Supporting Information

Evans Enolates: Structures and Mechanisms Underlying the Aldol Addition of Oxazolidinone-Derived Boron Enolates

Zirong Zhang and David B. Collum*

Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853–1301

1. IR Spectra

Figure S1.	IR spectra of 0.10 M 1S in $CHCl_3$ at -60 °C.	S8
Figure S2.	IR spectra of sequential addition of 0.10 M 1 , 0.11 M Bu ₂ BOTf, 0.12 M Et ₃ N, and 0.13 M isobutyraldehyde in CHCl ₃ at -60 °C.	S9
Figure S3.	IR spectra of sequential addition of 0.10 M 8 , 0.11 M Bu ₂ BOTf, 0.12 M Et ₃ N, and 0.13 M isobutyraldehyde in CHCl ₃ at -60° .	S10
Figure S4.	IR spectra of sequential addition of 0.10 M 9 , 0.11 M Bu ₂ BOTf, 0.12 M Et ₃ N, and 0.13 M isobutyraldehyde in CHCl ₃ at -60 °C.	S12
Figure S5.	IR spectra of sequential addition of 0.10 M 10 , 0.11 M Bu ₂ BOTf, 0.12 M Et ₃ N, and 0.13 M isobutyraldehyde in CHCl ₃ at -60 °C.	S13
Figure S6.	IR spectra of sequential addition of 0.10 M 7, 0.11 M Bu_2BOTf , 0.12 M Et_3N , and 0.13 M isobutyraldehyde in CHCl ₃ at -60 °C.	S14
Figure S7.	IR spectra of sequential addition of 0.10 M 11 , 0.11 M Bu ₂ BOTf, 0.12 M Et ₃ N, and 0.13 M isobutyraldehyde in CHCl ₃ at -60 °C.	S15
Figure S8.	IR spectra of sequential addition of 0.10 M 13 , 0.11 M Bu_2BOTf , 0.12 M Et_3N , and 0.13 M isobutyraldehyde in CHCl ₃ at -60 °C.	S16
Figure S9.	IR spectra of sequential addition of 0.10 M 12 , 0.11 M Bu ₂ BOTf, 0.12 M Et ₃ N, and 0.13 M isobutyraldehyde in CHCl ₃ at -60 °C.	S17
Figure S10.	IR spectra of 0.10 M 1, 0.11 M Bu_2BOTf , and 0.12 M Et_3N in $CHCl_3$ at rt overnight.	S18

2. MCV Study

Figure S11.	¹ H NMR spectra of 0.10 M 7 and 7a in $CDCl_3$.	S19
Figure S12.	¹ H NMR spectra of 0.10 M 1 and 3 in $CDCl_3$.	S20
Figure S13.	¹ H NMR spectra of 0.10 M 9 and 9a in $CDCl_3$.	S21
Figure S14.	¹ H NMR spectra of 0.10 M total substrate and 0.25 M Bu_2BOTf in $CDCl_3$, mixing 7 and 1.	S22
Figure S15.	¹ H NMR spectra of 0.10 M total substrate and 0.25 M Bu_2BOTf in $CDCl_3$, mixing 1 and 9 .	S23
Figure S16.	¹ H NMR spectra of 0.10 M 1 and 4 in $CDCl_3$.	S24
Figure S17.	¹ H NMR spectra of 0.10 M 10 and 10b in $CDCl_3$.	S25
Figure S18.	¹ H NMR spectra of 0.10 M total substrate, 0.11 M Bu_2BOTf and 0.12 M Et_3N in CDCl ₃ , mixing 1 and 10 .	S26
Figure S19.	¹ H NMR spectra of 0.10 M 2 and 6 in CDCl_3 .	S27
Figure S20.	¹ H NMR spectra of 0.10 M 23 and 24 in $CDCl_3$.	S28
Figure S21.	¹ H NMR spectra of 0.10 M total substrate, 0.11 M Bu_2BOTf , and 0.12 M Et_3N in $CDCl_3$, mixing 2 and 23	S29
Figure S22.	¹³ C NMR spectra of 0.10 M 2 and 6 in $CDCl_3$.	S30
Figure S23.	¹³ C NMR spectra of 0.10 M 23 and 24 in $CDCl_3$.	S 31
Figure S24.	¹³ C NMR spectra of 0.10 M total substrate, 0.11 M Bu_2BOTf , and 0.12 M Et_3N in CDCl ₃ , mixing 2 and 23	S32

3. Complexation

Figure S25.	¹ H NMR spectra of 0.10 M 1 and 0.11 M Bu_2BOTf in $CDCl_3$.	S33
Figure S26.	IR spectra of injecting 3.3 equivalents of Bu_2BOTf over 33 minutes into 0.10 M 1 in CHCl ₃ .	S34
Figure S27.	¹ H NMR spectra of 0.1 M 1 and varying Bu_2BOTf concentrations in $CDCl_3$.	S35

Figure S28.	¹⁹ F NMR spectra of 0.1 M 1 and varying Bu_2BOTf concentrations in $CDCl_3$ at -60 °C.	S36
Figure S29.	Plot of ¹⁹ F NMR chemical shift vs. $[Bu_2BOTf]/[Boron]$ of 0.1 M 1 and varying Bu_2BOTf concentrations in CDCl ₃ at -60 °C	S37
Figure S30.	Variable temperature ¹ H NMR spectra of 0.20 M 1 and 0.15 M Bu_2BOTf in CDCl ₃ .	S38
Figure S31.	¹ H NMR spectra of injecting 0.20 M 1 into 0.20 M 1 - d_2 and 0.15 M Bu ₂ BOTf in CDCl ₃ at -40 °C.	S39
Figure S32.	¹³ C NMR spectra of 0.20 M 1 and 0.20 M Bu_2BOTf in $CDCl_3$.	S40
4. Enolization	n	

Figure S33. ¹³C NMR spectra of 0.20 M **4** in $CDCl_3$.

Figure S34.	Variable temperature ¹	³ C NMR spectra of	0.20 M 4 in CDCl ₃ .	S42
0	1	1	5	

5. Tandem Complexation-Enolization

Figure S35.	¹ H NMR spectra of borane-amine complex varying Bu_2BOTf and Et_3N concentrations in CDCl ₃ recorded at -60 °C.	S43
Figure S36.	Plot of 1 enolization observed rates vs substrate concentrations in CHCl ₃ at 0 °C, pre-mixing Bu_2BOTf and Et_3N .	S44
Figure S37.	Plot of 1 enolization observed rates vs complex concentrations in CHCl ₃ at 0 °C, pre-mixing Bu_2BOTf and Et_3N .	S45
Figure S38.	Plot of 1 enolization observed rates vs free amine concentrations in $CHCl_3$ at 0 °C, pre-mixing Bu_2BOTf and Et_3N .	S46
Figure S39.	Kinetic isotope effect of 1 enolization in $CHCl_3$ at 0 °C, pre-mixing Bu_2BOTf and Et_3N .	S47
Figure S40.	¹ H NMR spectra of post rate limiting kinetic isotope effect of 1 enolization in $CDCl_3$, pre-mixing Bu_2BOTf and Et_3N .	S48
Figure S41.	¹ H NMR spectra of injecting 0.10 M 10 into pre-mixed 0.10 M 1, 0.050 M Bu_2BOTf , and 0.10 M Et_3N in $CDCl_3$.	S49

