Table I. Dediazoniation of 1×10^{-4} M 16-ArN₂⁺ in 0.01 M CTABr and 0.01 M HBr with Added BuOH at 40 ± 0.1 °C" Normalized Product Yields of 16-ArOH, 16-ArBr, and 16-ArOBub

[BuOH], M	% yield 16-ArOH	% yield 16-ArBr	% yield 16-ArOBu
0.000	72.9	27.1	· · · ·
0.100	75.6	22.6	1.8
0.219	78.9	18.2	3.0
0.437	83.6	11.8	4.6
0.656	87.0	7.3	5.8
0.765	88.0	5.7	6.3
0.874	88.5	4.7	6.8

"Reaction is initiated by injection of 50 μ L of 0.01 M 16-ArN₂⁺ in MeCN into a 5-mL thermally equilibrated volumetric containing the needed reagents. After >10 half-lives (about 325 min), large aliquots are injected into the HPLC, overfilling the injector loop. "HPLC peak areas, measured % yields, and calibration curves are in Table S1.

microenvironment of the diazonium salt ground state in equilibrium with its surroundings. Thus, product distributions from reaction of 1-ArN₂⁺ in aqueous solution are proportional to stoichiometric nucleophile concentrations, and product distributions from reaction of hydrophobic 16-ArN₂⁺ bound to aggregates are a "snapshot" of interfacial nucleophile composition.

Table I gives a typical reaction protocol for dediazoniation of 16-ArN₂⁺ and the normalized mole percent yields of products.⁹ Product yields are calculated from HPLC peak areas by using calibration curves obtained with independently synthesized products. Figure 2 shows Y_m values as a function of added BuOH calculated from product yields in Table I and the selectivity of 1-ArN₂⁺ in aqueous solution toward Br⁻, S_w^{Br} , and BuOH, S_w^{BuOH} , compared to water over wide ranges of [NaBr] and [BuOH], respectively.¹⁰ The calculation of \tilde{Y}_m is based on our assumption that the selectivities of 16-ArN₂⁺ in microemulsions and 1-ArN₂⁺ in aqueous solution toward different nucleophiles are the same; e.g., when the yields of 16-ArBr (in microemulsions) and 1-ArBr (in aqueous solution) are the same, Br_m (in microemulsions) = [NaBr] (in aqueous solution).

Added BuOH displaces both Br⁻ and H₂O from the interfacial region (Figure 2). At the highest [BuOH], 0.87 M, just below its solubility limit in 0.01 M CTABr,^{8a} BuOH_m \simeq 10. We estimate the concentration of bound BuOH to be ca. 8 mol/L of total aggregate volume at [BuOH] = 0.87 M from its binding constant, $K = 1 \text{ M}^{-1,8a}$ and by assuming that the volumes of aggregated CTABr and BuOH are additive. As BuOH_m increases from 0 to 10 with added BuOH, there is a concomitant decrease in H_2O_m from 50 to 37, indicating an approximately 1:1 exchange of BuOH for H₂O in the interfacial region. However, % 16-ArOH increases modestly (Table I) because the dediazoniation reaction is less selective toward BuOH than Br⁻, i.e., $S_w^{BuOH} < S_w^{Br,10}$ At $[BuOH] = 0, Br_m = 2.30$, slightly below literature estimates of 3-5 mol/L of interfacial volume³ and our previous estimate of 3.3 in 0.01 M CTABr, 0.1 M HBr (10 times greater than the [HBr] here), using a different diazonium salt.⁴ The decrease in Br_m with added BuOH parallels the drop in the fraction of Br bound to myristyltrimethylammonium bromide micelles with added BuOH.11

(11) Zana, R.; Yiv, S.; Strazielle, C.; Lianos, P. J. Colloid Interface Sci. 1981, 80, 208.

