

Supporting Information for J. Am. Chem. Soc., 1995, 117(39), 9863-9874, DOI: 10.1021/ja00144a012

LUCHT 9863-9874

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the AMERICA Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

I. 6Li, 15N, and 13C NMR spectra of 0.10 <u>M</u> [6Li,15N]LiHMDS with added Et₂O at -100 °C: (A) 6Li NMR spectrum with 0.7 equiv. of added Et₂O in pentane; (B) 15N{1H} NMR spectrum with 0.7 equiv. of added Et₂O in pentane; (C) 6Li NMR spectrum with 40 equiv. of added Et₂O in pentane; (D) 15N{1H} NMR spectrum with 40 equiv. of added Et₂O in pentane; (E) 13C NMR spectrum with 0.5 equiv. of added Et₂O in toluene-d₈; (F) 13C NMR spectrum with 2.0 equiv. of added Et₂O in toluene-d₈.

II. ⁶Li, ¹⁵N, and ¹³C NMR spectra of 0.10 <u>M</u> [⁶Li,¹⁵N]LiHMDS with added 2,2-Me₂THF at -100 oC: (A) ⁶Li NMR spectrum with 0.7 equiv. of added 2,2-Me₂THF in pentane; (B) ¹⁵N{¹H} NMR spectrum with 0.7 equiv. of added 2,2-Me₂THF in pentane; (C) ⁶Li NMR spectrum with 40 equiv. of added 2,2-Me₂THF in pentane; (D) ¹⁵N{¹H} NMR spectrum with 40 equiv. of added 2,2-Me₂THF in pentane; (D) ¹⁵N{¹H} NMR spectrum with 40 equiv. of added 2,2-Me₂THF in pentane; (E) ¹³C NMR spectrum with 0.5 equiv. of added 2,2-Me₂THF in toluene-d₈; (F) ¹³C NMR spectrum with 2.0 equiv. of added 2,2-Me₂THF in toluene-d₈.

ppm

ppm

IV. ⁶Li, ¹⁵N, and ¹³C NMR spectra of 0.10 <u>M</u> [⁶Li,¹⁵N]LiHMDS with added *i*-PrOMe at -100 °C: (A) ⁶Li NMR spectrum with 0.7 equiv. of added *i*-PrOMe in pentane; (B) ¹⁵N{¹H} NMR spectrum with 0.7 equiv. of added *i*-PrOMe in pentane; (C) ⁶Li NMR spectrum with 40 equiv. of added *i*-PrOMe in pentane; (D) ¹⁵N{¹H} NMR spectrum with 40 equiv. of added *i*-PrOMe in pentane; (E) ¹³C NMR spectrum with 0.5 equiv. of added *i*-PrOMe in toluene-d₈; (F) ¹³C NMR spectrum with 2.0 equiv. of added *i*-PrOMe in toluene-d₈.

V. ⁶Li, ¹⁵N, and ¹³C NMR spectra of 0.10 <u>M</u> [⁶Li,¹⁵N]LiHMDS with added *t*-BuOMe: (A) ⁶Li NMR spectrum with 0.7 equiv. of added *t*-BuOMe in pentane at -120 °C; (B) ⁶Li NMR spectrum with 40 equiv. of added *t*-BuOMe in pentane at -100 °C; (C) ¹⁵N{¹H} NMR spectrum with 40 equiv. of added *t*-BuOMe in pentane at -100 °C; (D) ¹³C NMR spectrum with 0.5 equiv. of added *t*-BuOMe in toluene-d₈ at -110 °C (E) ¹³C NMR spectrum with 2.0 equiv. of added *t*-BuOMe in toluene-d₈ at -110 °C. (An ¹⁵N NMR spectrum of 0.7 equiv. of added *t*-BuOMe was not recorded due to solubility problems.)

VI. 6Li, 15N, and 13C NMR spectra of 0.10 <u>M</u> [6Li,15N]LiHMDS with added *n*-BuOMe at -100 °C: (A) 6Li NMR spectrum with 0.7 equiv. of added *n*-BuOMe in pentane; (B) 15N{1H} NMR spectrum with 0.7 equiv. of added *n*-BuOMe in pentane; (C) 6Li NMR spectrum with neat *n*-BuOMe; (D) 15N{1H} NMR spectrum with neat *n*-BuOMe in pentane; (E) 13C NMR spectrum with 0.5 equiv. of added *n*-BuOMe in toluene-d₈; (F) 13C NMR spectrum with 2.0 equiv. of added *n*-BuOMe in toluene-d₈.

