© 2000 American Chemical Society, J. Am. Chem. Soc., Sun ja992063r Supporting Info Page 1

Lithium Diisopropylamide-Mediated Enolizations: Solvent-Dependent Mixed Aggregation Effects

Xiufeng Sun and David B. Collum*
Department of Chemistry and Chemical Biology
Baker Laboratory, Cornell University
Ithaca, New York 14853-1301

Supporting Information

- I. 6Li and 15N NMR spectra of [6Li,15N]LDA with ester $1-d_1$ in t-BuOMe.
- II. 6Li and 15N NMR spectra of [6Li,15N]LDA with ester 1-d_I in t-BuOMe after aging.
- III. 6Li and 15N NMR spectra of [6Li,15N]LDA with ester $1-d_I$ in t-BuOMe after aging.
- IV. 6Li and 15N NMR spectra of [6Li,15N]LDA with ester 1-d₁ in THF.
- V. 6Li and 15N NMR spectra of [6Li,15N]LDA with ester 1-d₁ and 0.2 M HMPA in THF.
- VI. 6Li and 15N NMR spectra of [6Li,15N]LDA with ester $1-d_1$ and 1.0 M HMPA in THF.
- VII. 6Li and 15N NMR spectra of [6Li,15N]LDA with ester 1-d₁ and 0.2 M DMPU in THF.
- VIII. 6Li and 15N NMR spectra of [6Li,15N]LDA with DMPU in 2:1 THF/pentane.
- IX. 6Li and 15N NMR spectra of [6Li,15N]LDA with 0.5 equiv/Li DMPU in t-BuOMe.
- X. 6Li and 15N NMR spectra of [6Li,15N]LDA with 0.5 equiv/Li DMPU and 2:1 THF/pentane after aging.
- XI. 6Li and 15N NMR spectra of [6Li,15N]LDA with 1 equiv/Li DMPU and 2:1 THF/pentane after aging.
- XII. 6Li and 15N NMR spectra of [6Li,15N]LDA with 2 equiv/Li DMPU and 2:1 THF/pentane after aging.
- XIII. 6Li spectra of the reaction of [6Li]LDA with ester $1-d_1$ in t-BuOMe.
- XIV. 6Li spectra of the reaction of [6Li]LDA with ester $1-d_1$ in THF.
- XV. 6Li spectra of the reaction of [6Li]LDA with ester $1-d_1$ and 0.2 M HMPA in THF.
- XVI. 6Li spectra of the reaction of [6Li]LDA with ester $1-d_1$ and 1 M HMPA in THF.
- XVII. 6Li spectra of the reaction of [6Li]LDA with ester 1-d₁ and 0.2 M DMPU in THF.
- XVIII. 6Li spectra of the reaction of [6Li]LDA with ester $1-d_1$ and 1 M DMPU in THF.
- XIX. Concentration of homo- and mixed aggregates vs. time in the reaction of [6Li]LDA with ester $1-d_1$.
- XX. ⁶Li and ¹⁵N NMR spectra of [⁶Li,¹⁵N]LDA with cyclohexylpyrrolidin-1-ylmethanone in *t*-BuOMe.

Figure I. ⁶Li and ¹⁵N NMR spectra of 0.13 \underline{M} [⁶Li,¹⁵N]LDA with 0.13 \underline{M} ester 1- d_1 in t-BuOMe at -125 °C. (A) ⁶Li spectrum; (B) ¹⁵N spectrum; (C) ⁶Li spectrum with ¹⁵N broadband decoupling. The greater intensity of the ⁶Li resonance at 2.5 ppm is likely due to contributions from (i-Pr₂NLi)₂(1- d_1)₂.

Figure II ⁶Li and ¹⁵N NMR spectra of 0.13 M [⁶Li,¹⁵N]LDA with 0.2 equiv/Li of ester 1-d₁ in t-BuOMe at -60 °C after the sample reacted completely at -30 °C. (A) ⁶Li spectrum; (B) ¹⁵N spectrum. (C) ⁶Li spectrum with ¹⁵N single frequency decoupling at 71.1 ppm; (D) ⁶Li spectrum with ¹⁵N single frequency decoupling at 70.2 ppm.

Figure III. 6Li and 15N NMR spectra of 0.13 \underline{M} [6Li,15N]LDA with 0.13 \underline{M} ester 1- d_I in t-BuOMe at -60 °C after the sample was aged at -50 °C for 15 min. (A) 6Li spectrum; (B) 15N spectrum; (C) 6Li spectrum with 15N single frequency decoupling at 71.8 ppm.

Figure IV. 6Li and 15N NMR spectra of 0.13 \underline{M} [6Li,15N]LDA with 0.13 \underline{M} ester 1- d_I in THF at -90 oC . (A) 6Li and 15N spectra before the sample was aged. (B) 6Li and 15N spectra after the sample was aged at -50 oC for 2 min.

Figure V. 6Li and 15N NMR spectra of 0.13 \underline{M} [6Li,15N]LDA with 0.13 \underline{M} ester 1- d_1 and 0.2 \underline{M} HMPA in THF at -90 °C. (A) 6Li and 15N spectra recorded before the sample was aged. (B) 6Li and 15N spectra recorded after the sample was aged at -50 °C for 3 min.