Our dediazoniation reaction is an excellent probe of association colloid interfaces. It distinguishes between chemically similar nucleophiles (e.g., Cl⁻ and Br⁻;⁴ H₂O and BuOH), and it can be used with all weakly basic nucleophiles which react by the same mechanism⁵ over a wide range of solution compositions. Future results should provide new information on the interfacial compositions of three- and four-component microemulsions.¹

Acknowledgment. We are grateful to C. A. Bunton, Fred Menger, and the reviewers for their helpful comments and to the following for financial support. The Busch and Biological Sciences Research Fund of Rutgers University, the donors of the Petroleum Research Fund, administered by the American Chemical Society (type G and type AC), Research Corporation, the National Institutes of Health (GM32972), and the NSF U.S.-Latin American Cooperative Program—Brazil.

Supplementary Material Available: Appendices S1 and S2, detailing diazonium salt preparation, dediazoniation kinetics, and the procedure for calculating interfacial concentrations of H₂O, BuOH, and Br⁻, and Tables S1-S3, providing product yields and HPLC calibration data for dediazoniations of 16-ArN₂⁺ and $1-ArN_2^+$ (6 pages). Ordering information is given on any current masthead page.

Lithium Diisopropylamide Mixed Aggregates: Structures and Consequences on the Stereochemistry of **Ketone Enolate Formation**

Angela S. Galiano-Roth, Yong-Joo Kim, James H. Gilchrist, Aidan T. Harrison, David J. Fuller, and David B. Collum*

> Department of Chemistry, Baker Laboratory Cornell University, Ithaca, New York 14853-1301 Received January 7, 1991

Stereochemical and regiochemical studies of ketone enolization by lithium dialkylamides have elicited extensive mechanistic discussions that typically invoke kinetic pathways in competition with enolate equilibrations.¹⁻⁴ Noticeably absent from most (but

(1) Ireland, R. E.; Mueller, R. H.; Willard, A. K. J. Am. Chem. Soc. 1976, 98, 2868.

not all)⁵ treatments are the possible roles of mixed aggregates and

autocatalysis as determinants of selectivity and reactivity.⁶ Where

(4) Ketone enolate equilibration is often cited as the source of erosion of E/Z enolization selectivities. However, the measured rate of enolate equil-Jahr and Article a co-workers¹⁸ and work in our laboratory²⁰ support a dominance of kinetic control even under high (Z)-enolate selective conditions.

(5) Seebach, D. In Proceedings of the Robert A. Welch Foundation Conferences on Chemistry and Biochemistry; Wiley: New York, 1984; p 93. Seebach, D. Angew. Chem., Int. Ed. Engl. 1988, 27, 1624.

(6) Evidence of mixed aggregation effects in lithium amides: Narasaka, K.; Ukaji, Y.; Watanabe, K. Chem. Lett. 1986, 1755. Narasaka, K.; Ukaji, Y.; Watanabe, K. Bull. Chem. Soc. Jpn. 1987, 60, 1457. Polt, R.; Seebach, D. Helv. Chim. Acta 1987, 70, 1930. Fraser, R. R.; Mansour, T. S. Tetrahedron Lett. 1986, 27, 331. Perez, D. G.; Nudelman, N. S. J. Org. Chem. 1988, 53, 408. Muraoka, M.; Kawasaki, H.; Koga, K. Tetrahedron Lett. 1988, 29, 337. Ando, A.; Shioiri, T. J. Chem. Soc., Chem. Commun. 1987, 1620. Huisgen, R. In Organometallic Chemistry; ACS Monograph 147; American Chemical Society: Washington, DC, 1960; pp 36-87. Denmark, S. E.; Ares, J. J. J. Am. Chem. Soc. 1988, 110, 4432. Meyers, A. I.; Knaus, G.; Kamata, K.; Ford, M. E. J. Am. Chem. Soc. 1976, 98, 567. Hogeveen, H.; Menge, W. M. P. B. Tetrahedron Lett. 1986, 27, 2767. Regan, A.; Staunton, J. J. Chem. Soc., Chem. Commun. 1983, 764. Regan, A.; Staunton, J. J. Chem. Soc., Chem. Commun. 1987, 520. Strazewski, P.; Tamm, C. Helv. Chim. Acta Jost, S. (1996, 59, 1041.) Denmark, S. E.; Sternberg, J. A.; Lucoend, R. J. Org. Chem.
 1988, 53, 1251. Liebeskind, L. S.; Welker, M. E.; Fengl, R. W. J. Am. Chem.
 Soc. 1986, 108, 6328. Tomioka, K.; Seo, W.; Ando, K.; Koga, K. Tetrahedron
 Lett. 1987, 28, 6637. Schultz, A. G.; Macielag, M.; Sundararaman, P.;
 Taveras, A. G.; Welch, M. J. Am. Chem. Soc. 1988, 110, 7828.

