Consequences of Correlated Solvation on the Structures and Reactivities of RLi-Diamine Complexes: 1,2-Addition and α-Lithiation Reactions of Imines by TMEDA-Solvated *n*-Butyllithium and Phenyllithium

Jennifer L. Rutherford, Daniele Hoffmann, and David B. Collum*
Department of Chemistry and Chemical Biology
Baker Laboratory, Cornell University
Ithaca, New York 14853-1301

Supporting Information

NMR Spectroscopy

- I. 6Li NMR spectra of PhLi with ligands A-G.
- II. 6Li NMR spectra of PhLi with combinations of ligands A-G at low ligand concentrations.
- III. ⁶Li and ¹H NMR spectra of PhLi with combinations of ligands **A-G** at high ligand concentrations.
- IV. Partial ¹³C NMR spectra of PhLi with ligands A-G showing the CH₂Li resonance.
- V. ¹³C spectra of PhLi with ligands A-G in the limit of slow solvent exchange.
- VI. ¹³C spectra of PhLi with combinations of ligands A-G at high ligand concentrations.
- Table 1. 6Li NMR spectroscopic data of diamine-solvated PhLi dimers, (PhLi)₂SS'.
- Table 2. ¹³C NMR spectroscopic data of diamine-solvated PhLi dimers, (PhLi)₂S₂.

Notes:

- (1) Supporting information for *n*-BuLi NMR spectroscopy can be found in Hoffmann, D.; Collum, D. B. *J. Am. Chem. Soc.* **1998**, 120, 5810.
- (2) Broadening of ⁶Li resonances coordinated by **D** (see 1D, 2C, 2H, 2L, 2P, 2Q, 2R), as well as the extra resonances (see 2C), are associated with conformation effects within the piperidine ring as discussed in a reference of the manuscript.
- (3) The homosolvated dimer containing two (-)-sparteine ligands consists of two isomers with a peak integration ratio of 1:2.4. (see 2F, 2K, 2O, 2R, 2T, 2U, 2V)

IR Spectroscopy

VII. Plot of k_{obsd} vs. [n-BuLi] for the 1,2-addition to imine 1 (0.01 M) in TMEDA (0.5 M excess) and pentane at -40 °C.

VIII. Plot of k_{obsd} vs. [TMEDA] for the 1,2-addition of n-BuLi (0.3 M) to imine 1 (0.01 M) in pentane at -40 °C.

IX. Plot of k_{obsd} vs. [n-BuLi] for the α -lithiation of imine 6 (0.01 M) in TMEDA (0.5 M excess) and pentane at -40 °C.

X. Plot of k_{obsd} vs. [TMEDA] for the α-lithiation of imine 6 (0.01 M) with n-BuLi (0.3 M) in pentane at -40 °C.

XI. Plot of k_{obsd} vs. [PhLi] for the 1,2-addition to imine 1 (0.01 M) in neat TMEDA at 19 $^{\circ}\text{C}$.

XII. Plot of k_{obsd} vs. [TMEDA] for the 1,2-addition of PhLi (0.2 M) to imine 1 (0.01 M) in pentane at 19 °C.

XIII. Plot of k_{obsd} vs. [PhLi] for the α -lithiation of imine 6 (0.01 M) in neat TMEDA at 19 °C.

XIV. Plot of k_{obsd} vs. [TMEDA] for the α -lithiation of imine 6 (0.01 M) with PhLi (0.2 M) in pentane at 19 °C.

Table 3. k_{obsd} (s-1) for the 1,2-addition and α-lithiation of imine 1 and imine 6, respectively, with n-BuLi and PhLi in pentane and diamines **A-G**.

