$
0.015	1.61	0
0.03	3.94	1.66
0.06	4.07	3.38
0.09	4.62	3.59
0.12	5.00	4.45
0.15	5.87	5.78
0.18	7.04	6.80
0.21	7.08	6.22
0.24	8.55	8.04
0.27	9.01	8.55
0.30	9.91	6.84

Figure 34. Plot of k_{obsd} vs THF concentration (M) in toluene cosolvent for the addition of lithium enolate **3** (0.10 M) to imine **2** (0.005 M) at -70 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = k + k'$ [THF] [$k = (4.1 \pm 0.5) \times 10^{-3}$, $k' = (1.2 \pm 0.6) \times 10^{-4}$].

[THF] (M)	$k_{\text{obsd}} \ 1 \ \text{x} \ 10^{-3} \ (\text{s}^{-1})$	$k_{\text{obsd}} \ 1 \ \text{x} \ 10^{-3} \ (\text{s}^{-1})$
3.0	5.79	3.60
6.0	4.81	4.02
9.0	7.37	3.51
12.3	7.00	3.98

Figure 35. Plot of k_{obsd} vs imine concentration (M) in THF for the addition of lithium enolate **3** (0.20 M) to imine **2** at -70 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = k + k'$ [imine] [$k = (6.2 \pm 0.6) \times 10^{-3}$, $k' = (3.1 \pm 0.6) \times 10^{-2}$].

[Imine] (M)	$k_{\text{obsd}} \ 1 \ \text{x} \ 10^{-3} \ (\text{s}^{-1})$
0.003	5.92
0.006	6.93
0.009	6.03
0.012	6.94
0.015	6.38

Figure 36. Plot of k_6/k_4 vs tetrahydrofuran (THF) concentration (M) as determined by carrying out the addition of lithium enolate **3** (0.10 M) with imine **2** (0.13 M) at -78 °C and monitoring the proportions of **6** and **4** in quenched aliquots with ¹⁹F NMR spectroscopy. The curve depicts an unweighted least-squares fit to $y = k[\text{THF}]^n [k = (6.4 \pm 2.0) \times 10^{-3}, n = 1.09 \pm 0.13]$

[THF] (M)	k_6/k_4
1.0	0.007
2.0	0.013
3.0	0.017
6.0	0.042
9.0	0.077
12.3	0.091

Figure 37. Plot of k_6/k_4 vs enolate concentration (M) as determined by carrying out the addition of lithium enolate **3** with imine **2** in a fixed ratio at -78 °C in 12.3 M THF and monitoring the proportions of **6** and **4** in quenched aliquots with ¹⁹F NMR spectroscopy. The curve depicts an unweighted least-squares fit to $k_6/k_4 = k + k'$ [enolate] [$k = (1.1 \pm 0.1) \times 10^{-1}$].

[Enolate] (M)	k_6/k_4
0.02	0.103
0.07	0.126
0.12	0.107
0.17	0.106
0.20	0.142

Figure 38. Crude ¹⁹F spectra from the condensation of lithium enolate **3** (0.10 M) with imine **2** (0.13 M) in 12.3 M THF conducted at various temperatures.

ratio of 4:6	4			2	[THF] (M)
NIA					0.2
NA	/				0.2
NA					0.5
150 : 1				/	1.0
80:1				٨	2.0
59:1				Λ	3.0
24:1			6		6.0
13 : 1					9.0
11 : 1				(12.3
				· · · · · ·	
ppm	-55.5	-56.0	-56.5	-57.0	-57.5

Figure 39. Crude ¹⁹F spectra from the condensation of lithium enolate **3** (0.10 M) with imine **2** (0.13 M) at -78 °C with varying THF concentration.

ratio of 4:6	4				[THF] (M)
NA				2 	0.2
NA				/	0.5
200 : 1				Λ	1.0
100 : 1				Λ	2.0
73 : 1				Λ	3.0
37:1			6	Λ	6.0
22:1			~	Λ	9.0
14:1				^	12.3
ppm	-55.5	-56.0	-56.5	-57.0	-57.5

Figure 40. Crude ¹⁹F spectra from the condensation of lithium enolate **3** (0.10 M) with imine **2** (0.13 M) at -55 °C with varying THF concentration.

Figure 41. Crude ¹⁹F spectra from the condensation of lithium enolate **3** (0.10 M) with imine **2** (0.13 M) at -78 °C in 12.3 M THF with quenching at different % conversions throughout the reaction.

Figure 42. Crude ¹⁹F spectra from the condensation of lithium enolate **3** (0.10 M) with imine **2** (0.13 M) in 12.3 M THF. The top spectrum (a) shows the product ratio for the reaction conducted at -40 °C and the bottom spectrum (b) shows the product ratio for the reaction conducted at -78 °C and then warmed to -40 °C for 1 hour before quenching.

Figure 43. ¹⁹F NMR spectroscopy following the **4**:**6** product ratio *in situ* from the condensation of lithium enolate **3** (0.10 M) with imine **2** (0.13 M) at -55 °C in 12.3 M THF demonstrating the product ratios do not change during the reaction.

Figure 44. Crude ¹⁹F spectrum from the condensation of lithium enolate 3 (0.10 M) with imine 2 (0.13 M) at -55 °C in 0.15 M THF and run for 4 hours.

Figure 45. Crude ¹⁹F spectrum from the condensation of lithium enolate **3** (0.10 M) with imine **2** (0.13 M) at -78 °C in 12.3 M THF. The spectra show the product distribution for: (a) the reaction quenched without warming; (b) the reaction quenched after warming to 0 °C for 10 minutes; (c) the reaction quenched after being warmed to 25 °C for 30 minutes. * uncharacterized dimerized product lacking aniline fragments.

Figure 46. Crude ¹⁹F spectra from the condensation of lithium enolate **3** (0.10 M) with imine **2** (0.13 M) at -78 °C with varying LDA concentration.

Figure 47. Crude ¹⁹F spectra from the condensation of lithium enolate **3** (0.10 M) with imine **2** (0.13 M) at -78 °C with 0.40 M LDA and various quenching conditions.

Figure 48. Crude ¹⁹F spectra from the condensation of lithium enolate **3b** (0.10 M) with imine **2** (0.13 M) at -55 °C in 12.3 M THF for the top spectrum and 1.0 M THF for the bottom spectrum.

Figure 49. ⁶Li NMR spectra for a 0.10 M solution of $[{}^{6}Li]{}^{15}N8$ in 12.3 M THF with 0.11 M $[{}^{6}Li]LDA$ at -80 °C: (a) ${}^{6}Li$ spectrum; and (b) ${}^{6}Li{}^{15}N$ spectrum.

Figure 50. ¹⁵N NMR spectra for a 0.10 M solution of $[{}^{6}Li]{}^{15}N8$ in 12.3 M THF with 0.11 M $[{}^{6}Li]LDA$ at -80 °C: (a) ${}^{15}N$ spectrum; and (b) ${}^{15}N{}^{6}Li$ spectrum.

Figure 51. ¹⁹F NMR spectra for 0.10 M solutions of: (a) [⁶Li]**10** in 12.3 M THF with 0.11 M [⁶Li]LDA at -80 °C; (b) [⁶Li]**8** in 12.3 M THF with 0.11 M [⁶Li]LDA at -80 °C.

Figure 52. ⁶Li NMR spectra for 0.10 M total concentration solutions of [⁶Li]**8** and [⁶Li]**10** in 12.3 M THF with 0.11 M [⁶Li]LDA at -80 °C.

Figure 53. ⁶Li NMR spectra for a 0.10 M solution of $[{}^{6}Li, {}^{15}N]$ **13** in 12.3 M THF with 0.20 M $[{}^{6}Li]$ LDA at -80 °C: (a) ${}^{6}Li$ spectrum; and (b) ${}^{6}Li \{{}^{15}N\}$ spectrum.

Figure 54. ¹⁵N NMR spectra for a 0.10 M solution of $[{}^{6}\text{Li}, {}^{15}\text{N}]$ **13** in 12.3 M THF with 0.20 M $[{}^{6}\text{Li}]$ LDA at -80 °C: (a) ${}^{15}\text{N}$ spectrum; and (b) ${}^{15}\text{N}\{{}^{6}\text{Li}\}$ spectrum.