^{(7) 16-}ArN₂⁺ is assumed to be completely microemulsion bound.⁴ It is water insoluble and more hydrophobic than CTABr, added BuOH reduces the cmc of CTABr,¹¹ and the CTABr monomer concentration is always <10% of total [CTABr] (at 40 °C, CTABr's cmc = 1.08×10^{-3} M in the absence of added salt^{8b}).

^{(8) (}a) Gettins, J.; Hall, D.; Jobling, P. L.; Rassing, J. E.; Wyn-Jones, E. J. Chem. Soc., Faraday Trans. 2 1978, 74, 1957. (b) Mukerjee, P.; Mysels, K. J. Natl. Stand. Ref. Data Ser. (U.S., Natl. Bur. Stand.) 1971, 36, 57.

⁽⁹⁾ Details on the preparation and dediazoniation rates of the tetra-fluoroborate salts of 16-ArN₂⁺ and 1-ArN₂⁺ are in Appendix S1. Normalized mole percent product yields are reported because the measured product yields range from 87 to 100% and the HPLC chromatograms are free of stray peaks (>1%)

⁽¹⁰⁾ Selectivities $S_w^{Br} = 8.3$ and $S_w^{BuOH} = 0.31$ were determined by standard methods (Appendix S2).⁴ Tables S1-S3 give product yields and calibration data for z-ArN₂⁺.

⁽²⁾ Corey, E. J.; Gross, A. W. Tetrahedron Lett. 1984, 25, 495.
(3) Evans, D. A. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press: New York, 1983; Vol. 3, Chapter 1.

lithium amide mixed aggregation effects are reported either implicitly or explicitly,^{5,6} structural details are lacking.⁷ Insights into lithium amide/lithium enolate mixed aggregate structures stem primarily from the crystallographic studies of Williard and co-workers.⁸

We describe solution structural studies demonstrating that lithium enolates display structure-dependent propensities to form 1:1 mixed dimers with LDA and that LiCl and LDA combine to form both 2:1 and 1:1 mixed aggregates. LiCl has a substantial effect on the stereochemistry of LDA-mediated enolizations.

Previous spectroscopic studies demonstrate that LDA exists exclusively as a cyclic oligomer (strongly suggested to be disolvated dimer 1).⁹ When [${}^{6}Li$, ${}^{15}N$]LDA¹⁰ is treated with 1.0 equiv of [${}^{6}Li$]lithium pinacolate, ${}^{10-12}$ the ${}^{6}Li$ NMR spectrum shows a doublet indicative of coupling to one neighboring spin ${}^{1}/{}_{2}$ ${}^{15}N$ nucleus (Figure 1A) along with the resonances corresponding to [${}^{6}Li$, ${}^{15}N$]LDA and two previously¹² studied aggregates of free enolate. 13,14 The corresponding ${}^{15}N$ spectrum displays a new quintet along with the quintet of [${}^{6}Li$, ${}^{15}N$]LDA (${}^{6}Li$; spin 1).¹⁴ The multiplicities are fully consistent with formation of *limited* concentrations of mixed dimer 2. The (Z)-lithium enolate of pyrrolidine propionamide (3)¹¹ affords limited concentrations of 1:1 mixed aggregate 4.¹⁴ In striking contrast, addition of 1.0 equiv of [${}^{6}Li$]lithium cyclohexenolate¹¹ to [${}^{6}Li$, ${}^{15}N$]LDA affords ${}^{6}Li$ and 1 ${}^{15}N$ NMR spectra showing no evidence of a mixed aggregate.