S41

Figure S42.	¹ H NMR spectra of injecting 0.10 M 1 and 0.050 M Bu_2BOTf into pre-mixed 0.10 M Et_3N and 0.10 M 10 in CDCl ₃ .	S50
Figure S43.	¹ H NMR spectra of injecting 0.10 M $1-d_2$ and 0.050 M Bu ₂ BOTf into pre-mixed 0.10 M Et ₃ N and 0.10 M 1 in CDCl ₃	S51
Figure S44.	¹ H NMR spectra of injecting 0.08 M Et ₃ N into pre-mixed 0.10 M 1 - d_2 , 0.10 M 1 , and 0.20 M Bu ₂ BOTf in CDCl ₃ .	S52
Figure S45.	Observed rate of 1 enolization in CHCl ₃ at 0 °C, pre-mixing Bu_2BOTf and Et_3N .	S53
Figure S46.	Initial rate of 1 enolization in CHCl ₃ at 0 °C, pre-mixing Bu_2BOTf and Et_2NMe .	S54
Figure S47.	Observed rate of 1 enolization in CHCl ₃ at 0 °C, pre-mixing Bu_2BOTf and Me_2NCy .	S55
Figure S48.	Observed rate of 1 enolization in CHCl ₃ at 0 °C, pre-mixing Bu_2BOTf and <i>i</i> -Pr ₂ NEt.	S56
Figure S49.	¹ H NMR spectra of borane-amine complex varying Bu_2BOTf and ¹ Pr_2NEt concentrations in CDCl ₃ recorded at -60 °C.	S57
Figure S50.	Plot of 1 enolization observed rates vs complex concentrations in CHCl ₃ at 0 °C, pre-mixing Bu ₂ BOTf and <i>i</i> -Pr ₂ NEt.	S58
Figure S51.	Plot of 1 enolization observed rates vs complex concentrations in CHCl ₃ at 0 °C, pre-mixing Bu ₂ BOTf and <i>i</i> -Pr ₂ NEt.	S59
Figure S52.	IR spectra of 0.0020 M 1, 0.050 M Bu_2BOTf , and 0.15 M <i>i</i> - Bu_3N in $CHCl_3$ at 0 °C.	S60
Figure S53.	Observed rate of 1 enolization with i -Bu ₃ N in CHCl ₃ at 0 °C, changing addition sequence.	S61
Figure S54.	Kinetic isotope effect of 1 enolization with <i>i</i> -Bu ₃ N in CHCl ₃ at 0 $^{\circ}$ C.	S62
Figure S55.	Plot of 1 enolization with <i>i</i> -Bu ₃ N observed rates vs free amine concentrations in CHCl ₃ at 0 °C.	S63
Figure S56.	¹ H NMR spectra of 0.10 M Bu ₂ BOTf, 0.05 M <i>i</i> -Bu ₃ N, and 0.10 M 20 in CDCl ₃ at 0 °C.	S64

6. Aldol Addition Kinetics

Figure S57.	Plot of observed rates vs 4 concentrations for aldol reaction of 4 and isobutyraldehyde in $CHCl_3$ at -60 °C.	S65
Figure S58.	Plot of observed rates vs isobutyraldehyde concentrations for aldol reaction of 4 and isobutyraldehyde in $CHCl_3$ at -60 °C.	S66
Figure S59.	Plot of aldol reaction observed rates vs THF concentrations in $CHCl_3$ at -60 °C with added THF.	S67

7.¹¹B NMR Spectra

Figure S60.	¹¹ B NMR spectra of 0.10 M Bu ₂ BOTf, 3 , 4 , and borane-amine complex in CHCl ₃ .	S68
Figure S61.	¹¹ B NMR spectra of 0.10 M Bu_2BOTf and 0.10 M total substrate in CHCl ₃ , mixing 1 and 10 .	S69
Figure S62.	¹¹ B NMR spectra of 0.10 M Bu ₂ BOTf, 0.10 M Et ₃ N, and 0.10 M total substrate in CHCl ₃ , mixing 1 and 10 .	S70
Figure S63.	Variable temperature ¹¹ B NMR spectra of 0.10 M 1 , 0.10 M Bu ₂ BOTf, and 0.10 M Et ₃ N in CH ₂ Cl ₂ .	S71

8. ¹⁹F NMR Spectra

Figure S64.	¹⁹ F NMR spectra of 0.10 M Bu ₂ BOTf, 3 , 4 , and borane-amine complex in CHCl ₃ .	S72
Figure S65.	¹⁹ F NMR spectra of 0.10 M Bu ₂ BOTf and 0.10 M total substrate in CHCl ₃ , mixing 1 and 10 .	S73
Figure S66.	¹⁹ F NMR spectra of 0.10 M Bu ₂ BOTf, 0.10 M Et ₃ N, and 0.10 M total substrate in CHCl ₃ , mixing 1 and 10 .	S74

9. 1-*d*₁ Synthesis

10. Computation Study

Table S1.	Geometric coordinates and thermally corrected MP2 energy for 3 .	S76
Table S2.	Geometric coordinates and thermally corrected MP2 energy for 4.	S77
Table S3.	Geometric coordinates and thermally corrected MP2 energy for 6.	S78
Table S4.	Geometric coordinates and thermally corrected MP2 energy for 6 dimer.	S79
Table S5.	Geometric coordinates and thermally corrected MP2 energy for 5a .	S81
Table S6.	Geometric coordinates and thermally corrected MP2 energy for 5b .	S83

11. References

Reference S1.Gaussian 03, Revision B.04.S84

Figure S1. IR spectrum of 0.30 M 1S in CHCl₃ recorded at -60 °C.

Figure S2. IR spectra in CHCl₃ recorded at -60 °C: (a) 0.10 M **1**; (b) 0.10 M **1** and 0.11 M Bu₂BOTf; (c) 0.10 M **1**, 0.11 M Bu₂BOTf, and 0.12 M Et₃N; (d) 0.10 M **1**, 0.11 M Bu₂BOTf, 0.12 M Et₃N, and 0.13 M isobutyraldehyde.

Figure S3. IR spectra in CHCl₃ recorded at -60 °C: (a) 0.10 M **8**; (b) 0.10 M **8** and 0.11 M Bu₂BOTf; (c) 0.10 M **8**, 0.11 M Bu₂BOTf, and 0.12 M Et₃N; (d) 0.10 M **8**, 0.11 M Bu₂BOTf, 0.12 M Et₃N, and 0.13 M isobutyraldehyde; (e) 0.10 M **8**, 0.11 M Bu₂BOTf, 0.12 M Et₃N, and 0.13 M isobutyraldehyde recorded at 0 °C.

Figure S4. IR spectra in CHCl₃ recorded at -60 °C: (a) 0.10 M **9**; (b) 0.10 M **9** and 0.11 M Bu₂BOTf; (c) 0.10 M **9**, 0.11 M Bu₂BOTf, and 0.12 M Et₃N; (d) 0.10 M **9**, 0.11 M Bu₂BOTf, 0.12 M Et₃N, and 0.13 M isobutyraldehyde.

Figure S5. IR spectra in CHCl₃ recorded at -60 °C: (a) 0.10 M **10**; (b) 0.10 M **10** and 0.11 M Bu₂BOTf; (c) 0.10 M **10**, 0.11 M Bu₂BOTf, and 0.12 M Et₃N; (d) 0.10 M **10**, 0.11 M Bu₂BOTf, 0.12 M Et₃N, and 0.13 M isobutyraldehyde.

Figure S6. IR spectra in CHCl₃ recorded at -60 °C: (a) 0.10 M 7; (b) 0.10 M 7 and 0.11 M Bu₂BOTf; (c) 0.10 M 7, 0.11 M Bu₂BOTf, and 0.12 M Et₃N; (d) 0.10 M 7, 0.11 M Bu₂BOTf, 0.12 M Et₃N, and 0.13 M isobutyraldehyde.

Figure S7. IR spectra in CHCl₃ recorded at -60 °C: (a) 0.10 M **11**; (b) 0.10 M **11** and 0.11 M Bu₂BOTf; (c) 0.10 M **11**, 0.11 M Bu₂BOTf, and 0.12 M Et₃N; (d) 0.10 M **11**, 0.11 M Bu₂BOTf, 0.12 M Et₃N, and 0.13 M isobutyraldehyde.