-

VII. ⁶Li, ¹⁵N, and ¹³C NMR spectra of 0.10 <u>M</u> [⁶Li,¹⁵N]LiHMDS with added THP at -100 °C: (A) ⁶Li NMR spectrum with 0.7 equiv. of added THP in pentane; (B) ¹⁵N{¹H} NMR spectrum with 0.7 equiv. of added THP in pentane; (C) ⁶Li NMR spectrum with 40 equiv. of added THP in pentane; (D) ¹⁵N{¹H} NMR spectrum with 40 equiv. of added THP in pentane; (E) ¹³C NMR spectrum with 0.5 equiv. of added THP in toluene-d₈; (F) ¹³C NMR spectrum with 2.0 equiv. of added THP in toluene-d₈.

VIII. ⁶Li, ¹⁵N, and ¹³C NMR spectra of 0.10 <u>M</u> LiHMDS with added oxetane at -100 °C: (A) ⁶Li NMR spectrum of [⁶Li,¹⁵N]LiHMDS with 0.7 equiv. of added oxetane in pentane; (B) ⁶Li NMR spectrum of [⁶Li]LiHMDS with 1.1 equiv. of added oxetane and 2.0 equiv. of added THF in toluene-d₈; (C) ⁶Li NMR spectrum of [⁶Li,¹⁵N]LiHMDS with 13 equiv. of added oxetane in pentane; (D) ¹⁵N{¹H} NMR spectrum of [⁶Li,¹⁵N]LiHMDS with 13 equiv. of added oxetane in pentane; (E) ¹³C NMR spectrum of [⁶Li]LiHMDS with 2.0 equiv. of added oxetane in toluene-d₈; (F) ¹³C NMR spectrum of [⁶Li]LiHMDS with 2.0 equiv. of added oxetane in toluene-d₈.

J-9874-9

X. Partial ¹³C NMR spectra of 0.10 <u>M</u> [⁶Li]LiHMDS in toluene-d₈ with 5.0 equiv. of Et₂O per Li recorded at -100 °C: (A) 0.0 equiv. THF; (B) 0.25 equiv. THF; (C) 0.5 equiv. THF; (D) 0.75 equiv. THF; (E) 1.0 equiv. THF.

XI. ¹³C{1H} NMR spectra of 0.10M [⁶Li]LiHMDS with Et₂O and added ethereal solvent in toluene-d₈ at -100 °C: (A) 1.1 equiv. of added *i*-PrOMe and 3.0 equiv of added Et₂O; (B) 4.0 equiv. of added *t*-BuOMe and 1.1 equiv of added Et₂O;

XI.(cont) (C) 1.1 equiv. of added 2,2-Me₂THF and 5.0 equiv. of added Et_2O ; (D) 1.1 equiv of added 2-MeTHF and 5.0 equiv. of added Et_2O ;

J-9814-14

XII. ¹³C{¹H} NMR spectra of 0.10M [⁶Li]LiHMDS with THF and added ethereal solvent in toluene-d₈ at -100 °C: (A) 3.0 equiv. of added 2,2-Me₂THF and 1.1 equiv of added THF; (B) 4.0 equiv. of added *n*-BuOMe and 1.1 equiv of added THF;

XII.(cont.) (C) 1.1 equiv. of added THP and 1.1 equiv. of added THF; (D) 2.0 equiv of added 2-MeTHF and 1.1 equiv. of added THF.

XIII. 6Li-15N HMQC spectra of 0.10 <u>M</u> [6 Li, 15 N]LiHMDS in pentane at -100 °C: (A) 0.5 equiv. of added 2-MeTHF and 1.0 equiv. of added Et₂O; (B) 0.5 equiv. of added THF and 1.0 equiv. of added 2-MeTHF; (C) 0.5 equiv. of added *n*-BuOMe and 1.0 equiv. of added Et₂O; (D) 0.5 equiv. of added THF and 1.0 equiv. of added *n*-BuOMe. The upper and left-hand traces are the corresponding ^{15}N {¹H} and ^{6}Li NMR spectra.