⁽⁷⁾ Depue, J. S.; Collum, D. B. J. Am. Chem. Soc. 1988, 109, 5518, 5524. Unpublished reports of LDA/enolate mixed aggregates are cited briefly in ref 5.

(8) Williard, P. G.; Hintze, M. J. J. Am. Chem. Soc. 1987, 109, 5539. Williard, P. G.; Hintze, M. J. J. Am. Chem. Soc. 1990, 112, 8602. LDA/ lithiophenylacetonitrile mixed aggregate: Zarges, W.; Marsch, M.; Harmes, K.; Boche, G. Angew. Chem., Int. Ed. Engl. 1989, 28, 1392.

(9) Galiano-Roth, A. S.; Collum, D. B. J. Am. Chem. Soc. 1989, 111, 6772. The mixed solvated LDA dimer bearing both HMPA and THF has recently been characterized as well: Romesberg, F. E.; Gilchrist, J. H.; Harrison, A. T.; Fuller, D. J.; Collum, D. B. J. Am. Chem. Soc. In press.

(10) The ⁶Li-labeled enolates and $[{}^{6}Li, {}^{15}N]LDA$ were prepared as spectroscopically pure, solvent-free solids.^{9,11}

(11) Kim, Y.-J.; Bernstein, M. P.; Galiano-Roth, A. S.; Romesberg, F. E.; Williard, P. G.; Fuller, D. J.; Harrison, A. T.; Collum, D. B., submitted for publication.

(12) Lawler, R. G., unpublished.

(13) ⁶Li-¹³N double-labeling studies of N-Li species: (a) Kallman, N.;
Collum, D. B. J. Am. Chem. Soc. 1987, 109, 7466. (b) Jackman, L. M.;
Scarmoutzos, L. M.; Porter, W. J. Am. Chem. Soc. 1987, 109, 6524. (c) Jackman, L. M.; Scarmoutzos, L. M. J. Am. Chem. Soc. 1987, 109, 5348. (d) Jackman, L. M.; Scarmoutzos, L. M.; Smith, B. D.; Williard, P. G. J. Am. Chem. Soc. 1988, 110, 6058. (e) Galiano-Roth, A. S.; Michaelides, E. M.; Collum, D. B. J. Am. Chem. Soc. 1988, 110, 2658. (f) For ¹⁵N chemical shift studies at ambient temperatures, see: Ide, S.; Iwasawa, K.; Yoshino, A.; Yoshida, T.; Takahashi, K. Magn. Reson. Chem. 1987, 25, 675. Konishi, K.; Yoshino, A.; Katoh, M.; Matsumoto, K.; Takahashi, K.; Iwamura, H. Chem. Lett. 1982, 169. Barchiesi, E.; Bradamante, S. J. Phys. Org. Chem. 1990, 3, 139. Mansour, T. S.; Wong, T. C.; Kaiser, E. M. J. Chem. Soc., Perkin Trans. 2 1985, 2045.

(14) Pertinent NMR data recorded on solutions contained in 75% THF/pentane at -115 °C. The ⁶Li and ¹⁵N resonances are referenced to 0.3 M [⁶Li]LiCl/MeOH (0.0 ppm) and [¹⁵N]aniline (52 ppm) as described previously.¹³ 2: ⁶Li NMR δ 0.63 (d, $J_{L+N} = 4.9$ Hz) ppm; ¹⁵N NMR δ 75.4 (quintet, $J_{L+N} = 4.8$ Hz) ppm. 3: ⁶Li NMR δ 0.32 (s), 0.05 (s, minor), -0.15 (s) ppm. 4: ⁶Li NMR δ 0.74 (d, $J_{L+N} = 5.2$ Hz) ppm; ¹⁵N NMR δ 77.9 (quintet, $J_{L+N} = 5.2$ Hz) ppm; ¹⁵N NMR δ 77.9 (quintet, $J_{L+N} = 5.2$ Hz) ppm; ¹⁵N NMR δ 78.3 (tt, $J_{L+N} = 5.9$ Hz, 1 Li), 0.70 (d, $J_{L+N} = 4.8$ Hz, 2 Li) ppm; ¹⁵N NMR δ 78.3 (tt, $J_{L+N} = 5.9$, 4.8 Hz) ppm. $J_{L+N} = 4.9$ Hz) ppm; ¹⁵N NMR δ 77.9 (quintet, $J_{L+N} = 4.9$ Hz) ppm.