Figure S8. IR spectra in CHCl₃ recorded at -60 °C: (a) 0.10 M **12**; (b) 0.10 M **12** and 0.11 M Bu₂BOTf; (c) 0.10 M **12**, 0.11 M Bu₂BOTf, and 0.12 M Et₃N; (d) 0.10 M **12**, 0.11 M Bu₂BOTf, 0.12 M Et₃N, and 0.13 M isobutyraldehyde.

Figure S9. IR spectra in CHCl₃ recorded at -60 °C: (a) 0.10 M **13**; (b) 0.10 M **13** and 0.11 M Bu₂BOTf; (c) 0.10 M **13**, 0.11 M Bu₂BOTf, and 0.12 M Et₃N; (d) 0.10 M **13**, 0.11 M Bu₂BOTf, 0.12 M Et₃N, and 0.13 M isobutyraldehyde.

Figure S10. IR spectra of 0.10 M **1**, 0.11 M Bu_2BOTf , and 0.12 M Et_3N in $CHCl_3$ at rt, following decomposition of **4**.

Figure S11. ¹H NMR spectra in $CDCl_3$ at rt: (a) 0.10 M 7; (b) 0.10 M 7 and 0.25 M Bu_2BOTf .

Figure S12. ¹H NMR spectra in $CDCl_3$ at rt: (a) 0.10 M **1**; (b) 0.10 M **1** and 0.25 M Bu_2BOTf .

Figure S13. ¹H NMR spectra in $CDCl_3$ at rt: (a) 0.10 M **9**; (b) 0.10 M **9** and 0.25 M Bu_2BOTf .

Figure S14. ¹H NMR spectra in CDCl₃ at rt: (a) 0.10 M **7** and 0.25 M Bu₂BOTf; (b) 0.10 M **1** and 0.25 M Bu₂BOTf; (c) 0.050 M **7**, 0.050 M **1**, and 0.25 M Bu₂BOTf.

Figure S15. ¹H NMR spectra in $CDCl_3$ at rt: (a) 0.10 M 1 and 0.25 M Bu₂BOTf; (b) 0.10 M 9 and 0.25 M Bu₂BOTf; (c) 0.050 M 1, 0.050 M 9, and 0.25 M Bu₂BOTf.

Figure S16. ¹H NMR spectra in $CDCl_3$ at rt: (a) 0.10 M 10; (b) 0.10 M 10, 0.11 M Bu_2BOTf , and 0.12 M Et_3N .

Figure S17. ¹H NMR spectra in $CDCl_3$ at rt: (a) 0.10 M 1; (b) 0.10 M 1, 0.11 M Bu_2BOTf , and 0.12 M Et_3N .

Figure S18. ¹H NMR spectra in CDCl₃ at rt: (a) 0.10 M **1**, 0.11 M Bu₂BOTf, and 0.12 M Et₃N; (b) 0.10 M **10**, 0.11 M Bu₂BOTf, and 0.12 M Et₃N; (c) 0.050 M **1**, 0.050 M **10**, 0.11 M Bu₂BOTf, and 0.12 M Et₃N.

 Bu_2BOTf , and 0.12 M Et_3N .

Figure S20. ¹H NMR spectra in CDCl₃ at rt: (a) 0.10 M 23; (b) 0.10 M 23, 0.11 M Bu_2BOTf , and 0.12 M Et_3N .

Figure S21.¹H NMR spectra in CDCl₃ at rt: (a) 0.10 M **2**, 0.11 M Bu₂BOTf, and 0.12 M Et₃N; (b) 0.10 M **23**, 0.11 M Bu₂BOTf, and 0.12 M Et₃N; (c) 0.050 M **2**, 0.050 M **23**, 0.11 M Bu₂BOTf, and 0.12 M Et₃N.

Figure S22.¹³C NMR spectra in CDCl₃ at rt: (a) 0.10 M 2; (b) 0.10 M 2, 0.11 M Bu_2BOTf , and 0.12 M Et_3N .

Figure S23.¹³C NMR spectra in CDCl₃ at rt: (a) 0.10 M 23; (b) 0.10 M 23, 0.11 M Bu_2BOTf , and 0.12 M Et_3N .

Figure S24.¹³C NMR spectra in CDCl₃ at rt: (a) 0.10 M **2**, 0.11 M Bu₂BOTf, and 0.12 M Et₃N; (b) 0.10 M **23**, 0.11 M Bu₂BOTf, and 0.12 M Et₃N; (c) 0.050 M **2**, 0.050 M **23**, 0.11 M Bu₂BOTf, and 0.12 M Et₃N in CDCl₃.

.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2. f1 (ppm)

Figure S25. ¹H NMR spectra in $CDCl_3$ at rt: (a) 0.10 M **1**; (b) 0.10 M **1** and 0.11 M Bu_2BOTf .

Figure S26. IR spectra of injecting 3.3 equivalents of Bu_2BOTf over 33 minutes into 0.10 M **1** in CHCl₃, following loss of **1**. The curvature indicates soft equilibrium of complexation at room temperature.

Figure S27. ¹H NMR spectra in CDCl₃ recorded at rt: (a) 0.10 M **1**; (b) 0.10 M **1** and 0.05 M Bu₂BOTf; (c) 0.10 M **1** and 0.10 M Bu₂BOTf; (d) 0.10 M **1** and 0.20 M Bu₂BOTf; (e) 0.10 M **1** and 0.30 M Bu₂BOTf.

Figure S28. ¹⁹F NMR spectra in CDCl₃ recorded at -60 °C: (a) 0.10 M **1** and 0.05 M Bu₂BOTf; (b) 0.10 M **1** and 0.10 M Bu₂BOTf; (c) 0.10 M **1** and 0.20 M Bu₂BOTf; (d) 0.10 M **1** and 0.30 M Bu₂BOTf; (e) 0.10 M Bu₂BOTf.

Figure S29. Plot of ¹⁹F NMR chemical shift vs. $[Bu_2BOTf]/[Boron]$ for titrating **1** with Bu_2BOTf in CDCl₃ at -60 °C. y = ax + b, $a = -1.89 \pm 0.03$, $b = 7.15 \pm 0.02$.

Figure S30. ¹H NMR spectra of 0.20 M **1** and 0.15 M Bu₂BOTf in CDCl₃ recorded at: (a) 20 °C; (b) 0 °C; (c) -20 °C; (d) -40 °C; (e) -60 °C.

Figure S31. ¹H NMR spectra in CDCl₃ recorded at -40 °C: (a) 0.20 M **1** and 0.15 M Bu₂BOTf; (b) 0.20 M **1**- d_2 and 0.15 M Bu₂BOTf; (c) injecting 0.20 M **1** into 0.20 M **1**- d_2 and 0.15 M Bu₂BOTf; (d) injecting 0.20 M **1** into 0.20 M **1**- d_2 and 0.15 M Bu₂BOTf after votexing at -40 °C; (e) injecting 0.20 M **1** into 0.20 M **1**- d_2 and 0.15 M Bu₂BOTf after votexing at -40 °C; (a) injecting 0.20 M **1** into 0.20 M **1**- d_2 and 0.15 M Bu₂BOTf after votexing at -40 °C; (e) injecting 0.20 M **1** into 0.20 M **1**- d_2 and 0.15 M Bu₂BOTf after votexing at -40 °C; (e) injecting 0.20 M **1** into 0.20 M **1**- d_2 and 0.15 M Bu₂BOTf after votexing at -40 °C and aging at rt for 10 minutes.

Figure S32. ¹³C NMR spectra in CDCl₃ at rt: (a) 0.20 M Bu₂BOTf; (b) 0.20 M 1; (c) 0.20 M 1 and 0.20 M Bu₂BOTf.