Figure 55. ⁶Li NMR spectra for 0.10 M solutions of [6 Li]**13** in 12.3 M THF with 0.40 M [6 Li]LDA at -80 °C generated from: (a) 0.10 M **4**; and (b) 0.10 M **6**.

Figure 56. ⁶Li NMR spectra for a 0.10 M solution of [⁶Li]**13** in 12.3 M THF with 0.60 M [⁶Li]LDA at: (a) -80 °C; (b) -100 °C; (c) -120 °C.

Figure 57. ⁶Li NMR spectra for a 0.10 M solution of $[{}^{6}Li, {}^{15}N]$ **13** in 12.3 M THF with 0.60 M $[{}^{6}Li]$ LDA at -120 °C: (a) ${}^{6}Li$ spectrum; (b) ${}^{6}Li{}^{15}N$ spectrum.

Figure 58. ¹⁵N NMR spectra for a 0.10 M solution of [${}^{6}\text{Li}$, ${}^{15}\text{N}$]**13** in 12.3 M THF with 0.60 M [${}^{6}\text{Li}$]LDA at -120 °C: (a) ${}^{15}\text{N}$ spectrum; (b) single frequency ${}^{15}\text{N}$ { ${}^{6}\text{Li}$ }; (c) single frequency ${}^{15}\text{N}$ { ${}^{6}\text{Li}$?}; (d) ${}^{15}\text{N}$ { ${}^{6}\text{Li}$ }.

Figure 59. ⁶Li NMR spectra for a 0.10 M solution of [⁶Li]**13** in 12.3 M THF with 0.60 M [⁶Li, ¹⁵N]LDA at -120 °C: (a) ⁶Li spectrum; (b) ⁶Li{¹⁵N} spectrum.

Figure 60. ¹⁵N NMR spectra for a 0.10 M solution of [⁶Li]**13** in 12.3 M THF with 0.60 M [⁶Li, ¹⁵N]LDA at -120 °C: (a) ¹⁵N spectrum; (b) single frequency ¹⁵N{⁶Li}; (c) single frequency ¹⁵N{⁶Li}; (d) ¹⁵N{⁶Li}.

Chart 3

2

13a

Me, Me

Ó

THF THF

N-Ph

O

Η

Chart 4

12b

Table 1. Optimized geometries at B3LYP level of theory with 6-31G(d) basis set for the azaaldol products and reagents at -70 °C with free energies (Hartrees) and Cartesian coordinates (X, Y, Z) (Note: G_{MP2} includes single point MP2 corrections to B3LYP/6-31G(d) optimized structures).

	CF ₃	N					$2 \\ G = -893.$ $G_{\text{MP2}} = -892.$	785925 1.190811
Atom	Х	Y	Ζ		Atom	Х	Y	Ζ
0.0000	0000	0.00000000	0.00000000	С	6.35712	2100	0.31744800 -	0.80235900
-0.1211	7400	1.49870900	-0.13407600	С	5.04420	0100	0.78421800 -	0.83162900
-1.3970	2900	2.06291200	-0.19897200	Н	4.2789	0300	0.22378400	-1.36119800
-1.5552	8600	3.44176000	-0.32617600	Н	6.6028	2200	-0.62145700	-1.29167600
-0.4295	2300	4.26505100	-0.39055900	H	8.3773	0200	0.68499300	-0.13967500
0.8431	9600	3.70878600	-0.32902100	H	7.8084	3000	2.85716500	0.93426000
1.0262	6200	2.32235700	-0.19878600	Н	5.4670	8900	3.70774300	0.84967100
2.3980	6700	1.77974900	-0.13595600	Н	1.7301	1800	4.33097500	-0.37820200
2.5091	0400	0.70115800	-0.00087400	Н	-0.5444	9400	5.34089800	-0.48946400
3.4177	7300	2.55131600	-0.22106800	H	-2.5531	5600	3.86784100	-0.37457800
4.7139	7400	2.00479100	-0.21533500	H	-2.2664	2100	1.41797000	-0.15019500
5.7298	3500	2.75534900	0.39924600	F	-1.20150)500 -	-0.61153000	0.03565900
7.0353	0200	2.27352600	0.44158000	F	0.65729	9700 -	0.35505300	1.13122700
7.3551	0300	1.05259200	-0.15888200	F	0.68948	8800 -	0.54522500 -	1.03338100

C C C C C C C C H N C C C C

S70

Atom X

Τi	
C	-2 00218500 1 85353100 -0 23974500
$\frac{c}{c}$	-2 90997400 0 94368600 0 60036700
C	-4 22001200 1 77200600 0.00030700
C	-/ 19177800 2 72631700 -0 /9196200
C	-4.19177000 2.72031700 -0.49190200
н	-5.51502600 4.50500300 -0.53736900
н	-4 20215400 4 56863700 0 67524100
\cap	-3 65994600 4 82028100 -1 33757300
C	-3.03994000 4.02020100 -1.33737300 2.42214100 4.00150100 1.44865800
C N	-2.42214100 4.09130100 -1.44003000
IN C	-2.70911400 2.79230300 -0.03000000
	-2.09440300 3.95157800 -2.95295400
П	-2.90280900 3.42694900 -3.44962600
H	-1.9/656200 4.94252000 -3.38263800
H	-1.16354200 3.39041000 -3.06074400
C	-1.31864000 4.81258900 -0.67029300
H	-0.38765900 4.24240200 -0.69510100
Н	-1.15423400 5.79705900 -1.11831400
Н	-1.61672800 4.95316600 0.37382200
Η	-4.76463700 2.32906700 -1.33655100
Η	-5.12042700 1.15982000 0.73364600
Η	-4.19438000 2.35640100 1.64065900
Η	-2.43823100 0.83000100 1.58193900
С	-2.96032500 -0.52132600 0.02359100
Η	-3.20624800 -0.45454200 -1.05028100
С	-4.09841900 -1.29897100 0.73044600
С	-5.36961600 -1.58935000 0.18491700
С	-6.31997900 -2.29908300 0.93432900
С	-6.03767700 -2.72055000 2.22934100
С	-4.78764900 -2.44018700 2.78026200
С	-3.84014100 -1.74678600 2.03302600
Η	-2.84809300 -1.56252100 2.43227900
Η	-4.54666000 -2.77051700 3.78759900
Η	-6.78472000 -3.26926300 2.79587300

Y

Ζ

Atom X

Η	-7.28447300 -2.52210500 0.49367100
С	-5.76716700 -1.18742600 -1.21560500
F	-7.06083900 -1.46942300 -1.48481100
F	-5.03666800 -1.80040000 -2.17892600
F	-5.62268500 0.15036000 -1.43856400
Ν	-1.64758100 -1.08368500 0.27657000
С	-1.36771900 -2.33833600 -0.21041800
С	-0.16293000 -2.96747700 0.22914700
С	0.24311000 -4.21023600 -0.23934600
С	-0.52857700 -4.91758700 -1.17152800
С	-1.72322100 -4.33777300 -1.60231400
С	-2.14242200 -3.08946500 -1.14070600
Η	-3.08151600 -2.69425500 -1.50461000
Η	-2.35363600 -4.86831200 -2.31457500
Η	-0.21782100 -5.89504200 -1.52989300
Η	1.16679300 -4.64443800 0.14139500
Η	0.43531500 -2.45391200 0.97955200
Ο	-0.77024100 1.76544200 -0.36355500
Ο	1.14717800 -0.33539900 -1.60254200
С	0.41423700 -0.48254900 -2.84591900
С	1.36557900 -1.20550400 -3.79989900
С	2.16271000 -2.09541700 -2.83392600
С	2.31868700 -1.18493700 -1.61463200
Η	3.20820900 -0.54501000 -1.69280200
Η	2.35172600 -1.73155300 -0.66945600
Η	3.12725400 -2.41860300 -3.23801200
Η	1.57986400 -2.98252700 -2.56505700
Η	2.02753500 -0.48955200 -4.30247200
Η	0.83002200 -1.77360600 -4.56616900
Η	-0.48580900 -1.07703900 -2.65050100
Η	0.12338800 0.51702000 -3.18193800
Ο	1.31044500 0.24214000 1.51166000
С	1.96946300 1.51740800 1.60559300
С	1.32089500 2.19576100 2.80934300