Due to the increasingly popular use of lithium amide/R₃SiCl mixtures to effect lithiations,¹⁵ we investigated the influence of the LiCl generated in situ on the LDA solution structure. The ⁶Li NMR spectra of [⁶Li,¹⁵N]LDA/[⁶Li]LiCl mixtures at low [LiCl] display a resonance corresponding to LDA along with a new doublet and triplet in a 2:1 ratio (Figure 1B).¹⁶ A single new ¹⁵N triplet of triplets in the ¹⁵N NMR spectrum indicating coupling to two inequivalent ⁶Li nuclei provides the additional information necessary to assign the mixed aggregate as a 2:1 LDA/LiCl mixed cyclic trimer 5. We hasten to add that the alternative ladder 6 is a distinct structural possibility and derives substantial support from lithium amide/lithium enolate mixed aggregate ladder structures.^{8,17} At higher [LiCl], one observes a new ⁶Li doublet (Figure 1C) and ¹⁵N quintet fully consistent with mixed dimer 7.

Stereochemical studies on 3-pentanone enolization¹⁻⁴ reveal possible consequences of mixed aggregation (eq 1). A slight decrease in E/Z selectivity is observed with increasing percent conversion, consistent with either partial enolate equilibration^{4,18} or the intervention of enolate/LDA mixed aggregates (Figure 2). Addition of pinacolone enolate or enolate 3 (0.1-2.0 equiv) prior to the addition of the 3-pentanone (0.9 equiv) produces minimal stereochemical changes. In contrast, LiCl shows a pronounced effect on the E/Z selectivity, with a sharp maximum in selectivity appearing at approximately 0.3 equiv (Figure 3). Whether this is a consequence of mixed aggregate based enolization or some form of electrophilic catalysis¹⁹ remains to be determined.

In summary, the tendency of LDA to form mixed aggregates

(15) Taylor, S. L.; Lee, D. Y.; Martin, J. C. J. Org. Chem. 1983, 48, 4156.
Marsai, F.; Laperdrix, B.; Güngör, T.; Mallet, M.; Queguiner, G. J. Chem.
Res., Miniprint 1982, 2863. Krizan, T. D.; Martin, J. C. J. Am. Chem. Soc.
1983, 105, 6155. Eaton, P. E.; Castaldi, G. J. Am. Chem. Soc. 1985, 107,
724. Eaton, P. E.; Cunkle, G. T.; Marchioro, G.; Martin, R. M. J. Am. Chem.
Soc. 1987, 109, 948. Tobia, D.; Rickborn, B. J. Org. Chem. 1986, 51, 3849.
Mirsadeghi, S.; Rickborn, B. J. Org. Chem. 1986, 51, 3849.
Mirsadeghi, S.; Rickborn, B. J. Org. Chem. 1986, 51, 986. Comins, D. L.;
LaMunyon, D. H. Tetrahedron Lett. 1988, 29, 773. Bellasoued, M.; Ennigrou,
R.; Gaudemar, M. J. Organomet. Chem. 1988, 338, 149. Pratt, N. E.;
Albizati, K. F. J. Org. Chem. 1990, 55, 770. Dubois, J.-E.; Lion, C.; Dugast,
J.-Y. Tetrahedron Lett. 1983, 24, 4207. Walkup, R. D.; Kane, R. R.;
Obeysekere, N. H. Tetrahedron Lett. 1990, 31, 1531. Shirai, R.; Tanaka,
M.; Koga, K. J. Am. Chem. Soc. 1986, 108, 543. Block, E.; Brito, M.;
Gernon, M.; McGowty, D.; Kang, H.; Zubieta, J. Inorg. Chem. 1990, 29, 3172. Wu, H. Y.; Walker, K. A. M.; Nelson, J. T. J. Org. Chem. 1990, 55, 5074.