Figure S33. ¹³C NMR spectra in CDCl₃ at rt: (a) 0.20 M Et₃NHOTf; (b) 0.20 M 1, 0.20 M Bu₂BOTf, and 0.20 M Et₃N.

Figure S34. ¹³C NMR spectra of 0.20 M **1**, 0.20 M Bu₂BOTf and 0.20 M Et₂N in CDCl₃ recorded at: (a) 20 °C; (b) 0 °C; (c) -20 °C; (d) -40 °C; (e) -60 °C.

3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 f1 (ppm)

Figure S35. ¹H NMR spectra in CDCl₃ recorded at -60 °C: (a) 0.10 M Et₃N; (b) 0.10 M Bu₂BOTf and 0.30 M Et₃N; (c) 0.10 M Bu₂BOTf and 0.20 M Et₃N; (d) 0.10 M Bu₂BOTf and 0.15 M Et₃N; (e) 0.10 M Bu₂BOTf and 0.10 M Et₃N; (f) 0.10 M Bu₂BOTf and 0.050 M Et₃N; (g) 0.10 M Bu₂BOTf.

Figure S36. Plot of observed rate vs [1] for enolization of [1] by Bu₂BOTf and Et₃N in CHCl₃ at 0 °C. y = ax + b, $a = -0.4 \pm 0.2$, $b = 0.016 \pm 0.002$.

$0^{2} (s^{-1})$
51
55
25
6
)1

Figure S37. Plot of observed rate vs [Bu₂BOTf•Et₃N] for enolization of **1** by Bu₂BOTf and Et₃N in CHCl₃ at 0 °C. $y = ax^b + c$, $a = 72 \pm 3$, $b = 3.3 \pm 0.3$, c set to 0.0

[1] (M)	$[Bu_2BOTf \bullet Et_3N] (M)$	$[Et_3N](M)$	$k_{\rm obsd} \ge 10^3 ({\rm s}^{-1})$
0.0020	0.010	0.10	0.538
0.0020	0.020	0.10	0.498
0.0020	0.030	0.10	1.59
0.0020	0.040	0.10	1.97
0.0020	0.050	0.10	2.79
0.0020	0.060	0.10	4.34
0.0020	0.070	0.10	8.28
0.0020	0.080	0.10	19.4
0.0020	0.090	0.10	23.0
0.0020	0.10	0.10	38.7

Figure S38. Plot of observed rate vs added [Et₃N] for enolization of **1** by Bu₂BOTf and Et₃N in CHCl₃ at 0 °C. $y = ax^b + c$, $a = 0.00015 \pm 0.00003$, $b = -0.88 \pm 0.05$, c set to 0.00

[1] (M)	$[Bu_2BOTf \bullet Et_3N] (M)$	$[Et_3N](M)$	$k_{\rm obsd} \ge 10^3 ({\rm s}^{-1})$
0.0020	0.040	0.020	4.91
0.0020	0.040	0.040	2.41
0.0020	0.040	0.060	1.79
0.0020	0.040	0.080	1.55
0.0020	0.040	0.10	1.53
0.0020	0.040	0.14	1.03
0.0020	0.040	0.16	0.737
0.0020	0.040	0.18	0.487
0.0020	0.040	0.20	0.429

Figure S39. IR spectra in CHCl₃ at 0 °C, following loss of **1**: (a) injecting 0.0030 M **1** into pre-mixed 0.050 M Bu₂BOTf and 0.10 M Et₃N, $k_{obsd} = 0.003 \text{ s}^{-1}$; (b) injecting 0.0030 M **1**- d_2 into pre-mixed 0.050 M Bu₂BOTf and 0.10 M Et₃N, $k_{obsd} = 0.003 \text{ s}^{-1}$.

Figure S40. ¹H NMR spectra in CDCl₃ at rt: (a) 0.10 M **1**, 0.040 M Bu₂BOTf, and 0.040 M Et₃N; (b) 0.10 M **1**- d_2 , 0.040 M Bu₂BOTf, and 0.040 M Et₃N; (c) injecting pre-mixed 0.10 M **1** and 0.10 M **1**- d_2 into pre-mixed 0.040 M Bu₂BOTf and 0.040 M Et₃N. $k_{\rm H}/k_{\rm D} = 2$

Figure S41. ¹H NMR spectra in CDCl₃ at rt: (a) 0.10 M **1**, 0.10 M Bu₂BOTf, and 0.10 M Et₃N; (b) 0.10 M **10**, 0.10 M Bu₂BOTf, and 0.10 M Et₃N; (c) injecting 0.10 M **10** into pre-mixed 0.10 M **1**, 0.050 M Bu₂BOTf, and 0.10 M Et₃N.

Figure S42. ¹H NMR spectra in CDCl₃ at rt: (a) 0.10 M **1**, 0.10 M Bu₂BOTf, and 0.10 M Et₃N; (b) 0.10 M **10**, 0.10 M Bu₂BOTf, and 0.10 M Et₃N; (c) injecting pre-mixed 0.10 M **1** and 0.050 M Bu₂BOTf into pre-mixed 0.10 M Et₃N and 0.10 M **10**.

Figure S43. ¹H NMR spectra in CDCl₃ at rt: (a) 0.10 M **1**, 0.10 M Bu₂BOTf, and 0.10 M Et₃N; (b) 0.10 M **1**- d_2 , 0.10 M Bu₂BOTf, and 0.10 M Et₃N; (c) injecting pre-mixed 0.10 M **1**- d_2 and 0.050 M Bu₂BOTf into pre-mixed 0.10 M Et₃N and 0.10 M **1**. H%/D% = 0.1.

Figure S44. ¹H NMR spectra in CDCl₃ at rt: (a) 0.10 M **1**, 0.10 M Bu₂BOTf, and 0.10 M Et₃N; (b) 0.10 M **1**- d_2 , 0.10 M Bu₂BOTf, and 0.10 M Et₃N; (c) injecting 0.080 M Et₃N into pre-mixed 0.10 M **1**- d_2 , 0.10 M **1**, and 0.20 M Bu₂BOTf. $k_{\rm H}/k_{\rm D}$ = 10.

Figure S45. IR spectra of injecting 0.0040 M **1** into pre-mixed 0.050 M Bu₂BOTf and 0.15 M Et₃N in CHCl₃ recorded at 0 °C, following loss of **1**. $k_{obsd} = 9.9 \times 10^{-4} \text{ s}^{-1}$.

Figure S46. IR spectra of injecting 0.0050 M **1** into pre-mixed 0.050 M Bu₂BOTf and 0.15 M Et₂NMe in CHCl₃ recorded at 0 °C, following loss of **1**. $k_{obsd} = 3.1 \times 10^{-5} \text{ s}^{-1}$, $k_{rel} = 0.03$.

Figure S47. IR spectra of injecting 0.0040 M **1** into pre-mixed 0.050 M Bu₂BOTf and 0.15 M Me₂NCy in CHCl₃ recorded at 0 °C, following growth of **4**. $k_{obsd} = 8.0 \times 10^{-5} \text{ s}^{-1}$, $k_{rel} = 0.8$.

Figure S48. IR spectra of injecting 0.0040 M **1** into pre-mixed 0.050 M Bu₂BOTf and 0.15 M *i*-Pr₂NEt in CHCl₃ recorded at 0 °C, following loss of **1**. $k_{obsd} = 2.8 \times 10^{-2} \text{ s}^{-1}$, $k_{rel} = 30$.

Figure S49. ¹H NMR spectra in CDCl₃ recorded at -60 °C: (a) 0.10 M ⁱPr₂NEt; (b) 0.10 M Bu₂BOTf and 0.30 M ⁱPr₂NEt; (c) 0.10 M Bu₂BOTf and 0.20 M ⁱPr₂NEt; (d) 0.10 M Bu₂BOTf and 0.15 M ⁱPr₂NEt; (e) 0.10 M Bu₂BOTf and 0.10 M ⁱPr₂NEt.