Y

Ζ

Η	2.04416200	0.86576800	4.37415600
Η	0.35175200	2.61318500	2.51502700
Η	1.93301400	3.00126400	3.22654000
Η	3.04818200	1.36611800	1.76038800

Н 1.81120500 2.03619600 0.65770600

- H -0.14038400 -0.49185800 2.76131100 H 1.50527400 -1.06099600 3.12359600
- Н 0.30455200 1.15754100 4.47220200

C 1.13708400 1.01265300 3.77743300 C 0.90755400 -0.18835000 2.83660100

Atom	Х	Y	Ζ
Li 0.00	0000000	0.00000000	0.00000000
N -0.9	8542700	1.64968600	-0.50317800
C -2.4	0227300	1.64107400	-0.80880400
C -2.7	6417800	0.18808500	-1.28781800
C -2.5	5128300	-0.89321200	-0.22127400
N -3.7	6094200	-1.35204500	0.16149500
C -4.8	9129900	-0.74872900	-0.55135000
C -4.2	1846900	-0.07657200	-1.75828300
Н -4.7	4191200	0.82245000	-2.07837400
Н -4.2	0293100	-0.77669100	-2.60306400
C -5.7	7621500	-1.98512200	-0.70956300
Н -6.8	4599900	-1.77100200	-0.76569300
Н -5.4	7827500	-2.57337100	-1.59206400
O -5.5	4548400	-2.71121000	0.50219100
C -4.1	7100400	-2.55805600	0.90627800
C -4.1	5030200	-2.32776500	2.41526400
Н -4.7	1355200	-1.42498700	2.66653000
Н -4.6	0553000	-3.18183000	2.92658000
Н -3.1	1911600	-2.21311400	2.76338900
C -3.3	5955900	-3.78699000	0.48893100
Н -2.3	0371800	-3.65834800	0.73777500
Н -3.7	5066300	-4.66549400	1.01077600
Н -3.4	4930600	-3.95616000	-0.58898600
Н -5.3	9182400	-0.01224800	0.08915100
O -1.4	6015700	-1.29460200	0.21797900
H _20	1783800	-0.00/176100	-2 09303300

тт	2.01700000	0.001/0100	2.07000000
Н	-2.63234500	2.26936900	-1.67681800

At	om	Х	Y	Z
С	-3.2	9656800	2.11056000	0.37617600
С	-4.4	2878700	2.95971900	0.31141600
С	-5.12	2515400	3.30821500	1.48220200
C	-17'	2087500	2 83385000	2 72624500

Ċ	-4.72987500 2.83385900 2.72624500
С	-3.61165100 2.00502900 2.80894800
С	-2.91294500 1.66990000 1.65387800
Η	-2.01668100 1.06429300 1.72152800
Η	-3.27551400 1.63082700 3.77290600
Η	-5.28079900 3.11973400 3.61774800
Η	-5.98050300 3.96986600 1.40931200
С	-5.03416800 3.50576500 -0.96357100
F	-5.90838300 2.61658700 -1.52578100
F	-5.75111100 4.62992300 -0.74074600
F	-4.14143500 3.81615000 -1.92986400
Ċ	-0.34430900 2.86410900 -0.53273000
Ĉ	1.06810900 2.89163900 -0.31383000
Ĉ	1.80627400 4.06765200 -0.34139900
Ċ	1.19110000 5.30097700 -0.58686800
Č	-0.18762400 5.30742900 -0.80330400
Č	-0.94180900 4.13494300 -0.77693400
Н	-2.00749600 4.20923500 -0.95251000
Н	-0.69828700 6.24986800 -0.99614600
Н	1 76777600 6 22142100 -0 60856200
Н	2 88204100 4 02197300 -0 17411100
Н	1 57851700 1 94822900 -0 13034200
$\hat{\mathbf{O}}$	1 12513200 -0 01984700 1 66361400
C	2 51/76300 -0 3006/000 1 71332500
C	2.314/0300 -0.37704700 1./1332300
С	1.10711700 -2.11465400 -1.81922600
---	-------------------------------------
С	0.62782800 -2.05668100 -3.26793700
С	1.40459200 -0.84345500 -3.80513000
С	1.45107600 0.10053100 -2.59348900
Η	0.64739400 0.84211900 -2.59339700
Η	2.40837700 0.62082700 -2.49359600
Η	0.92798700 -0.37642600 -4.67196800
Η	2.41613900 -1.14447100 -4.10161100
Η	-0.45193200 -1.86865200 -3.29912600
Η	0.83078700 -2.98006000 -3.81915000
Η	2.07903900 -2.62381000 -1.74197600
Η	0.39963300 -2.58214900 -1.13061500

С	3.21222500	0.73546800	2.46136000
С	2.14360500	1.13097700	3.49285900
С	0.83615000	0.94443900	2.71033300
Η	0.50775600	1.86837400	2.22525900
Η	0.02256400	0.55052100	3.32868300
Η	2.25888800	2.15495900	3.85924300
Η	2.18015000	0.45588600	4.35607000
Η	3.41240800	1.57030300	1.78076600
Η	4.15789200	0.42323900	2.91500500
Η	2.61091800	-1.35319800	2.25262100
Η	2.85185800	-0.53883100	0.68344700
Ο	1.25296100	-0.73786100	-1.41863400

LI	0.00000000000000000000000000000000000
Ν	-1.24707400 -1.11450200 1.33238800
С	-1.90291600 -1.99775200 0.35582300
С	-0.85171600 -2.92409500 -0.28204500
С	0.46839800 -2.61275200 -0.51558400
Ν	1.20920000 -3.74033100 -1.02219700
С	0.21433200 -4.78661800 -1.36190800
С	-1.10537500 -4.36463100 -0.68391300
Η	-1.31318000 -5.00764300 0.18353300
Η	-1.95462200 -4.49769200 -1.36649300
С	0.23392900 -4.74871500 -2.88919800
Η	-0.05232400 -5.69229100 -3.36434900
Η	-0.42515600 -3.94773400 -3.26387900
Ο	1.59625200 -4.49474000 -3.19766900
С	2.13920900 - 3.61646500 - 2.17976900
С	3.51363200 -4.18008300 -1.81471700
Η	3.40529100 -5.18409500 -1.39319100
Η	4.15024300 - 4.24292000 - 2.70415000
Η	4.00203600 -3.53712500 -1.07490700
С	2.25387300 -2.21158200 -2.77934000
Η	2.69157900 -1.50703700 -2.07158700

Η	2.88033600 -2.27562100 -3.67504200
Η	1.26968700 -1.83454900 -3.07439400
Η	0.56235700 -5.76868100 -1.02025600
Ο	1.12793400 -1.52559400 -0.19151200
Li	0.48745300 -1.92819800 1.57972400
Ο	1.59143200 -2.76974000 2.90258700
С	2.60843100 - 3.69905600 2.42248400
С	2.52370100 - 4.93916700 3.33672300
С	1.19930800 -4.74331400 4.09991200
С	1.10520400 -3.22306300 4.18131100
Η	1.74305300 -2.81917000 4.98054500
Η	0.09260100 -2.83061900 4.30469300
Η	1.19755100 -5.22205400 5.08364800
Η	0.35545000 -5.13748100 3.52255200
Η	3.36579800 -4.95958900 4.03700600
Η	2.54460900 - 5.87064500 2.76448400
Η	2.37798200 - 3.91090600 1.37457600
Η	3.58416500 - 3.20488500 2.47973700
Η	-2.37662600 -1.39155200 -0.43456700
С	-3.03106100 -2.86972700 0.96241800
С	-4.21461000 -3.22417400 0.27881900