(16) A relatively minor yet reproducible triplet is visible (δ 2.39 ppm, $J_{L-N} = 6.1$ Hz) in the ⁶Li NMR spectrum at low LiCl concentrations (Figure 1C). Concentration studies show it to be nonisomeric to either the 2:1 or 1:1 mixed aggregates \$ and 7, quite possibly possessing an LDA/LiCl ratio ≥ 3 . The absence of a detectable ¹⁵N resonance, however, renders a structural assignment and further discussion unproductive at this time.

ment and further discussion unproductive at this time. (17) Armstrong, D. R.; Barr, D.; Clegg, W.; Hodgson, S. M.; Mulvey, R. E.; Reed, D.; Snaith, R.; Wright, D. S. J. Am. Chem. Soc. 1989, 111, 4719 and references cited therein.

(18) Beutelman, H. P.; Xie, L.; Saunders, W. H., Jr. J. Org. Chem. 1989, 54, 1703. See also: Miller, D. J.; Saunders, W. H., Jr. J. Org. Chem. 1982, 47, 5039. Beutelman, H. P.; Xie, L.; Miller, D. J.; Saunders, W. H., Jr. J. Org. Chem. 1988, 53, 2396. Saunders, W. H., Jr. J. Am. Chem. Soc. 1991, 113, 3123.

(19) Jackman, L. M.; Dunne, T. S. J. Am. Chem. Soc. 1985, 107, 2805.
Pierre, J.-L.; Handel, H. Tetrahedron Lett. 1974, 2317. Loupy, A.; Seyden-Penne, J.; Tchoubar, B. Tetrahedron Lett. 1976, 1677. Buncel, E.; Dunn, E. J.; Bannard, R. A. B.; Purdon, J. G. J. Chem. Soc., Chem. Commun. 1984, 162. Chang, C. J.; Kiesel, R. F.; Hogen-Esch, T. L. J. Am. Chem. Soc. 1973, 95, 8446. Loupy, A.; Seyden-Penne, J. Tetrahedron 1980, 36, 1937.

Figure 1. ⁶Li NMR spectra of 0.1 M [⁶Li,¹⁵N]LDA in 3:1 THF/pentane at -115 °C: (A) with 0.5 equiv of [6Li]pinacolate; (B) with 0.4 equiv of [6Li]LiCl; (C) with 1.5 equiv of [6Li]LiCl. The spins of 6Li and 15N are 1 and $1/_2$, respectively.

Figure 2.

with ketone enolates is both limited and structure dependent, but still may be of some practical consequence. The corresponding LDA/LiCl mixed aggregates are also observable and may have a substantial impact on the selectivity and reactivity of LDA. However, the approximate correlation of optimal concentrations of mixed aggregate 5 with maximal selectivities *must* be illusory; the continuously changing proportions of LDA, lithium enolate, and LiCl throughout the course of the enolization would result in a continuously changing structure distribution. Furthermore, studies of lithium 2,2,6,6-tetramethylpiperidide reveal that added lithium salts can have a substantially greater (and more complex) influence on the structures and reactivities of highly hindered lithium amides.²⁰

Acknowledgment. We acknowledge the National Science Foundation Instrumentation Program (CHE 7904825 and PCM 8018643), the National Institutes of Health (RR02002), and IBM for support of the Cornell Nuclear Magnetic Resonance Facility. We also thank the National Institutes of Health for direct support of this work.