 R_2N NR_2 Me_2N NMe_2 NMe_2

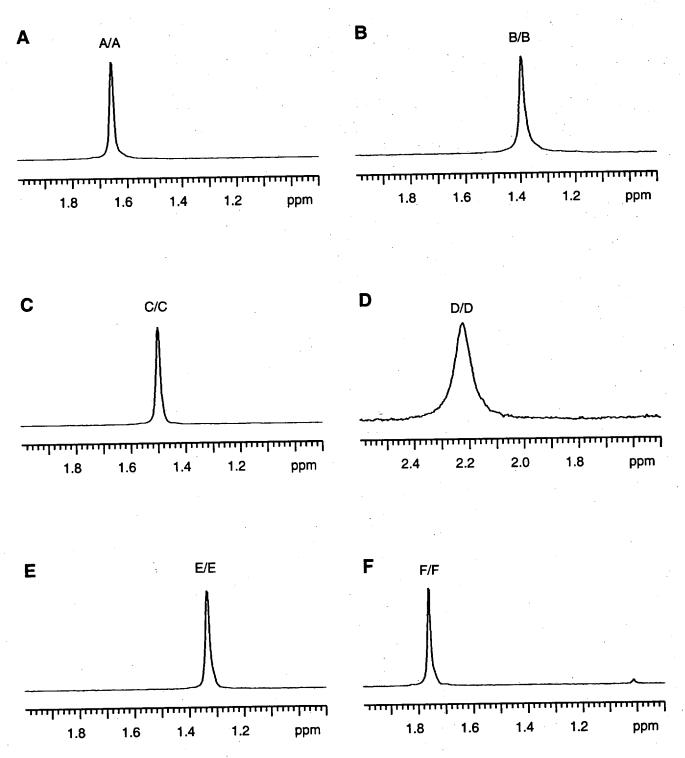


Figure I. 6Li NMR spectra of 0.1 M [6Li]PhLi in toluene-d₈ at -100 °C containing the following ligands: (A) 1.1 equiv of TMEDA (A); (B) 1.1 equiv of TEEDA (B); (C) 1.2 equiv of 1,2-dipyrrolidinoethane (C); (D) 1.5 equiv of 1,2-dipiperidinoethane (D); (E) 1.1 equiv of TMPDA (E); (F) 1.2 equiv of *trans-(R,R)-TMCDA* (F). PhLi does not dissolve with (-)-sparteine (G) alone. However, combinations of (-)-sparteine and other ligands dissolve PhLi (see Figure II).

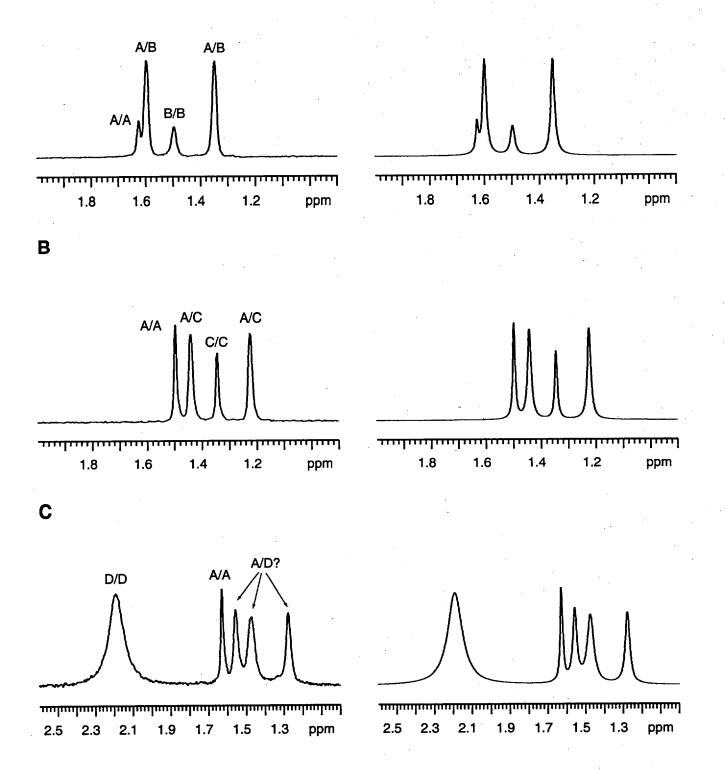


Figure II. 6Li NMR spectra (*left*: before deconvolution; *right*: theoretical spectra after deconvolution) of 0.1 M [6Li]PhLi in toluene-d₈ containing the following ligands: (A) 0.4 equiv of TMEDA (A) and 3.6 equiv of TEEDA (B) at -100 °C; (B) 0.5 equiv of TMEDA (A) and 1.5 equiv of 1,2-dipyrrolidinoethane (C) at -100 °C; (C) 0.4 equiv of TMEDA (A) and 1.2 equiv of 1,2-dipiperidinoethane (D) at -110 °C.

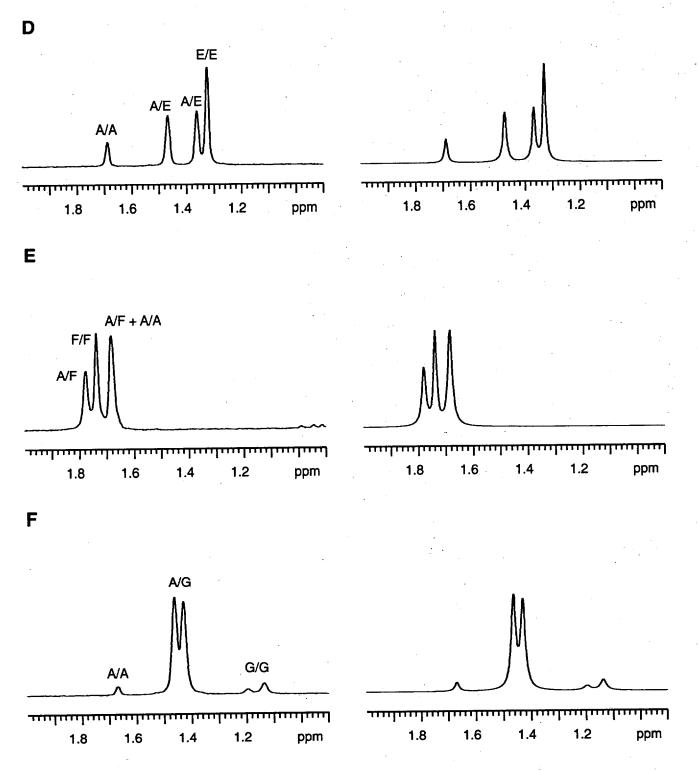


Figure II. (cont.) ⁶Li NMR spectra (*left*: before deconvolution; *right*: theoretical spectra after deconvolution) of 0.1 M [⁶Li]PhLi in toluene-d₈ at -100 °C containing the following ligands: (D) 0.3 equiv of TMEDA (A) and 1.5 equiv of TMPDA (E); (E) 1.2 equiv of TMEDA (A) and 1.2 equiv of *trans-(R,R)-TMCDA* (F); (F) 0.7 equiv of TMEDA (A) and 1.9 equiv of (-)-sparteine (G).