С	-5.16552000 -4.05960300 0.88205300
С	-4.96185000 -4.55935000 2.16423500
С	-3.80136900 -4.21024900 2.85465200
С	-2.85968900 -3.37792100 2.25502200
Η	-1.96689400 -3.07902900 2.79555600
Η	-3.63374700 -4.58027800 3.86328600
Η	-5.70672600 -5.20533400 2.62014200
Η	-6.06964000 -4.31399300 0.34122900
С	-4.54810700 -2.68022600 -1.08955200
F	-3.54877400 -2.83057600 -1.99634500
F	-5.63795300 -3.27035900 -1.62824000
F	-4.82176400 -1.34289500 -1.05899600
С	-1.99904500 -0.13718100 1.95210100
С	-3.35074100 0.20084000 1.66488600
С	-4.00068100 1.23812500 2.33825400
С	-3.35833100 1.98801500 3.32302800
С	-2.02910900 1.66969500 3.62994800
С	-1.37172200 0.64010500 2.96957800
Η	-0.34175100 0.40103900 3.23238100
Η	-1.50139200 2.22695600 4.40226700
Η	-3.87545600 2.78904100 3.84369300
Η	-5.03718200 1.45491300 2.08461200
Η	-3.90106300 -0.35309800 0.91518200
Ο	-0.95221700 0.81811900 -1.53412900
С	-1.81992900 1.96558700 -1.32316800

С	-2.61251300 2.120	661800 -2.62222500
С	-2.69980400 0.679	984300 -3.13430900
С	-1.33242200 0.112	730300 -2.74481400
Η	-0.57588500 0.31	861100 -3.51483600
Η	-1.34319800 -0.95	370600 -2.52604900
Η	-2.88221600 0.61	386200 -4.21134800
Η	-3.49530600 0.13	420800 -2.61805000
Η	-2.06422900 2.75	386400 -3.33571600
Η	-3.59215000 2.58	276400 -2.45214400
Η	-2.46806800 1.75	301300 -0.46644400
Η	-1.18856300 2.82	670500 -1.08427200
Ο	1.28754400 1.484	404200 0.44275200
С	2.12007600 1.397	744400 1.62275700
С	3.56277000 1.545	502600 1.13361100
С	3.39172200 2.431	10600 -0.10917600
С	2.08315900 1.898	328200 -0.69414000
Η	2.25389700 1.02	663200 -1.33762400
Η	1.51168900 2.64	511100 -1.25165500
Η	4.22462100 2.354	459200 -0.81452500
Η	3.28409000 3.483	318000 0.18034500
Η	3.96849200 0.56	745100 0.84977400
Η	4.21776300 1.982	206500 1.89337100
Η	1.83161400 2.204	418200 2.30729600
Η	1.93008000 0.432	770400 2.11223600

Atom X

Ζ

Atom X

Y

Ζ

C -0.21199100 -4.40942100 0.81781500 C -1.27241400 -3.97252400 -0.20866900 H -2.24266700 -4.44291100 0.01754100 H -1.00418400 -4.31144200 -1.22253200 C 1.23359800 -4.53840900 0.25738000 H 1.57512300 -5.58318700 0.25510300 H 1.30597400 -4.15074700 -0.76625500

Li 0.0000000 0.0000000 0.0000000 Li -2.08265600 -0.02872300 1.37696000 N -2.00011500 -0.17306500 -0.59170400 C -2.09441900 -1.57670700 -0.97818400 C -1.30120000 -2.47459700 -0.03846600 C -0.62407300 -2.12830500 1.10242200 N -0.10601700 -3.29401900 1.78806300

Y

C -3.58456600 1.98597100 3.14820100
C -4.35643000 1.16733700 4.19956900
C -3.26299800 0.28129100 4.86276000
C -1.96514800 0.69122000 4.14611400
Н -1.27716200 -0.12713600 3.92700100
Н -1.43311800 1.47995100 4.69795500
Н -3.47320300 -0.77865100 4.69537400
Н -3.19099200 0.44041700 5.94278600
Н -5.11734700 0.54632100 3.71961400
H -4.86201000 1.81921200 4.91823500
Н -3.29285400 2.97074100 3.54048000
Н -4.11220700 2.11957200 2.20328800
O 0.81531700 1.73013200 0.57322900
C 0.91394900 2.21207300 1.93235400
C 1.74684900 3.49153000 1.84804200
C 1.33423600 4.04498700 0.47505700
C 1.19595900 2.76911600 -0.36029200
Н 2.14767800 2.48342300 -0.82562300
Н 0.42395400 2.83349400 -1.13155900
Н 2.06071200 4.74458700 0.05080600
Н 0.36908000 4.55997600 0.54674300
Н 2.81776700 3.25523500 1.86033900
Н 1.54124700 4.17994200 2.67353700
Н -0.09680300 2.40789600 2.30992000
Н 1.36575100 1.42149100 2.53683100
O 1.35597600 -0.43352500 -1.40671500
C 1.03645200 -0.73468900 -2.77731100
C 2.38428200 -0.70053100 -3.49112800
C 3.30244600 -1.36277000 -2.44767300
C 2.68466500 -0.93259100 -1.10156400
Н 3.23457500 -0.10997000 -0.63152100
Н 2.60447800 -1.76111900 -0.39062100
H 4.34808100 -1.05481400 -2.54062200
Н 3.26772400 -2.45292500 -2.55070400
Н 2.68590500 0.33728500 -3.67562600
Н 2.37125400 -1.22923200 -4.44916500
Н 0.57803100 -1.73194500 -2.83995800
Н 0.31098200 0.00771300 -3.11766600

0	2 06610700 -3 74251000 1 09912900
$\frac{C}{C}$	1 28054600 -3 34861500 2 26295600
C	1 39991700 -4 44769500 3 33526900
Н	1 00309100 -5 40450400 2 98410000
Н	2 45242700 -4 59364100 3 59902300
Н	0.84425900 -4.16101200 4.23398400
C	1 89222900 -2 05565400 2 79269300
н	1 33010200 -1 68814200 -3 65421300
Н	2 92006300 -2 27090700 3 10498400
Н	1 90320100 -1 27545100 2 03380900
Н	-0.50160600 -5.33439300 1.32462600
$\hat{\mathbf{O}}$	-0.45707200 -0.94639000 1.64711500
н	-1 65150600 -1 71723700 -1 98578500
C	-3 537/9600 -2 1/89/200 -1 18018300
C	-4 65897200 -2 00060000 -0 32829400
C	-5.88229400 -2.61520700 -0.63483700
C	-6.03127400 -3.39898100 -1.77421600
C	-4 93883900 -3 56992300 -2 61978000
C	2 72871400 2 95090600 2 21608400
с и	2 88516800 2 08547000 2 08036700
и П	5 02606200 / 1773/600 -2.56550700
и П	6 98723100 - 3 86584600 - 1 99246800
	6 72522000 2 47814100 0 02217400
Γ	4 65210200 1 16120800 0 01045800
C E	2 54082100 1 28664000 1 71441200
L. L	4 67005600 0 17424800 0 68286400
Г Г	-4.07005000 0.17424000 0.00500400 5 71105000 1 40726400 1 72456100
Γ	-5.71195000 -1.40750400 1.72450100 -2.27727000 0.77420600 1.61705600
C	-2.37727900 0.77420000 $-1.317930002.70685400$ 0.52612100 2.85602400
C	2 12014600 1 58620100 - 2.65092400
C	2 05256000 2 01770500 2 21045100
C	-5.05550000 2.91770500 -5.51045100
C	-2.05510200 5.16055500 -1.99506900
	-2.32770300 2.14037700 -1.12573900
П	-2.02408500 2.37310300 -0.10450500
п	-2.00047500 4.20017500 -1.05550200
П U	-3.31430300 3.72370100 -3.76783000
	-3.4372/000 1.34710100 -4./3312300
П	-2.07400700 -0.47700000 -3.22203000
U	-2.39283200 1.22838300 2.87535800

 $\begin{array}{l} \textbf{14a} \\ G = --2421.556736 \\ G_{_{\text{MF2}}} = --2414.743725 \end{array}$