Support for a Dimer of $Di-\mu$ -oxo Dimers Model for the Photosystem II Manganese Aggregate. Synthesis and Properties of [(Mn₂O₂)₂(tphpn)₂](ClO₄)₄

Michael K. Chan and William H. Armstrong*

Department of Chemistry, University of California Berkeley, California 94720 Received July 12, 1990

The task of elucidating the structure of the manganese aggregate in the oxygen-evolving complex of photosystem II (MnOEC), generally assumed to be the catalytic site of photosynthetic water oxidation, provides an interesting challenge for bioinorganic and biophysical chemists.²⁻⁶ Characteristics of this active-site complex include (i) a nuclearity of three or four manganese atoms, (ii) a broad low-field parallel polarization mode EPR absorption ($g_{eff} = 4.8$) at the S₁ oxidation level,⁴ (iii) multiline (19-21 lines, $g_{eff} = 2$) and $g_{eff} = 4.1$ EPR signals at the S₂ oxidation level,^{2,3} and (iv) at least two relatively short range Mn--Mn contacts (2.7 Å) as indicated by X-ray absorption spectroscopy.3.5.7 Furthermore, a peak in the Fourier transformed EXAFS data for MnOEC has been assigned to a 3.3-Å Mn...Mn interaction.^{5,7}

Complexes that contain the $\{Mn_2O_2\}^{3+}$ core⁶ may be viewed as preliminary or "first-generation" models for the MnOEC because they possess Mn---Mn distances of 2.7 Å and 16-line EPR spectra. However, the aforementioned binuclear complexes are not fully

(2) (a) Wieghardt, K. Angew. Chem., Int. Ed. Engl. 1989, 28, 1153-1172. (b) Pecoraro, V. L. Photochem. Photobiol. **1988**, 48, 249-264. (c) Christou, G. Acc. Chem. Res. **1989**, 22, 328-335. (d) Brudvig, G. W.; Crabtree, R. H. Prog. Inorg. Chem. **1989**, 37, 99-142. (e) Armstrong, W. H. In Manganese Redox Enzymes; Pecoraro, V. L., Ed.; VCH, to be submitted.

(3) (a) Renger, G. Angew. Chem., Int. Ed. Engl. 1987, 26, 643-660. (b) (3) (a) Renger, G. Angew. Chem., Int. Ed. Engl. 1987, 26, 643-660. (b) Babcock, G. T. In New Comprehensive Biochemistry: Photosynthesis: Amesz, J., Ed.; Elsevier: Amsterdam, 1987; pp 125-158. (c) Govindjee; Kambara, T.; Coleman, W. Photochem. Photobiol. 1985, 42, 187-210. (d) Dismukes, G. Photochem. Photobiol. 1986, 43, 99-115. (e) Brudvig, G. W. In Metal Clusters in Proteins: Que, L., Jr., Ed.; ACS Symposium Series 372; American Chemical Society: Washington, DC, 1988; pp 221-237. (f) Babcock, G. T.; Barry, B. A.; Debus, R. J.; Hoganson, C. W.; Atamian, M.; McIntosh, L.; Sithole, I.; Yocum, C. F. Biochemistry 1989, 28, 9557-9565. (4) (a) Dexheimer, S. L.; Sauer, K.; Klein, M. P. In Current Research in Photosynthesis; Battscheffsky, M., Ed.; Kluwer, Academic Publishers: Netherlands, 1990; Vol. 1, pp 761-764. (b) Dexheimer, S. L. Ph.D. Dissertation, University of California, Berkeley, CA, 1990.

sertation, University of California, Berkeley, CA, 1990.