XIV. ⁶Li-¹⁵N HMQC spectra of 0.10 <u>M</u> [⁶Li,¹⁵N]LiHMDS in pentane at -100 °C: (A) 0.5 equiv. of added THF and 1.0 equiv. of added *i*-PrOMe; (B) 0.5 equiv. of added *i*-PrOMe and 1.0 equiv. of added Et₂O; (C) 0.5 equiv. of added THF and 1.0 equiv. of added 2,2-Me₂THF; (D) 0.5 equiv. of added 2,2-Me₂THF and 1.0 equiv. of added Et₂O;

XIV.(cont.) (E) 0.5 equiv. of added THF and 0.7 equiv. of added THP; (F) 0.5 equiv. of added THP and 1.0 equiv. of added Et₂O; (G) 0.5 equiv. of added THF and 1.0 equiv. of added Et₂O (H) 0.5 equiv. of added Et₂O and 1.0 equiv of added *t*-BuOMe at -120 °C. The upper and left-hand traces are the corresponding $^{15}N{^{1H,6}Li}$ and ^{6}Li NMR spectra, respectively.

XV. ⁶Li-detected ¹⁵N zero-quantum NMR spectra of 0.1 <u>M</u> [⁶Li,¹⁵N]LiHMDS in pentane at -100 °C: (A) 5 equiv. of Et₂O; (B) 5 equiv. of *t*-BuOMe; (C) 5 equiv. 2-MeTHF; (D) 5 equiv. 2,2-Me₂THF;

XV.(cont.) (E) 40 equiv. 2,2,5,5-Me₄THF; (F) 5 equiv. THP; (G) 5 equiv. *i*-PrOMe; (H) 5 equiv. *n*-BuOMe.

XV.(cont.) (I) 5 equiv. Me₂(Et)COMe; (J) 40 equiv. *i*-Pr₂O; (K) 5 equiv. oxetane; (L) 5 equiv. THF

XV.(cont.) (M) neat pentane.

XVI. Variable temperature ¹³C spectra of 0.1 <u>M</u> [⁶Li]LiHMDS with added Et₂O: (A) 5.0 equiv. of added Et₂O; (B) 2.0 equiv. of added Et₂O (C) 1.2 equiv. of added Et₂O.

XVII. Variable temperature ¹³C spectra of 0.1 <u>M</u> [⁶Li]LiHMDS with added THF: (A) 5.0 equiv. of added THF; (B) 2.0 equiv. of added THF (C) 1.2 equiv. of added THF.

XVIII. Plot of $[AS_n]/[A_2S_2]^{1/2}$ vs. [2-MeTHF] for 0.1 <u>M</u> LiHMDS in pentane. The data are fit by non-linear least squares methods to the function in equation 10 of the manuscript: (A) at -20 °C K_{eq} = 7.8 x 10⁻³, n = 2.9; (B) at -80 °C, K_{eq} = 2.9 x 10⁻³, n = 3.1.

J-9874-26

XIX. (A) Plot of $[AS_n]/[A_2S_2]^{1/2}$ vs. $[2,2-Me_2THF]$ for 0.1 <u>M</u> LiHMDS in pentane at -80 °C. The data are fit by non-linear least squares methods to the function in equation 10 of the manusript. $K_{eq} = 6.0 \times 10^{-2}$, n = 3.1. (B) Plot of $[AS_n]/[A_2S_2]^{1/2}$ vs. [oxetane] for 0.1 <u>M</u> LiHMDS in pentane at -20 °C. The data are fit by non-linear least squares methods to the function in equation 10 of the manuscript. $K_{eq} = 2.3 \times 10^{-2}$, n = 3.7.

XX. Predicted concentrations of disolvated dimer 1I, trisolvated monomer 12I and tetrasolvated monomer 13I at -80 °C in oxetane. The functions are calculated using adjustable parameters $K_{eq(1)} = 7.1 \times 10^{-3}$ and $K_{eq(2)} = 6.8 \times 10^{-1}$ derived from nonlinear least squares fit to equation 12.