Atom	Х	Y	Z
Li 0.00	000000	0.00000000	0.00000000
N -1.4	4324100	0.19277100	1.46923300
C -2.1	8089700	-0.88125500	0.77438800
C -1.5	3388500	-2.23435600	1.08620300
C -0.1	9208300	-2.46458200	1.14758200
N 0.1	1935700	-3.80781500	1.57371000
C -1.1	7630100	-4.54229700	1.60670300
C -2.2	8761700	-3.48123600	1.48735000
Н -2.8	0813100	-3.35699400	2.44835900
Н -3.0	5545500	-3.79258500	0.76698900
C -1.0	3611700	-5.49292000	0.42127800
Н -1.6	1838400	-6.41436900	0.51746900
Н -1.3	1768800	-4.98911300	-0.51727000
O 0.34	4118200	-5.83920800	0.43938700
C 1.09	9436800	-4.67526400	0.84459300
C 2.17	7252400	-5.18251600	1.80398600
Н 1.7	0402900	-5.65826300	2.67051800
H 2.8	1292500	-5.91929100	1.30622000
H 2.7	9295200	-4.35070900	2.15396600
C 1.7	1261000	-4.05767600	-0.41520700
Н 2.4	7857500	-3.31973900	-0.16833100
Н 2.1	8596100	-4.86451400	-0.98374700
H 0.9	5041900	-3.59404800	-1.04867000
Н -1.2	5314300	-5.12618400	2.53176600
O 0.7	9058900	-1.58187900	1.00909800
Li 2.19	692600	-1.03441600	-0.12858400
O 4.0	5155600	-1.45195600	0.32841000
C 5.13	3515900	-1.67210200	-0.62040200
C 6.42	2215500	-1.57910000	0.19778200
C 5.92	7395900	-2.13078100	1.56066800
C 4.55	5571100	-1.56910400	1.68469700
H 4.5	5182600	-0.57072100	2.13965000
H 3.8	6895800	-2.21108600	2.24273100
H 6.6	1814400	-1.81902300	2.38805900
H 5.9	5253300	-3.22661400	1.54077700

Atom	Х	Y	Ζ
Н 67	4091800 -0	53442200	0 29196300
H 72	4233000 -2	14708100	-0.25060000
H 5.0	0907000 -2.	66737500	-1.06552400
H 5.0	4747500 -0.	91931800	-1.40664900
N 1.4	6323600 0.3	37241100	-1.29614500
C 1.0	9199000 0.0)2281000 -	-2.67754200
H 1.0	6090200 0.	92271200	-3.31433800
C -0.3	2104100 -0.	58617000	-2.73495000
Н -0.5	9381000 -0.	90828300	-3.74849400
Н -0.3	9372600 -1.	47454800	-2.08936300
Н -1.0	7506400 0.	13959100	-2.40618500
C 2.0	8676000 -0.9	95283400	-3.35060000
H 1.8	0355000 -1.	18317900	-4.38764700
Н 3.0	9977700 -0.	53732500	-3.36156700
Н 2.1	1863900 -1.	90516500	-2.80033300
C 2.0	9508700 1.6	69560700 ·	-1.16659900
Н 2.4	2337800 1.	76823000	-0.11617600
C 1.1	2569100 2.8	88121900 -	-1.39014800
Н 1.6	1928100 3.	84700700	-1.21286500
H 0.7	4300900 2.	89665000	-2.41819800
H 0.2	6240500 2.	81253000	-0.71843200
C 3.3	7307600 1.9	91712700 ·	-2.01036400
H 4.1	1497100 1.	13397900	-1.81073800
H 3.1	5690700 1.	90691600	-3.08536800
H 3.8	3431700 2.	88727300	-1.78125900
L1 0.10	J887700 -0.4	16640200	2.57133900
0 -0.1	4319100 -1.	25354500	4.42953200
C = 0.13	5960800-2.0	07701100	4.85061900
C -1.0	3543000 -3.	07781100	5.71212300
C -2.0	7934800 -1.	95467700 72040000	5.54361300
U 07	0298500 -0. 19196600 0	73949900 21697100	5.25452200
и -0./	0190000 -0.	05524200	1 68038300
н_27	0.020100 0.	82170200	4.00720200
H_27	0000 1 00 -1.	15180700	1 68/01100
11 -2.7	2072000-2.	15169700	T.001771100

Η	-0.73963200 -3.17418000 6.76236300
Η	-1.41703100 -4.04950100 5.38657300
Η	0.30761400 -3.19617200 3.94121700
Η	1.09364200 -2.59777200 5.42809900
Η	-2.13780600 -0.73285700 -0.32122200
С	-3.68886000 -0.92888500 1.11291200
С	-4.68868300 -1.32724800 0.19924200
С	-6.03189200 -1.38662000 0.59299800
С	-6.40775600 -1.05562400 1.89168300
С	-5.43185900 -0.64960700 2.80070400
С	-4.09691000 -0.58815400 2.40667500
Η	-3.33351700 -0.24481200 3.09558300
Η	-5.71039700 -0.37164000 3.81428300
Η	-7.45308300 -1.10396300 2.18327700
Η	-6.78365000 -1.68926800 -0.12667600
С	-4.36897700 -1.65634000 -1.23989600
F	-3.40625400 -2.60489500 -1.36629200
F	-5.44639000 -2.11646900 -1.91407300
F	-3.92372000 -0.57107200 -1.92971300
С	-1.88168800 1.49506800 1.26434200
С	-2.74247300 1.93854300 0.22310100
С	-3.06965200 3.28747400 0.07604000

С	-2.57878200	4.25915700	0.94896200
С	-1.75242700	3.84414700	1.99890500
С	-1.42043600	2.50326600	2.15673400
Η	-0.80760600	2.19064300	3.00008900
Η	-1.37632900	4.57369600	2.71479200
Η	-2.84344100	5.30553000	0.82638200
Η	-3.72729800	3.57845200	-0.74103900
Η	-3.16101100	1.22710800	-0.47872800
Ο	1.67271100	0.83216200	3.16704400
С	2.40384600	0.67390100	4.39146500
С	2.32023700	2.04174300	5.08966400
С	2.11012200	3.03869500	3.91619600
С	2.03798900	2.13488500	2.67138600
Η	3.01519300	2.06443400	2.17274400
Η	1.28416800	2.43719700	1.94449500
Η	2.92265000	3.76634500	3.83238500
Η	1.17797800	3.59664900	4.04070800
Η	3.22290000	2.25430800	5.67054200
Η	1.46962600	2.06951500	5.77753500
Η	1.94228200	-0.14596600	4.94090700
Η	3.44844200	0.41497100	4.15796900

Atom	Х
1100111	

Ν	0.0000000 0.0000000 0.0000000
С	-0.38675900 -0.90044000 -1.08905800
С	0.45091300 -2.18238700 -1.08450500
С	1.71302100 -2.37432600 -0.59450800
Ν	2.06944000 - 3.77908200 - 0.58146100
С	1.00857200 -4.50526200 -1.32647200
С	-0.13106500 -3.49876300 -1.55105400
Η	-1.01690200 -3.78641700 -0.97139600
Η	-0.45547600 -3.48804800 -2.60403900

Atom	Х	Y	Ζ

С	1.75326900 -4.97049200 -2.57335400
Η	1.33839500 -5.87451300 -3.03003300
Η	1.78359000 -4.17076300 -3.33155900
Ο	3.04982000 -5.27829100 -2.08515700
С	3.37250700 -4.34252500 -1.02816800
С	3.99782300 - 5.18293200 0.08917900
Η	3.26839500 -5.91106100 0.45554800
Η	4.87328600 -5.72597400 -0.28444000
Η	4.30524100 -4.54755700 0.92628700