Figure S50. Plot of observed rate vs added [*i*-Pr₂NEt•Bu₂BOTf] for enolization of **1** by Bu₂BOTf and *i*-Pr₂NEt in CHCl₃ at 0 °C. $y = ax^b + c$, $a = 0.99 \pm 0.10$, $b = 1.35 \pm 0.03$, *c* set to 0.00.

[1] (M)	$[i-Pr_2NEt \bullet Bu_2BOTf]$ (M)	$[i-\Pr_2 \text{NEt}]$ (M)	$k_{\rm obsd} \ge 10^2 ({\rm s}^{-1})$
0.002	0.010	0.20	0.229
0.002	0.020	0.20	0.475
0.002	0.030	0.20	0.859
0.002	0.040	0.20	1.33
0.002	0.050	0.20	1.73
0.002	0.060	0.20	2.23

Figure S51. Plot of observed rate vs added [*i*-Pr₂NEt] for enolization of **1** by Bu₂BOTf and *i*-Pr₂NEt in CHCl₃ at 0 °C. $y = ax^b + c$, $a = 0.0030 \pm 0.0006$, $b = -0.85 \pm 0.09$, *c* set to 0.00.

[1] (M)	$[i-\Pr_2 NEt \bullet Bu_2 BOTf] (M)$	$[i-Pr_2NEt]$ (M)	$k_{\rm obsd} {\rm x10^2} ({\rm s^{-1}})$
0.0020	0.040	0.10	2.03
0.0020	0.040	0.20	1.43
0.0020	0.040	0.30	0.716
0.0020	0.040	0.50	0.407
0.0020	0.040	0.70	0.353
0.0020	0.040	0.90	0.426
0.0020	0.040	1.00	0.233

Figure S52. IR spectra of 0.0020 M 1, 0.050 M Bu_2BOTf , and 0.15 M *i*- Bu_3N in CHCl₃ recorded at 0 °C.

Figure S53. IR spectra in CHCl₃ recorded at 0 °C: (a) injecting 0.060 M *i*-Bu₃N into premixed 0.040 M Bu₂BOTf and 0.0020 M **1**, following growth of **4**, $k_{obsd} = 0.009 \text{ s}^{-1}$; (b) injecting 0.0020 M **1** into pre-mixed 0.040 M Bu₂BOTf and 0.060 M *i*-Bu₃N, following growth of **4**, $k_{obsd} = 0.009 \text{ s}^{-1}$.

Figure S54. IR spectra in CHCl₃ recorded at 0 °C: (a) injecting 0.002 M **1** into pre-mixed 0.040 M Bu₂BOTf and 0.080 M *i*-Bu₃N, following growth of **4**, $k_{obsd} = 0.02 \text{ s}^{-1}$; (b) injecting 0.002 M **1**- d_2 into pre-mixed 0.040 M Bu₂BOTf and 0.080 M *i*-Bu₃N, following growth of **4**-d, $k_{obsd} = 0.002 \text{ s}^{-1}$. $k_H/k_D = 10$.

Figure S55. Plot of observed rate vs added [*i*-Bu₃N] for enolization of **1** by Bu₂BOTf and *i*-Bu₃N in CHCl₃ at 0 °C. y = ax / (x + b), $a = 0.046 \pm 0.004$, $b = 0.14 \pm 0.03$. $K_{eq} = [\mathbf{3}][i-Bu_3N] / [\mathbf{1}][i-Bu_3N-Bu_2BOTf] = b / [i-Bu_3N-Bu_2BOTf] = 3.5$

[1] (M)	$[i-Bu_3N-Bu_2BOTf]$ (M)	$[i-Bu_3N](M)$	$k_{\rm obsd} \ge 10^2 ({\rm s}^{-1})$
0.0020	0.040	0.020	0.762
0.0020	0.040	0.040	1.00
0.0020	0.040	0.080	1.56
0.0020	0.040	0.12	2.10
0.0020	0.040	0.16	2.55
0.0020	0.040	0.20	2.47
0.0020	0.040	0.24	2.97
0.0020	0.040	0.28	3.30
0.0020	0.040	0.32	3.29
0.0020	0.040	0.36	3.11

(b) 0.10 M Bu₂BOTf, and 0.10 M **20**; (c) 0.10 M Bu₂BOTf, 0.05 M *i*-Bu₃N, and 0.10 M **20**.

 $\mathbf{K}_{\mathrm{eq}} = [\mathbf{21}][i - \mathbf{Bu}_{3}\mathbf{N}] / [\mathbf{20}][i - \mathbf{Bu}_{3}\mathbf{N} \bullet \mathbf{Bu}_{2}\mathbf{BOTf}] = 4.$

Figure S57. Plot of observed rate vs [4] for aldol reaction of 4 and *i*-PrCHO in CHCl₃ at -60 °C. y = ax + b, $a = -0.1 \pm 0.1$, $b = 0.006 \pm 0.001$.

[4] (M)	[i-PrCHO] (M)	$k_{\rm obsd} \ge 10^3 ({\rm s}^{-1})$
0.0040	0.10	6.46
0.0050	0.10	5.66
0.0060	0.10	4.89
0.0070	0.10	6.94
0.0080	0.10	4.61
0.0090	0.10	6.71
0.010	0.10	4.97

Figure S58. Plot of observed rate vs [*i*-PrCHO] for aldol reaction of **4** and *i*-PrCHO in CHCl₃ at -60 °C. $y = ax^b + c$, $a = 0.067 \pm 0.007$, $b = 1.09 \pm 0.10$, c set to 0.00.

[4] (M)	[i-PrCHO](M)	$k_{\rm obsd} \ge 10^2 ({\rm s}^{-1})$
0.0050	0.050	0.250
0.0050	0.10	0.566
0.0050	0.15	0.742
0.0050	0.20	0.940
0.0050	0.25	1.37
0.0050	0.30	1.45
0.0050	0.35	2.24
0.0050	0.40	2.53
0.0050	0.50	2.91

Figure S59. Plot of observed rate vs added [THF] for aldol reaction of **4** and *i*-PrCHO in CHCl₃ at -60 °C. y = ax + b, $a = -0.0002 \pm 0.0002$, $b = 0.0057 \pm 0.0006$.

[4] (M)	[i-PrCHO](M)	[THF](M)	$k_{\rm obsd} \ge 10^3 ({\rm s}^{-1})$
0.0050	0.10	0	4.9691
0.0050	0.10	1.0	6.2526
0.0050	0.10	2.0	5.5373
0.0050	0.10	5.0	4.2908

Figure S60. ¹¹B NMR spectra in CHCl₃ at rt: (a) 0.10 M Bu₂BOTf; (b) 0.10 M Bu₂BOTf and 0.10 M **1**; (c) 0.10 M Bu₂BOTf, 0.10 M Et₃N, and 0.10 M **1**; (d) 0.10 M Bu₂BOTf and 0.10 M Et₃N.

Figure S61. ¹¹B NMR spectra in $CHCl_3$ at rt: (a) 0.10 M Bu₂BOTf; (b) 0.11 M Bu₂BOTf and 0.10 M **1**; (c) 0.11 M Bu₂BOTf and 0.10 M **10**; (d) 0.11 M Bu₂BOTf, 0.050 M **1** and 0.050 M **10**.

Figure S62. ¹¹B NMR spectra in CHCl₃ at rt: (a) 0.10 M Bu₂BOTf; (b) 0.10 M Bu₂BOTf, 0.10 M Et₃N, and 0.10 M **1**; (c) 0.10 M Bu₂BOTf, 0.10 M Et₃N, and 0.10 M **10**; (d) 0.10 M Bu₂BOTf, 0.10 M Et₃N, 0.050 M **1**, and 0.050 M **10**.