Figure VI. 6Li and 15N NMR spectra of 0.13 \underline{M} [6Li,15N]LDA with 0.13 \underline{M} ester 1- d_I and 1 \underline{M} HMPA in THF at -90 °C. (A) 6Li and 15N spectra recorded before the sample was aged. (B) 6Li and 15N spectra recorded after the sample was aged at -50 °C for 2 min.

Figure VII. 6Li and 15N NMR spectra of 0.13 \underline{M} [6Li,15N]LDA with 0.13 \underline{M} ester 1- d_1 and 0.2 \underline{M} DMPU in THF at -90 °C. (A) 6Li and 15N spectra before the sample was aged. (B) 6Li and 15N spectra after the sample was aged at -50 °C for 3 min.

Figure VIII. 6Li and 15N NMR spectra of 0.1 M [6Li,15N]LDA in 2:1 THF/pentane at -90 °C. (A) 6Li spectrum with no DMPU; (B) 6Li spectrum with 0.5 eq DMPU; (C) 6Li with 1 equiv DMPU; (D) 6Li spectrum with 2 equiv DMPU; (E) 15N spectrum with 2 equiv DMPU.

Figure IX. 6Li and 15N NMR spectra of 0.1 M [6Li,15N]LDA with 0.5 equiv DMPU in t-BuOMe at -90 oC. (A) 6Li spectrum. (B) 15N spectrum; (C) 6Li spectrum with 15N broad-band decoupling; (D) 6Li spectrum with 15N single frequency decoupling at 71.1 ppm.

Figure X. 6Li and 15N NMR spectra of 0.1 M [6Li,15N]LDA with 0.5 equiv DMPU in 2:1 THF/pentane at -90 °C after the sample was aged at 0 °C for 8 h. (A) 6Li spectrum; (B) 15N spectrum; (C) 6Li spectrum with 15N broad-band decoupling; (D) 6Li spectrum with 15N single frequency decoupling at 74.3 ppm; (E) 6Li spectrum with 15N single frequency decoupling at 77.6 ppm; (F) 6Li spectrum with 15N single frequency decoupling at 79.1 ppm.

Figure XI. 6Li and 15N NMR spectra of 0.1 M [6Li,15N]LDA with 1.0 equiv/Li DMPU in 2:1 THF/pentane at -90 °C. (A) 6Li spectrum; (B) 6Li spectrum after the sample was aged at 0 °C for 3 h; (C) 15N spectrum after the sample was aged. The two overlapping 15N resonances of 5 are resolved at lower and higher DMPU concentration (Figure X, F and Figure XII, C.).

Figure XII. 6Li and 15N NMR spectra of 0.1 M [6Li,15N]LDA with 2.0 eq/Li DMPU in THF at -90 °C. (A) 6Li spectrum; (B) 6Li spectrum after the sample was aged at 0 °C for 2 h; (C) 15N spectrum after the sample was aged.

Figure XIII. 6Li NMR spectra of the reaction of 0.1 \underline{M} [6Li]LDA with 0.1 \underline{M} ester 1- d_I in neat t-BuOMe at -50 \circ C.

Figure XIV. 6Li NMR spectra of the reaction of 0.1 \underline{M} [6Li]LDA with 0.1 \underline{M} ester 1- d_I in THF.

Figure XV. 6Li NMR spectra of the reaction of 0.1 \underline{M} [6Li]LDA with 0.1 \underline{M} ester 1- d_1 and 0.2 \underline{M} HMPA in THF.

Figure XVI. 6Li NMR spectra of the reaction of 0.1 \underline{M} [6Li]LDA with 0.1 \underline{M} ester 1- d_I and 1 \underline{M} HMPA in THF.

Figure XVII. 6Li NMR spectra of the reaction of 0.1 \underline{M} [6Li]LDA with 0.1 \underline{M} ester 1- d_I and 0.2 \underline{M} DMPU in THF.

Figure XVIII. 6Li NMR spectra of the reaction of $0.1\underline{M}$ [6Li]LDA with $0.1\underline{M}$ ester $1-d_I$ and $1\underline{M}$ DMPU in THF.

Figure XIX. Concentration of species vs. time for the reaction of $0.1 \, \underline{M}$ [6Li]LDA with $0.1 \, \underline{M}$ ester $1 - d_1$ at $-50 \, \circ C$ (as indicated by the percentage of integration in the 6Li NMR spectra). Legend: • represents LDA dimers (3a-d); * represents LDA-enolate mixed dimers (7a-d); \square represents homonuclear enolate aggregates (2a-d); x represents mixed trimer (9a). (A) neat t-BuOMe; (B) neat THF; (C) $0.2 \, \underline{M}$ HMPA in THF (The sample was warmed up to -30 °C in the last phase due to the slow rate of the reaction.); (D) $1.0 \, \underline{M}$ HMPA in THF; (E) $0.2 \, \underline{M}$ DMPU in THF; (F) $1.0 \, \underline{M}$ DMPU in THF.

Figure XX. 6Li and 15N NMR spectra of 0.13 M [6Li,15N]LDA with carboxamide i in t-BuOMe at -100 °C. (A) 6Li and 15N spectra with 0.25 equiv/Li carboxamide i; (B) 6Li and 15N spectra with 0.5 equiv/Li carboxamide i; (C) 6Li spectrum with 1 equiv/Li carboxamide i; (D) 6Li and 15N spectra with 0.5 equiv/Li carboxamide i after the sample was aged at -30 °C for 15 min.