Η	1.62685600 3.22041000 1.41625000
Η	2.79355200 3.87949200 3.83317500
Η	1.41369000 2.77120700 3.78275100
Η	4.30815300 2.07207000 4.27355900
Η	2.86308600 1.15420600 4.69966300
Η	3.25809400 -0.16662700 2.74184000
Η	4.53474100 0.96730500 2.21961400
Li	0.94172200 -1.18310800 1.23872000
Ο	1.35501000 -1.80296500 3.07606100
С	1.95772700 -3.12183400 3.19006900
С	1.25889600 - 3.82298600 4.37150300
С	0.00524800 -2.96359300 4.61660900
С	0.48400900 -1.57436900 4.20532400
Η	1.05438000 - 1.08781900 5.00976600
Η	-0.31287000 -0.90650200 3.87403000
Η	-0.33830400 -2.99752500 5.65485000
Η	-0.81849200 -3.28009300 3.97033600
Η	1.90415900 -3.81817100 5.25711300
Η	1.01721700 - 4.86463000 4.14234300
Η	1.81511900 -3.63110500 2.23266300
Η	3.03344300 - 2.99841000 3.35925600
Η	-0.23540300 -0.42124700 -2.07670800
С	-1.90349800 -1.25451900 -1.10925200
С	-2.68798900 -1.69893600 -0.01741500
C	-4.05502100 -1.96574300 -0.18430900
C	-4.67512200 -1.81948300 -1.42110300
C	-3.91548900 -1.40608400 -2.51150300
C	-2.56012500 -1.13221100 -2.34208300
H	-1.97809000 -0.79898600 -3.19802700
H	-4.3/339300 -1.28/62/00 -3.49015900
H	-5.73537600 -2.03040400 -1.52581200
H	-4.63592900 -2.30127100 0.66680100
C	-2.16113800 -1.90198300 1.38140900
Г Г	-0.92603700 - 2.50019000 1.41775100
Г Г	-2.05091700 -0.76417000 2.10146100
F	-2.95793100 -2.72470300 2.11057600
C	-0.68282200 1.20550300 0.09500900
C	-0.66178400 1.89818100 1.33686300
C	-1.28611400 3.12830100 1.51393300
C	-1.97508100 3.74206000 0.46215300
C	-2.022/8800 3.0/964400 -0./6505300
C	-1.40145600 1.84444200 -0.95119300
П	-1.400000001.0700000000000000000000000000
П	-2.00042900 0.02810/00-1.00114000 0.47000100 4.60017700 0.60070000
П	-2.4/000100 4.0791//00 0.000/9200 1.24075700 2.60659000 2.40179000
П	-1.24975700 3.00058000 2.49178900 0.16076600 1.42261600 2.17110400
П	-0.150/6600 1.42361500 2.1/110400

С	4.37155300 - 3.33841800 - 1.60657600
Η	4.80672600 - 2.70064100 - 0.83581000
Η	5.18252500 - 3.90447000 - 2.07656300
Η	3.90335800 -2.71866000 -2.37493700
Η	0.68126700 -5.38209600 -0.75483500
Ο	2.51265100 -1.50191800 0.01109400
Li	4.04717400 -0.58372700 -0.67300300
0	5.71269700 -0.93238900 0.47251000
Č	7.09268100 -0.76288600 0.04951000
Č	7.94552900 -1.61951500 0.99924100
Ĉ	6.93212200 -2.63339700 1.55522100
Ĉ	5.66750400 -1.78429900 1.63811000
Ĥ	5.66911800 -1.16094300 2.54287700
H	4.72871500 -2.33989900 1.59181300
Н	7 22591300 -3 04733100 2 52452800
Н	6 78832000 -3 46462800 0 85605200
Н	8 35048100 -1 00478500 1 81107900
Н	8 78789500 -2 08995700 0 48431000
Н	7 16237300 -1 09998900 -0 99033400
Н	7 34384200 0 30004200 0 08889500
N	3 52651500 1 08758200 -1 57931400
\hat{C}	3 16381700 1 12024800 -3 00758400
Н	3 88553900 1 73112800 -3 57594400
C	1 77125100 1 72877300 -3 29060300
н	1 56531100 1 78709400 -4 36956300
Н	0 98459200 1 11405800 -2 83641300
H	1.67836000 2.73502700 -2.87369600
C	3 21969400 -0 28519600 -3 63066500
H	2.92367700 -0.27642400 -4.68834400
Н	4 23595300 -0 69641900 -3 57099400
H	2.53662100 -0.96673900 -3.10489800
C	4 38007200 2 21835200 -1 18303500
Н	4 55150600 2 09597900 -0 10054300
C	3 76397300 3 62756400 -1 36504100
н	4 39804300 4 40123000 -0 90901100
Н	3 65962400 3 88112000 -2 42668600
Н	2 76886700 3 68718100 -0 91124300
C	5 78856800 2 22606300 -1 83400400
н	6 27272600 1 24960800 -1 72400800
Н	5 74079400 2 44682500 -2 90693000
Н	6 43695400 2 98747500 -1 37790500
Li	1 97898300 0 63510500 -0 28198100
$\hat{\mathbf{O}}$	2 59512500 1 42731000 1 64722100
C	3 5122000 0 88618000 2 61268400
\tilde{C}	3 33775900 1 73031500 3 89954600
\tilde{C}	2 44639500 2 91524100 3 44994400
\tilde{C}	2 51250500 2 83841800 1 92397700
н	3 40915200 3 33981700 1 53478000
11	0.10/10/00 0.00/01/00 1.001/0000

Table 2. Optimized geometries at B3LYP level of theory with 6-31G(d) basis set for the azaaldol transition states at -70 °C with free energies (Hartrees) and Cartesian coordinates (X, Y, Z) (Note: G_{MF2} includes single point MP2 corrections to B3LYP/6-31G(d) optimized structures).

С	-1.67050300 1.05685000 4.25749800
С	-0.60232900 1.55830600 3.50837400
С	-0.76381400 2.91810800 2.87575200
F	-0.60686100 2.90006900 1.52407500
F	-1.98421200 3.45120300 3.10564600
F	0.14520500 3.80534000 3.34810000
Η	-2.58993900 1.62746600 4.31566700
Η	-2.39563700 -0.53199600 5.51655100
Η	-0.24834800 -1.79701000 5.41730600
Η	1.64477600 -0.91457800 4.09909300
Η	1.55910400 2.23293800 2.03959100

С	5.24273000 1.99366500 3.16430300
Η	5.30670600 1.49603300 4.12858200
Η	7.22147800 2.82057800 3.27896800
Η	7.05704300 3.98695600 1.07826900
Η	4.94964100 3.80872500 -0.23627900
Η	3.05325100 2.50453600 0.60615100
С	1.76678000 1.35445600 2.64347800
С	0.61910100 0.84079700 3.42151900
С	0.71754400 -0.35898900 4.14753700
С	-0.35216100 -0.85347900 4.88707300
С	-1.55679800 -0.15210700 4.94059400

Ato	om	Х	Y	Ζ
С	0.00	000000	0.00000000	0.00000000
С	0.83	318500	1.12558700	0.57563300
С	2.14	043800	0.62502700	0.81184400
Ο	3.17	928100	1.28944800	1.08278000
Li	3.14	993700	2.84134200	2.15034600
Ο	3.09	298200	4.62431000	1.21189500
С	2.98	831600	4.85312800	-0.21129000
С	2.83	251500	6.36657500	-0.36917600
С	3.64	698100	6.89881300	0.82084700
С	3.33	662000	5.86859800	1.91010000
Η	2.43	351100	6.12978900	2.47558100
Η	4.15	747300	5.70613900	2.61427300
Η	3.36	987000	7.91464100	1.11724200
Η	4.71	715100	6.89543000	0.58188600
Η	1.77	905100	6.65410300	-0.27065200
Η	3.19	301000	6.72526700	-1.33770600
Η	3.90	183000	4.48540900	-0.69596000
Η	2.13	744000	4.27762300	-0.58527700
Ο	5.10	818900	2.96057800	2.69183000
С	5.94	718500	3.14465400	1.52822900

Att	m	Х	Y	Z
С	7.28	3781100	2.50058800	1.87932600
С	6.84	1340200	1.32618100	2.76351000
С	5.67	7320300	1.92654000	3.54576400
Η	6.00	0393500	2.40287600	4.47579800
Η	4.88	3806200	1.20631900	3.77937600
Η	7.63	3453400	0.95429400	3.42157900
Η	6.49	9840400	0.49335000	2.14076500
Η	7.9	1260400	3.19845000	2.44973800
Η	7.8_{-}	4623300	2.18941700	0.99121400
Η	5.42	7509400	2.64543400	0.67275400
Η	6.0	1425700	4.21775100	1.32503300
Ν	2.10)909700	-0.78295000	0.84376400
С	0.75	5430500	-1.25943700	0.49641600
С	1.03	3024500	-2.39637600	-0.51604500
Ο	2.4	150600	-2.29619400	-0.84678700
С	3.10)408200	-1.70028900	0.26896200
С	4.34	854500	-1.03188800	-0.30342200
Η	4.02	7325300	-0.28452000	-1.05084900
Η	4.92	2985800	-0.54517500	0.48086500
Η	4.9	5896400	-1.80187800	-0.78558900