Figure S63. ¹¹B NMR spectra of 0.05 M **1**, 0.05 M **10**, 0.10 M Bu₂BOTf, and 0.10 M Et₃N in CH₂Cl₂ recorded at: (a) 25 °C; (b) 10 °C; (c) -5 °C; (d) -20 °C; (e) -35 °C; (f) -50 °C; (g) -65 °C; (h) -80 °C.

Figure S64. ¹⁹F NMR spectra in CHCl₃ at rt: (a) 0.10 M Bu₂BOTf; (b) 0.10 M Bu₂BOTf and 0.10 M **1**; (c) 0.10 M Bu₂BOTf, 0.10 M Et₃N, and 0.10 M **1**; (d) 0.10 M Bu₂BOTf and 0.10 M Et₃N in CHCl₃.

Figure S65. ¹⁹F NMR spectra in CHCl₃ at rt: (a) 0.10 M Bu₂BOTf; (b) 0.10 M Bu₂BOTf and 0.10 M **1**; (c) 0.10 M Bu₂BOTf and 0.10 M **10**; (d) 0.10 M Bu₂BOTf, 0.050 M **1**, and 0.050 M **10**.

Figure S66. ¹⁹F NMR spectra in CHCl₃ at rt: (a) 0.10 M Bu₂BOTf; (b) 0.10 M Bu₂BOTf, 0.10 M Et₃N, and 0.10 M **1**; (c) 0.10 M Bu₂BOTf, 0.10 M Et₃N, and 0.10 M **10**; (d) 0.10 M Bu₂BOTf, 0.10 M Et₃N, 0.050 M **1**, and 0.050 M **10**.

Figure S67. ¹H NMR spectra in CDCl₃ at rt: (a) 0.10 M **1**; (b) 0.10 M **1** single frequency irradiated at 1.2 ppm; (c) 0.10 M **1**- d_1 single frequency irradiated at 1.2 ppm, **1**- d_1 prepared by enolizing **1** and quenching with MeOD; (c) 0.10 M **1**- d_1 single frequency irradiated at 1.2 ppm, **1**- d_1 prepared by enolizing **1**- d_2 and quenching with MeOH.

Geometries are optimized at the B3LYP level of theory using the 6-31G(d) basis set. Energies are defined as follows: G is the sum of electronic and thermal free energies calculated at the B3LYP level of theory (T = 195 K). GMP2 is derived from an MP2 SP calculation corresponding to the DFT-optimized geometry and includes a thermal correction from the DFT calculation.

Table S1. Optimized geometries at B3LYP level of theory with 6–31G(d) basis set for **3** at –78 °C with free energies (Hartrees) and Cartesian coordinates (X, Y, Z) (Note: GMP2 includes single point MP2 corrections to B3LYP/6–31G(d) optimized structures).

G = -889.064536 $G_{MP2} = -886.2253287$

С	0.00000000 0.00000000 0.00000000	C -0.48732100 -1.41496800 0.10895100
Ν	0.38016100 -2.45702000 -0.11871500	C -0.09693500 -3.75911200 -0.20012400
0	0.82970100 -4.58525800 -0.59899000	C 2.02567500 - 3.83066600 - 0.99729600
Η	2.89179500 -4.38173500 -0.63593600	Н 2.02451800 – 3.79413300 – 2.08831300
С	1.85930100 -2.44914500 -0.32849800	Н 2.12408400 – 1.64921500 – 1.02250300
С	2.63961200 -2.30806200 0.99696700	Н 2.34630000 – 1.37073100 1.48433900
Η	2.34344500 - 3.12190000 1.66979600	C 4.13676100 -2.33617400 0.75902500
С	4.78360800 -1.23720700 0.17527300	C 6.15628700 -1.26957800 -0.06703000
С	6.90027700 -2.40224400 0.27289700	C 6.26759300 – 3.49843700 0.85973800
С	4.89241100 - 3.46555200 1.10074600	Н 4.41038900 - 4.31565800 1.57940900
Η	6.84253200 - 4.37652300 1.13824200	Н 7.97005900 – 2.42528800 0.08856600
Η	6.64654100 -0.40897800 -0.51236400	Н 4.21817600 -0.34119500 -0.07573700
0	-1.25525800 -4.11170100 0.04809200	B -2.38877500 -3.08719400 0.63632600
0	-1.68344800 -1.66079400 0.37005600	C -2.46566600 -3.30024300 2.20259600
Η	-3.16510700 -2.58742400 2.65558100	Н -2.84581100 -4.30358300 2.42963800
Η	-1.50446200 -3.19106700 2.72326000	C -3.64863000 -3.19126100 -0.30729400
Η	-4.41721000 -2.46892900 -0.00724700	Н -3.42381000 -3.01374200 -1.36633400
Η	-4.10161800 -4.18689100 -0.23100800	Н 0.84143800 0.12081500 0.69556400
Η	0.42965100 0.12207400 -1.00530000	C -1.08580800 1.04576800 0.26525000
Η	-1.49450700 0.94735800 1.27407500	Н -0.65211700 2.04380500 0.16583600
Η	-1.90830400 0.95510600 -0.44839600	

Table S2. Optimized geometries at B3LYP level of theory with 6–31G(d) basis set for **4** at –78 °C with free energies (Hartrees) and Cartesian coordinates (X, Y, Z) (Note: GMP2 includes single point MP2 corrections to B3LYP/6–31G(d) optimized structures).

∠Me

 $\begin{array}{l} G = -888.683863 \\ G_{\rm MP2} \! = \! -885.8517903 \end{array}$

С	0.00000000 0.00000000 0.00000000	Н 0.86194600 -0.55053500 0.37634100
Η	0.01345200 0.00976800 -1.09379900	С -0.14084700 1.41226200 0.60276500
Η	0.16546300 2.17521000 -0.11782500	C 0.61447000 1.60492700 1.93914000
Η	0.26852700 2.54210700 2.38764200	Н 0.32010900 0.79881800 2.62191700
С	2.11725700 1.61928000 1.75816500	C 2.75673300 2.73175300 1.19066000
С	4.13729100 2.74040100 0.99477300	C 4.90509700 1.63394600 1.36573800
С	4.28311000 0.52318600 1.93596200	C 2.89998600 0.51779800 2.12923800
Η	2.42426100 -0.34640400 2.58822300	Н 4.87276800 -0.33878400 2.23617300
Η	5.98125200 1.64148400 1.21669500	Н 4.61491500 3.61354900 0.55845700
Η	2.17017300 3.60467200 0.91063600	N -1.59755100 1.45758700 0.78049100
С	-2.11284100 0.21244300 0.76572400	O -1.19809100 -0.70368800 0.42389200
0	-3.27853100 -0.12083700 1.04827000	B -4.22791400 1.09766000 1.72922100
0	-3.71868600 2.32173200 1.04747100	C -2.42492900 2.61558900 0.97813700
С	-1.90445800 3.85546700 0.99084200	Н -0.83758200 3.98140000 0.83625400
С	-2.73962600 5.08872000 1.17369100	Н -2.38226500 5.69353000 2.01823100
Η	-2.70883200 5.73440100 0.28481000	Н -3.78271400 4.82299900 1.36061400
С	-3.88860100 1.03585000 3.29955100	Н -2.83148200 1.22726000 3.53786100
Η	-4.47126200 1.79557300 3.83807900	Н -4.14974800 0.06399300 3.73727800
С	-5.71782500 0.78280600 1.25521300	Н -6.41363400 1.53470600 1.65126700
Η	-5.81954500 0.79223300 0.16234300	Н -6.06358500 -0.19472000 1.61472200

Table S3. Optimized geometries at B3LYP level of theory with 6–31G(d) basis set for 6 at -78 °C with free energies (Hartrees) and Cartesian coordinates (X, Y, Z) (Note: GMP2 includes single point MP2 corrections to B3LYP/6–31G(d) optimized structures).