J-9874-27

Solvent	∆H∘ _f (11)	∆H° _f (10)	∆H∘ _f (S)
THF	-398.4	-257.2	-59.3
2-MeTHF	-398.9	-258.9	-62.5
2,2-Me ₂ THF	-390.9	-252.7	-61.8
Et ₂ O	-390.6	-250.9	-62.0
<i>n-</i> BuOMe	-406.0	-262.3	-66.0
<i>i</i> -PrOMe	-384.4	-246.8	-58.2
t-BuOme	-371.7	-236.8	-54.6
THP	-399.0	-258.1	-60.1
i-Pr ₂ O	-379.7	-240.3	-64.5
H₂O	-415.6	-270.0	∘60.9
Me ₂ O	-382.0	-240.8	-51.2

XXI. Tabulated thermodynamic data from MNDO semiempirical calculations on disolvated dimer (11) and disolvated monomer (10).^a

J-9874-28

^aEnthalpies are reported in kcal/mol.

J-9874-29

č

XXII. Plot of observed LiHMDS aggregation free energies ($\Delta\Delta G_{agg}^{\circ}$, equation 2 and 3, Table 3) vs LiHMDS aggregation enthalpies ($\Delta\Delta H_{agg(calc)}^{\circ}$, equation 6) calculated from MNDO.

XXIII. Plot of LiHMDS monomer solvation enthalpies ($\Delta\Delta H^{o}_{solv(calc)}$ (monomer), equation 7) calculated from MNDO vs. calculated LiHMDS dimer solvation enthalpies ($\Delta\Delta H^{o}_{solv(calc)}$ (dimer), equation 8).

Given the equilibria

$$\begin{array}{ccc} & \mathsf{K}_1 & \mathsf{K}_2 \\ 1/2 \,\mathsf{A}_2 \,\mathsf{S}_2 + 3 \mathrm{S} & \rightleftharpoons \mathrm{A} \,\mathsf{S}_3 + \mathrm{S} & \rightleftharpoons \mathrm{A} \,\mathsf{S}_4 \end{array}$$

such that

$$K_{1} = \frac{[AS_{3}]}{[A_{2}S_{2}]^{1/2}[S]^{2}}$$
(1)

and

$$K_{2} = \frac{[AS_{4}]}{[AS_{3}][S]}$$
(2)

we can derive the equations describing the equilibrium constants as a function of solvent and organolithium concentrations. We define the total monomer concentration, A_T , such that

 $[A_T] = [AS_3] + [AS_4]$

Substituting into equation 2 and rearranging affords

$$[AS_3] = \frac{[A_T]}{(K_2)[S] + 1}$$

Squaring equation 1, substituting for [AS₃], and rearranging affords

$$\frac{[A_T]}{[A_2S_2]} = K_1^2[S]^4((K_2)[S]+1)^2$$
(3)

Since the total LiHMDS concentration equals 0.10 M, then

$$[A_2S_2] = \frac{0.10 - [A_T]}{2}$$

Substituting into equation 3 for [A2S2] and rearranging affords

$$[A_T]^2 + \frac{K_1^2[S]^4((K_2)[S] + 1)^2[A_T]}{2} - \frac{(0.1) K_1^2[S]^4((K_2)[S] + 1)^2}{2} = 0$$

Solving for [AT] using the quadratic equation affords

$$[A_{T}] = \frac{K_{1}^{2}[S]^{4}((K_{2})[S] + 1)^{2}}{4} + \frac{[S]^{2}((K_{2})[S] + 1)}{2} \sqrt{\frac{K_{1}^{4}[S]^{4}((K_{2})[S] + 1)^{2}}{2} + (0.2)K_{1}^{2}}$$

XXV. $^{6}Li^{-15}N$ HMQC spectrum of 0.10 <u>M</u> [^{6}Li , ^{15}N]LiHMDS with 0.3 equiv. THF per Li. The left and upper traces are the corresponding one-dimensional ^{6}Li and ^{15}N { ^{6}Li , ^{1}H }NMR spectra, respectively.

3