Η	3.86646500 -0.32909100 7.20489000
Η	3.77147900 2.16468200 7.21925000
Η	2.62948700 3.37518100 5.37707700
С	0.35531500 1.89707100 2.72851700
С	-0.66505900 2.84291900 2.19864700
С	$-0.27198600 \ 4.08877100 \ 1.67960200$
С	$-1.19881800 \ 4.99625100 \ 1.17972300$
С	$\textbf{-2.56185800} \hspace{0.1cm} \textbf{4.69256400} \hspace{0.1cm} \textbf{1.19586700}$
С	-2.97931900 3.48280700 1.74081300
С	-2.05118800 2.56380100 2.24619700
С	-2.58649700 1.32774100 2.92664500
F	-2.22975000 1.27631700 4.23170700
F	-3.93650500 1.26446500 2.88806000
F	-2.13965200 0.16930000 2.36725400
Η	-4.03600100 3.24822600 1.79216900
Η	-3.29266800 5.39468300 0.80525400
Η	-0.85914900 5.94818100 0.77756900
Η	0.78656700 4.32326700 1.66944300
Η	-0.03831300 0.94575400 3.08005800

С	3.46893500 - 2.78439200 1.29478700
Η	4.11727300 -3.53889000 0.83658400
Η	3.98795500 -2.33671800 2.14854000
Η	2.57077400 - 3.28446500 1.67218300
Η	0.79964000 -3.38103300 -0.08286700
Η	0.45718100 -2.28702200 -1.44237000
Η	0.25466100 -1.65746000 1.38858200
Η	0.75037200 2.12769200 0.17340100
Η	-0.01197800 0.03147500 -1.10320100
Η	-1.04299000 -0.00980600 0.32791000
Ν	1.44584500 2.38883800 3.31532700
С	2.07337700 1.60117100 4.30098800
С	2.68834000 2.28980700 5.36820500
С	3.32155800 1.60448900 6.40259300
С	3.37238500 0.20795400 6.39976900
С	2.77723300 -0.48762500 5.34367600
С	2.13501100 0.19110100 4.30829400
Η	1.71664800 -0.37063500 3.47984500
Η	2.81673000 -1.57453100 5.32048200

12c G = -1882.976722 $G_{MP2} = --1877.778538$

Atom X Y Z

Atom X

Y Ζ

Η	-3.29549500 -4.55660100	6.93165500
Η	-2.23049500 -3.13792700	6.94781800
Η	-5.29768200 -3.14757900	6.96988500
Η	-4.23266900 -2.24673000	8.06114600
Η	-3.66616500 -0.64019200	6.33811400
Η	-5.28204400 -1.08999500	5.74195300
Ο	-4.80781900 -1.33194400	1.94639700
С	-4.88161800 -2.67953500	1.41825400
С	-5.28459400 -2.52414800 -	-0.04801800
С	-6.16884500 -1.26908000 -	-0.00166000
С	-5.44343500 -0.40336900	1.03074800
ТΤ	(1000E200 0 24040000)	1 (0710400

Н -6.10295300 0.24848900 1.60719400

C 0.0000000 0.0000000 0.0000000 C -1.04068100 -0.16756600 1.09109000 C -1.05616400 -1.53716100 1.50013100 O -1.84245000 -2.09492700 2.32034500 Li -3.20062200 -1.05105500 3.14644400 O -3.68544400 -2.04069200 4.82004600 C -4.29208100 -1.47607600 6.00566100 C -4.34363900 -2.61180600 7.03603500 C -3.19063200 -3.52409000 6.58543200 C -3.27344500 -3.40303400 5.06485600 H -4.02747400 -4.08685800 4.65035800 H -2.32937100 -3.55583700 4.53832600

С	-3.34621300 1.79620300 2.96639500
С	-4.59870900 1.86874800 3.61847500
С	-5.59351500 2.74202200 3.19165200
С	-5.38201000 3.57222400 2.08559200
С	-4.15365100 3.51310500 1.42508700
С	-3.14773600 2.64604100 1.85234400
Η	-2.20815600 2.62832400 1.31055600
Η	-3.97046700 4.15172800 0.56382000
Η	-6.15718100 4.25559300 1.75027800
Η	-6.53828100 2.78172600 3.72933000
Η	-4.75627600 1.23672500 4.48847900
С	-1.13595900 1.01619600 3.13496900
С	-0.09192600 0.38770700 3.98029000
С	-0.42986900 -0.66816400 4.84520300
С	0.50977800 -1.25011700 5.69146400
С	1.82451600 -0.78645300 5.71097500
С	2.17690900 0.28464100 4.89409900
С	1.23801700 0.87804100 4.04445700
С	1.67088700 2.10416200 3.28014000
F	0.94675900 3.19777400 3.62382200
F	2.96789500 2.41562900 3.49533300
F	1.53343500 1.96556700 1.93471500
Η	3.18522400 0.67962800 4.92611100
Η	2.56419200 -1.23702900 6.36615300
Η	0.21245000 -2.06882000 6.34264700
Η	-1.45317300 - 1.01808100 4.85483400
Η	-0.81596500 1.90739800 2.60267200

Η	-4.66707600 0.21594100 0.56750700
Η	-7.17636600 -1.52482900 0.34812900
Η	-6.26353800 -0.76748300 -0.96944300
Η	-5.80096500 -3.40751300 -0.43607500
Η	-4.39822000 -2.34586000 -0.66777600
Η	-3.90303500 -3.14331300 1.55986300
Η	-5.64021800 -3.23631700 1.98553400
Ν	-0.05068900 -2.24576400 0.82747600
С	0.78073900 -1.33061200 0.03048700
С	2.09780000 -1.40102900 0.80858200
0	2.15949000 -2.75290500 1.26454700
С	0.81941500 - 3.32017800 1.32334000
С	0.55232800 - 3.76922300 2.75670300
Η	0.59575700 -2.92445000 3.44500300
Η	-0.42561100 -4.24688100 2.84584400
Η	1.33066300 -4.48806300 3.03306200
С	0.79137500 -4.51117800 0.35644200
Η	1.57268300 - 5.22932500 0.62624000
Η	-0.18137300 -5.01310200 0.39661300
Η	0.97052900 -4.17915600 -0.67054200
Η	2.98294400 -1.20597800 0.19357400
Η	2.09058600 -0.69836100 1.65342000
Η	0.93674800 -1.73872800 -0.97630900
Η	-1.99324400 0.33390100 0.96752500
Η	0.66714700 0.85697500 0.14216000
Η	-0.46897800 0.13314600 -0.98613800
Ν	-2.41386600 0.88877800 3.48734000

12a	
G =	2115.306637
G_{MP2}	=2109.450425

Atom	Х	Y	Z

С	0.00000000	0.00000000	0.00000000
С	0.97238700	0.75435100	0.89986000
С	1.95628500	-0.19572100	1.34558600

Ato	om	Х	Y	Ζ
0	3.07	224300	0.02744400	1.91231000
Li	4.46	867800	1.21770800	2.12329500

O 6.10359600 0.12997900 2.56897300

С	5.88192200 -0.95280000 3.50949800
С	6.73483400 -2.12497200 3.01250800
С	7.86671400 -1.41273300 2.25465600
С	7.12381900 -0.23991400 1.61605600
Η	6.64581100 -0.53390300 0.67233000
Η	7.74937000 0.63812700 1.43379200
Η	8.35932700 - 2.04977000 1.51424200
Η	8.62906700 -1.04799100 2.95320500
Η	6.15669200 - 2.75494900 2.32754300
Η	7.09178900 -2.75556800 3.83193900
Η	6.19988700 -0.60998500 4.50217500
Η	4.80989500 -1.16621200 3.52721500
0	4.47673400 2.46238900 3.70208800
С	3.38213100 2.61931200 4.64678200
С	4.04334600 2.96459200 5.98016900
С	5.27781700 3.75837300 5.52673300
С	5.69531600 3.00574900 4.26104100
Η	6.37721600 2.17570700 4.48220900
Η	6.16418800 3.64807800 3.50907600
Η	6.07587100 3.78803600 6.27450000
Η	4.99860300 4.79035800 5.28550400
Η	4.34652000 2.05278200 6.50862800
Η	3.37913000 3.53406400 6.63624200
Η	2.72754400 3.42278300 4.29176200
Η	2.81514800 1.68564700 4.65885500
0	4.94723300 2.27625600 0.49831900
C	5.29304500 3.68448900 0.55717800
C	4.86555800 4.29378200 -0.78478800
C	3.76991400 3.32612400 -1.26016500
C	4.30411400 1.98459800 -0.76805000
Н	5.05149500 1.56746200 -1.45771900
Н	3.53209000 1.23706700 -0.57673200
Н	3.62004800 3.34546000 -2.34365300
Н	2.81853700 3.56060600 -0.77130900
Н	5.70559000 4.30274100 -1.48909600
Н	4.50473100 5.31976800 -0.67230000
Н	4.75047800 4.12362200 1.40040100
Н	6.36955000 3.77177400 0.74308700
N	1.46537000 -1.47471800 1.16690400
C	0.17929100 -1.46761600 0.45192000
C	0.43144700 -2.57065300 -0.57521300
U	1.28302900 - 3.48759300 0.11868100
Ċ	2.17665700 -2.74556300 0.96956300