Bu В Bu

Me

G = -1042.491306 $G_{MP2} = -1039.186804$

С	0.00000000 0.00000000 0.00000000	С	0.06915800 1.46054400 -0.46807000
Ν	1.30876700 2.11094400 -0.28573900	С	1.48947800 3.50414400 -0.48621800
0	2.76919300 3.81322000 -0.10796700	С	3.37166200 2.68777900 0.54621800
Η	4.43538600 2.67399700 0.30535600	Η	3.24322800 2.79442800 1.62972000
С	2.60730800 1.47594800 -0.00349700	Η	2.51008900 0.70362000 0.76152800
С	3.25000700 0.88215300 -1.28220600	Η	2.53739800 0.18232400 -1.73515900
Η	3.39145900 1.69563000 -2.00346100	С	4.56517400 0.18283800 -1.01050900
С	4.58811300 - 1.08195200 - 0.40399900	С	5.79571700 -1.72108100 -0.12515600
С	7.00599700 -1.10450200 -0.45070400	С	6.99823900 0.15083800 -1.05913800
С	5.78660700 0.78768900 -1.33588700	Η	5.78883200 1.76102500 -1.82177100
Η	7.93427300 0.63502300 -1.32404500	Η	7.94746700 -1.60271300 -0.23663900
Η	5.79217300 -2.70284200 0.34080500	Η	3.65076100 -1.57727100 -0.15704000
0	0.71598700 4.31475500 -0.90533900	0	$-0.89593100 \ \ 2.04448300 \ -0.91415100$
Η	0.93252000 -0.50992700 -0.26964100	С	-1.14146400 - 0.74982300 - 0.73502000
Η	-1.14844900 - 0.41600400 - 1.77783400	С	-0.95144200 - 2.26732100 - 0.69811800
Η	-1.76965200 -2.75673300 -1.23595700	Η	-0.00783400 -2.55893100 -1.17412600
Η	-0.95613400 -2.64310200 0.33036800	0	-2.38595500 -0.43657100 -0.11745000
В	-3.48556000 0.06750600 -0.76120500	С	-4.72066700 0.40330500 0.16714500
Η	-4.98767800 1.46539800 0.06868000	Η	-5.61250800 -0.15570900 -0.15020200
Η	-4.54006200 0.19293600 1.22661700	С	$-3.53355400 \ \ 0.29834800 \ -2.32974900$
Η	-4.54326900 0.53583600 -2.68163400	Η	-2.88615500 1.14629400 -2.59231400
Η	-3.17469200 -0.56230600 -2.91073600	С	$-0.15699100 - 0.03881500 \ 1.53578500$
Η	-1.07736300 0.46828300 1.83185300	Η	$-0.20974400 - 1.07224000 \ 1.89180300$
Η	0.68517200 0.44783100 2.03874700		

78

Table S4. Optimized geometries at B3LYP level of theory with 6-31G(d) basis set for **6** dimer at -78 °C with free energies (Hartrees) and Cartesian coordinates (X, Y, Z) (Note: GMP2 includes single point MP2 corrections to B3LYP/6-31G(d) optimized structures).

 $\begin{array}{l} G = -2084.931299 \\ G_{_{MP2}} \! = \! -2078.355277 \end{array}$

С	0.00000000 0.00000000 0.0000000	В	-0.18424700 -1.53080300 0.42597700
0	0.20300400 -2.55330800 -0.70750100	С	1.44412400 - 3.06769100 - 1.23151600
С	2.16192000 -1.96063300 -2.04084600	С	3.41604400 -2.55487100 -2.69367600
Ν	4.51433300 -1.69178400 -2.85493500	С	4.62469000 -0.29120200 -2.40790100
С	5.67602300 0.21093900 -3.40766900	Η	6.33678400 0.97304900 -2.99332900
Η	5.21715700 0.58420400 - 4.33047600	0	6.45859700 -0.95343800 -3.71343100
С	5.71394900 -2.08233600 -3.50734000	0	6.07763900 -3.17729400 -3.82420800
Η	3.67960300 0.23753100 -2.54545400	С	5.09092300 -0.18355200 -0.93517200
Н	4.38104600 -0.73339300 -0.30592500	Η	6.05512700 -0.69749000 -0.84355200
С	5.21251800 1.24955200 -0.45979000	С	6.46857300 1.84986700 -0.29920800
С	6.58066400 3.17967700 0.11207300	С	5.43355700 3.93093100 0.36866200
С	4.17548300 3.34357700 0.21640400	С	4.06729300 2.01484100 -0.19309300
Η	3.08059400 1.56767600 -0.29712200	Η	3.27628100 3.91816100 0.42150200
Η	5.51787300 4.96541500 0.69018200	Η	7.56440600 3.62494600 0.23454400
Η	7.36767800 1.26692000 -0.48747700	0	3.42549400 - 3.69345700 - 3.11764300
Η	2.42377000 -1.15705600 -1.34659500	С	1.28241800 -1.38478700 -3.17170700
Η	0.36268200 -0.95656400 -2.77119300	Η	1.81094300 -0.59857400 -3.72257000
Η	1.02267500 -2.17338200 -3.88527500	Η	1.15765800 - 3.85769400 - 1.92959600
С	2.31277900 - 3.67103800 - 0.12836300	Η	2.68985100 - 2.90461600 0.55627500
Η	1.73740300 - 4.39438800 0.45477600	Η	3.16221900 -4.19327100 -0.57627000
В	-1.20376300 -3.23723400 -0.80804700	0	-1.66668900 - 2.06149700 0.17140800
С	-2.74904200 - 1.83439500 1.09640500	Η	-2.44941700 - 0.93492400 1.63721200
С	-2.93610200 -2.97027500 2.10242500	Η	-3.19886100 -3.91863800 1.62984000
Η	-2.01695600 -3.12171400 2.67172700	Η	-3.73255600 -2.70435200 2.80760400
С	-4.06994200 -1.45516700 0.36073700	Η	-4.74813500 - 1.17743100 1.18218700
С	-4.71754100 -2.59969500 -0.42934000	Η	-5.78404700 -2.42288100 -0.59219600
Η	-4.23977100 -2.74421100 -1.39871200	Η	-4.64174900 -3.53885400 0.12434800
С	-3.81522000 -0.14309500 -0.41059200	0	-3.11886800 0.72710600 0.06171800
Ν	-4.37596800 0.02953000 -1.71030000	С	-5.78156800 -0.14699400 -2.11525500
С	-5.81576900 0.74638600 -3.37548800	Η	-6.37113500 0.29790700 -4.20010900

Η	-6.23390800 1.73580100 -3.15690000	O -4.45066300 0.90278800 -3.77830900
С	-3.61697000 0.61490400 -2.73908900	O -2.42847100 0.78638300 -2.77986300
Η	-5.97144700 -1.18894500 -2.39438300	С -6.80046600 0.29633300 -1.04716600
Η	-6.68127600 -0.32585600 -0.15212900	Н -6.56611800 1.32574800 -0.75180800
С	-8.23045900 0.20356700 -1.54335200	C -8.85433000 -1.04363900 -1.69678400
С	-10.1611100 -1.13621500 -2.17464300	C -10.8698840 0.02097700 -2.50510600
С	-10.2637160 1.26789700 -2.35114700	C -8.95446900 1.35649300 -1.87389600
Η	-8.49406000 2.33359500 -1.74582300	Н -10.8096150 2.17446400 -2.59787100
Η	-11.8892210 -0.04963700 -2.87428500	Н -10.6279940 -2.11144100 -2.28319500
Η	-8.31701800 -1.95175400 -1.43041000	C -1.78316100 -3.10618800 -2.29884400
Η	-1.95920400 -2.06787400 -2.60535900	Н -1.06155100 -3.52920900 -3.01257300
Η	-2.70784500 -3.67618200 -2.45437200	C -1.22600200 -4.70924300 -0.16605200
Η	-0.62205400 -5.39158700 -0.78175000	Н -0.83712300 -4.76842200 0.85736500
Η	-2.23707900 -5.13872000 -0.16198300	C 0.36254000 –1.91099400 1.89117700
Η	1.40220500 -1.58269700 2.02242400	Н -0.20807300 -1.37559600 2.66381300
Η	0.32613400 - 2.97911100 2.13691600	Н -0.45234700 0.25595000 -0.96320100
Η	-0.45040600 0.66988400 0.74353700	Н 1.06752800 0.26656300 -0.03716700

Geometries are optimized at the B3LYP level of theory using the 6-31G(d) basis set. Energies are defined as follows: G is the sum of electronic and thermal free energies calculated at the B3LYP level of theory (T = 195 K). GMP2 is derived from an MP2 SP calculation corresponding to the DFT-optimized geometry and includes a thermal correction from the DFT calculation.