(5) (a) George, G. N.; Prince, R. C.; Cramer, S. P. Science 1989, 243, 789-791. (b) Penner-Hahn, J. E.; Fronko, R. M.; Pecoraro, V. L.; Yocum, C. F.; Betts, S. D.; Bowlby, N. R. J. Am. Chem. Soc. 1990, 112, 2549–2557.
 (c) Kirby, J. A.; Robertson, A. S.; Smith, J. P.; Thompson, A. C.; Cooper, S. R.; Klein, M. P. J. Am. Chem. Soc. 1981, 103, 5529-5537. (d) McDer-mott, A. E.; Yachandra, V. K.; Guiles, R. D.; Cole, J. L.; Dexheimer, S. L.; Britt, R. D.; Sauer, K.; Klein, M. P. Biochemistry 1988, 27, 4021-4031
 (6) (a) Hagen, K. S.; Armstrong, W. H.; Hope, H. Inorg. Chem. 1988, 27 (b) (a) Hagen, K. S.; Armstrong, W. H.; Hope, H. Inorg. Cnem. 1905, 27, 967-969.
(b) Plaskin, P. M.; Stoufer, R. C.; Mathew, M.; Palenik, G. J. J. Am. Chem. Soc. 1972, 94, 2121-2122.
(c) Stebler, M.; Ludi, A.; Bürgi, H.-B. Inorg. Chem. 1986, 25, 4743-4750.
(d) Collins, M. A.; Hodgson, D. J.; Michelsen, K.; Towle, D. K. J. Chem. Soc., Chem. Commun. 1987, 1659-1660.
(e) Towle, D. K.; Botsford, C. A.; Hodgson, D. J. Inorg. Chim. Acta 1988, 141, 167-168.
(f) Suzuki, M.; Tokura, S.; Suhara, M.; Uehara, A. Chem. Lett. 1988, 477-480.
(g) Hoof, D. L.; Tisley, D. G.; Walton, R. A. Inorg. Nucl. Chem. 1989, 3 6306-3608.
(i) Linorg. Chem. 1989, 28, 3606-3608.
(i) Linorg. Chem. 1989, 25, 3606-3608. D. J. Inorg. Chem. 1989, 28, 3606–3608. (i) Libby, E.; Webb, R. J.; Streib, W. E.; Folting, K.; Huffman, J. C.; Hendrickson, D. N.; Christou, G. Inorg. W. E.; Folting, K.; Huffman, J. C.; Hendrickson, D. N.; Christou, G. Inorg. Chem. 1989, 28, 4037-4040. (j) Brewer, K. J.; Liegeois, A.; Otvos, J. W.; Calvin, M.; Spreer, L. O. J. Chem. Soc., Chem. Commun. 1988, 1219-1220.
(k) Suzuki, M.; Senda, H.; Kobayashi, Y.; Oshio, H.; Uehara, A. Chem. Lett. 1988, 1763-1766. (l) Goodson, P. A.; Glerup, J.; Hodgson, D. J.; Michelsen, K.; Pedersen, E. Inorg. Chem. 1990, 29, 503-508. (m) Cooper, S.; Calvin, M. J. Am. Chem. Soc. 1977, 99, 6623-6630. (n) Brewer, K. J.; Calvin, M.; Lumpkin, R. S.; Otvos, J. W.; Spreer, L. O. Inorg. Chem. 1989, 28, 4446-4451. 4446-4451

(7) (a) Guiles, R. D.; Zimmermann, J.-L.; McDermott, A. E.; Yachandra, V. K.; Cole, J. L.; Dexheimer, S. L.; Britt, R. D.; Wieghardt, K.; Bossek, U.; Sauer, K.; Klein, M. P. Biochemistry 1990, 29, 471-485. (b) Guiles, R. D.; Yachandra, V. K.; McDermott, A. E.; DeRose, V. J.; Zimmermann, J.-L.; Sauer, K.; Klein, M. P. In Current Research in Photosynthesis; Battscheffsky, Ed.; Kluwer Academic Publishers: Netherlands, 1990; Vol. 1, pp 789-792. (c) Guiles R. D. Ph.D. Dissertation, Lawrence Berkeley Laboratory, University of California, Berkeley, CA, 1988.

⁽²⁰⁾ Hall, P.; Gilchrist, J. H.; Fuller, D. J.; Harrison, A. T.; Collum, D. B. J. Am. Chem. Soc. In press

⁽¹⁾ Abbreviations used: tphpn = N, N, N', N'-tetrakis(2-pyridylmethyl)-2hydroxypropane-1,3-diamine, MnOEC = manganese aggregate in the oxy-gen-evolving complex of Photosystem II, EXAFS = extended X-ray absorption fine structure, EPR = electron paramagnetic resonance