С	3.52334100 - 2.56478600 0.25580900
Η	3.37445700 - 2.08582400 - 0.71765900
Η	4.19675800 -1.94080200 0.84708600
Η	3.97913600 - 3.54643800 0.09078100
С	2.31425100 - 3.53486400 2.27137200
Η	2.70511800 -4.53759600 2.06813200
Η	2.99607000 -3.01867100 2.95540900
Η	1.33678400 - 3.62547400 2.75215300
Η	-0.46317900 -3.12023800 -0.87926500
Η	0.92659500 -2.16819000 -1.47363500
Η	-0.62352800 -1.77163500 1.13450200
Η	1.35776100 1.71073000 0.55880600
Η	0.26260800 0.10967300 -1.06473300
Η	-1.03094500 0.34090900 0.11372200
Ν	-0.72945700 2.65145500 2.02883200
С	-0.12087500 3.84768700 1.75546100
С	-0.97245300 4.93315500 1.40861700
С	-0.47619000 6.19757200 1.13410900
С	0.90289000 6.45519700 1.18253700
С	1.76308600 5.40758800 1.50878100
С	1.27579000 4.12592700 1.78333200
Η	1.98190500 3.33770800 2.02676100
Η	2.83695200 5.58987000 1.55598000
Η	1.29086600 7.44786700 0.96958200
Η	-1.16675400 6.99935300 0.87969900
Η	-2.03868500 4.72744900 1.38076300
С	-0.01731500 1.61336000 2.46986500
С	-0.76262900 0.47945900 3.11700000
С	0.01954100 -0.38551400 3.90513700
С	-0.50967300 -1.47384700 4.58947900
С	-1.87455900 -1.73540200 4.50340300
С	-2.67845500 -0.89235600 3.74137200
С	-2.15674600 0.21153600 3.04830800
С	-3.18486900 1.06244000 2.31118500
F	-2.91408700 1.24244200 1.00179300
F	-4.40908000 0.45141000 2.33207500
F	-3.37896400 2.26510400 2.87796200
Η	-3.74133400 -1.08806000 3.68497600
Η	-2.31671700 -2.57761100 5.02835000
Η	0.13992800 -2.10796200 5.18783900
Η	1.08581700 -0.18775800 3.96784900
Η	0.92601600 1.79440300 3.00953700

Atom X

 $\begin{array}{l} \textbf{12b} \\ G = -2115.312487 \\ G_{_{\text{MP2}}} = --2109.455260 \end{array}$

Ζ

Ato	om	Х	Y	Ζ
С	0.00	000000	0.00000000	0.00000000
С	0.84	751700	0.89541600	0.88897100
С	1.88	677100	0.06712600	1.42543400
Ο	2.99	552800	0.41846700	1.90966900
Li	4.25	655300	1.76617200	1.91062200
Ο	5.24	968100	1.64656300	0.14744300
С	4.48	690700	1.25280400	-1.01727100
С	5.26	491500	1.81436500	-2.20426400
С	6.71	736300	1.64168700	-1.73123200
С	6.61	343700	1.93715400	-0.22809800
Η	6.81	290400	2.99218500	-0.00461200
Η	7.28	8680700	1.32208400	0.37764300
Η	7.42	2228400	2.30777200	-2.23718800
Η	7.04	892000	0.61047400	-1.89795500
Η	5.02	2871000	2.87531200	-2.34944100
Η	5.04	839000	1.28522500	-3.13684500
Η	4.42	2731800	0.15771400	-1.05695000
Η	3.47	7597700	1.65085400	-0.90410400
Ο	5.54	431800	1.37849300	3.38695400
С	6.47	653100	0.27966800	3.25967500
С	6.56	650100	-0.36594200	4.64608500
С	5.17	756000	-0.06941200	5.23026900
С	4.89	534200	1.32936400	4.69074200
Н	5.33	893400	2.10894700	5.32367100
Н	3.83	3226500	1.53475400	4.55559700
Н	5.14	351600	-0.10559800	6.32234900
Н	4.43	3138300	-0.77134000	4.84471600
Η	7.34	695700	0.11876100	5.24480800
Η	6.79	746900	-1.43408500	4.59035900
Н	6.08	3517900	-0.42134700	2.51239000
H	7.43	326000	0.67831100	2.90484600
0	3.88	280500	3.72309400	2.02412100

С	3.03903400 4.35324500 3.02058600
С	2.88202300 5.78185500 2.51293300
С	4.29001600 6.08381900 1.96938200
С	4.77675100 4.70907400 1.46583000
Η	5.80385700 4.49268800 1.78551500
Η	4.72561700 4.61711200 0.37582200
Н	4.93723700 6.44566900 2.77595400
Η	4.29383000 6.83866600 1.17732800
Н	2.56747600 6.47701100 3.29689500
Н	2.13756900 5.81513500 1.70881700
Η	2.11213100 3.77501700 3.08734600
Η	3.55217600 4.33413100 3.99338600
Ν	1.45825500 -1.26669700 1.41338100
С	0.21393900 -1.39789300 0.62960600
С	0.52084700 -2.59047400 -0.31213500
Ο	1.88279800 -2.94500100 -0.07449800
С	2.24868400 - 2.48816700 1.24497000
С	3.76187000 -2.30861500 1.23923800
Η	4.06452100 -1.57724100 0.48819500
Η	4.12098700 -1.97646100 2.21447100
Η	4.21473100 - 3.27509000 0.99545100
С	1.82247300 -3.53077100 2.29191700
Η	2.31133300 -4.48981100 2.09054700
Η	2.09817000 - 3.19272100 3.29611500
Η	0.73894300 - 3.68636000 2.27556500
Η	-0.14471200 -3.44199400 -0.11058800
Η	0.42629500 -2.32475100 -1.37045100
Η	-0.62689200 -1.64173200 1.28765100
Η	1.15601000 1.87251200 0.53117100
Η	0.35391900 0.00519000 -1.04489400
Η	-1.06173900 0.26028000 -0.02602600
Ν	0.39837800 2.30097800 3.46930200

Y

С	-1.53471100	4.55373500	0.43333200
С	-2.86826600	4.22160600	0.18326200
С	-3.38899400	3.05077200	0.72279900
С	-2.58618800	2.19749400	1.49310200
С	-3.24099400	0.99063500	2.11935700
F	-3.10621200	0.97406100	3.46358200
F	-4.56779200	0.93386700	1.85996400
F	-2.72323100 -	0.18864800	1.66903600
Η	-4.42991000	2.79587600	0.56148700
Η	-3.49980000	4.87309500	-0.41408100
Η	-1.11789800	5.47476800	0.03274500
Η	0.29438000	3.96849000	1.40559600
Η	-0.73315600	0.66500400	2.80306300

С	0.87688100 1.62685200 4.58215200	
С	1.30354900 2.42175100 5.67659400	
С	1.77062000 1.85568800 6.85861200	
С	1.83952000 0.46554700 7.00408200	
С	1.42857900 -0.33839400 5.93590000	
С	0.96053900 0.22016500 4.74829500	
Η	0.67997200 -0.43944500 3.93402800	
Η	1.47284200 -1.42243600 6.02838600	
Η	2.19477800 0.02003100 7.92967500	
Η	2.07190400 2.50397300 7.67944500	
Η	1.21866700 3.50077600 5.57658900	
С	-0.32109700 1.64465100 2.55723800	
С	-1.22789400 2.50502500 1.72759000	
С	-0.73765700 3.70881800 1.19655400	

Part 4: Full References

Gaussian 03, Revision B.04, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.;Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.