Table S5. Optimized geometries at B3LYP level of theory with 6-31G(d) basis set for **5a** at -78 °C with free energies (Hartrees) and Cartesian coordinates (X, Y, Z) (Note: GMP2 includes single point MP2 corrections to B3LYP/6-31G(d) optimized structures).

 $\begin{array}{l} G = -1121.025373 \\ G_{\rm MP2} = -1117.4267 \end{array}$

С	0.00000000 0.00000000 0.00000000
С	2.17546600 -0.46286400 1.18951100
Η	3.33829400 1.06690800 2.03864900
Η	3.95071000 -1.92044700 2.65555500
Η	4.92933500 -0.51966800 3.15581300
В	2.60353000 - 2.63926500 0.01775100
С	4.40294200 -0.92231500 -0.07898300
Η	6.07452200 -0.70364200 1.19477400
Η	7.79184600 -0.92852600 -0.58748700
Η	6.67308000 -2.31175800 -0.59134000
Η	5.77020300 1.32956600 -1.10551900
Η	5.21516100 1.63234500 0.54450300
С	2.08662900 -2.40680600 -1.49579600
Η	1.05411300 -2.76542300 -1.60615700
С	2.57357000 -4.14894100 0.54648000
Η	1.54307600 -4.52520200 0.59880400
С	1.57111700 1.75054800 0.17819000
С	-0.33053700 1.15906700 -0.95209700
Η	-0.08697300 0.91849400 -1.99287200
С	-0.95249300 -0.11605100 1.21362200
Η	-1.00860300 0.85826100 1.71471000
С	-3.41568900 0.30290100 0.75293000
С	-4.88604800 -1.47182600 0.01951600

Ν	1.35954500 0.39397900 0.40479600
С	3.20126000 -0.00479200 1.97501300
С	3.90854100 -0.87643100 2.97353800
Н	3.38884900 -0.84759400 3.94184900
Ο	1.88995200 -1.74484200 1.06504100
Ο	4.10334500 -2.13400800 0.13753500
С	5.80903000 -0.44301100 0.16292700
С	6.75689700 -1.23646300 -0.77015500
Η	6.52911200 -1.04140700 -1.82472400
С	5.93805500 1.07010400 -0.05289700
Н	6.94609400 1.40530100 0.21189700
Η	3.76054600 -0.32202200 -0.73014500
Η	2.68907200 -2.99314900 -2.20279700
Η	2.10018100 -1.36729900 -1.85380400
Η	3.00484300 -4.25176000 1.55086900
Н	3.12478100 -4.82534200 -0.12022000
Ο	0.51577100 2.24485000 -0.52597000
Η	-1.36904800 1.48694700 -0.88961400
Ο	2.51583100 2.43095800 0.50861700
Η	-0.50238900 -0.82263700 1.91930200
С	-2.33529100 -0.58686700 0.81775500
С	-4.68194900 -0.13384600 0.35738800
С	-3.81821100 -2.37034400 0.08375300

- C-2.55561500 -1.93098700 0.48032000H-1.73114200 -2.63856000 0.53875800H-3.97018000 -3.41614100 -0.17001000H-5.87076700 -1.81449400 -0.28653200H-5.50796800 0.57141100 0.31827200H-3.26726900 1.34536400 1.02719200H0.02936600 0.94941400 0.53278900H-3.26726900 1.34536400 1.02719200
- Н 0.02936600 -0.94941400 -0.53278900

Table S6. Optimized geometries at B3LYP level of theory with 6-31G(d) basis set for **5b** at -78 °C with free energies (Hartrees) and Cartesian coordinates (X, Y, Z) (Note: GMP2 includes single point MP2 corrections to B3LYP/6-31G(d) optimized structures).

 $\begin{array}{l} G = -1121.019933 \\ G_{_{MP2}} = -1117.419194 \end{array}$

В	0.00000000 0.00000000 0.00000000
Η	1.67706900 -0.50908600 -1.41753400
Η	0.77150400 0.89472800 -1.98242900
Η	$-0.68060200\ -2.14045500\ \ 0.16554800$
Η	$-0.67834000 - 1.30832600 \ 1.72741700$
С	-1.65175800 1.78077700 -0.55368100
С	-3.05081000 2.32651200 -0.61795600
С	-3.07363100 3.82556200 -0.93850300
Η	$-2.68319000 \hspace{0.1in} 4.01554700 \hspace{0.1in} -1.94555600$
С	-3.83529800 1.50359500 -1.67134900
Η	$-4.87045100 \ 1.85846100 \ -1.71194500$
0	0.70311000 1.01731400 0.93923400
Ν	1.35750900 3.18746500 0.53038400
0	0.05367200 5.01323800 -0.13126500
С	3.31604600 4.37813200 0.73890200
Η	3.01081700 2.36843200 1.55073700
Η	2.82189900 1.23613500 -0.67708800
С	4.86083400 1.87715800 -0.42790500
С	6.65960400 0.61194800 0.61515500
С	7.18595400 2.34475400 -0.97883100
Η	5.50206500 3.37442000 -1.83964100
Η	8.66772500 1.14288900 0.02766400
Η	4.56721000 0.28586700 0.99864800
Η	3.40978600 4.71274300 1.77842100
Η	-0.87584000 3.82928300 1.72713700
Η	-2.70322900 2.16208500 2.39293400
Η	-1.42360300 2.09918400 3.59674800

С	0.67192100 -0.07062900 -1.46619200
Η	0.08412700 -0.72633900 -2.12313600
С	-0.14606500 -1.39629700 0.77088600
Η	0.84267400 -1.81906400 0.99355500
0	-1.46059400 0.59314900 -0.16816800
Η	-0.86048300 2.30846300 -1.09387100
Η	-3.51910500 2.13787700 0.35629500
Η	-2.46373300 4.40194700 -0.23954000
Η	-4.10218600 4.19963900 -0.90556400
Η	-3.83747700 0.43990200 -1.41843700
Η	-3.39968800 1.62255600 -2.67031400
С	0.38721800 2.28933000 1.06687500
С	1.11320300 4.49961800 0.14844800
0	2.29913400 5.16945500 0.09345500
С	2.80627200 2.92979200 0.63552200
С	3.38213700 2.16705100 -0.57663900
Η	3.19814000 2.75902100 -1.48183600
С	5.29995100 0.87384900 0.44963600
С	7.60820500 1.34879100 -0.09806700
С	5.82323500 2.60499000 -1.14042800
Η	7.91533900 2.91786600 -1.54526300
Η	6.97885500 -0.17260400 1.29623100
Η	4.25984000 4.54252300 0.21801800
С	-0.74654100 2.75419200 1.67710500
С	-1.64413500 1.91140200 2.53611000
Η	-1.51156000 0.84414800 2.35479300

Reference S1. Gaussian 03, Revision B.04, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.;Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.