G

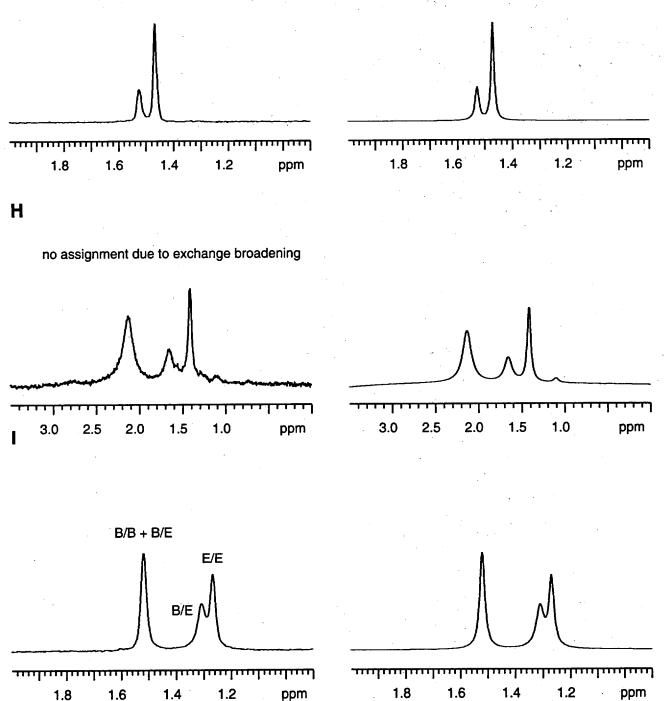
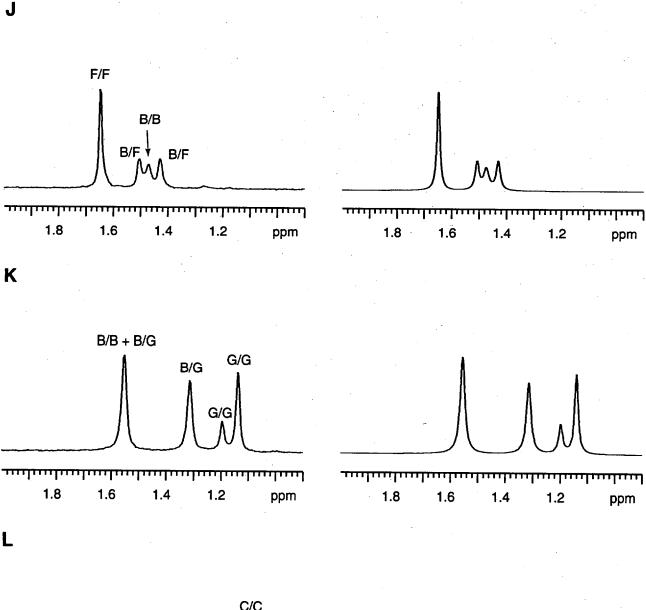



Figure II. (cont.) 6Li NMR spectra (*left*: before deconvolution; *right*: theoretical spectra after deconvolution) of 0.1 M [6Li]PhLi in toluene-d₈ at -100 °C containing the following ligands: (G) 0.6 equiv of TEEDA (B) and 0.6 equiv of 1,2-dipyrrolidinoethane (C); (H) 0.4 equiv of TEEDA (B) and 0.8 equiv of 1,2-dipiperidinoethane (D); (I) 0.6 equiv of TEEDA (B) and 0.6 equiv of TMPDA (E).

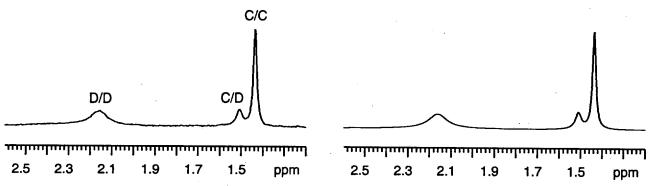


Figure II. (cont.) 6Li NMR spectra (*left*: before deconvolution; *right*: theoretical spectra after deconvolution) of 0.1 M [6Li]PhLi in toluene-d₈ at -100 °C containing the following ligands: (J) 0.6 equiv of TEEDA (B) and 0.6 equiv of *trans-(R,R)-TMCDA* (F); (K) 0.6 equiv of TEEDA (B) and 0.6 equiv of (-)-sparteine (G); (L) 0.5 equiv of 1,2-dipyrrolidinoethane (C) and 1.2 equiv of 1,2-dipiperidinoethane (D).

M

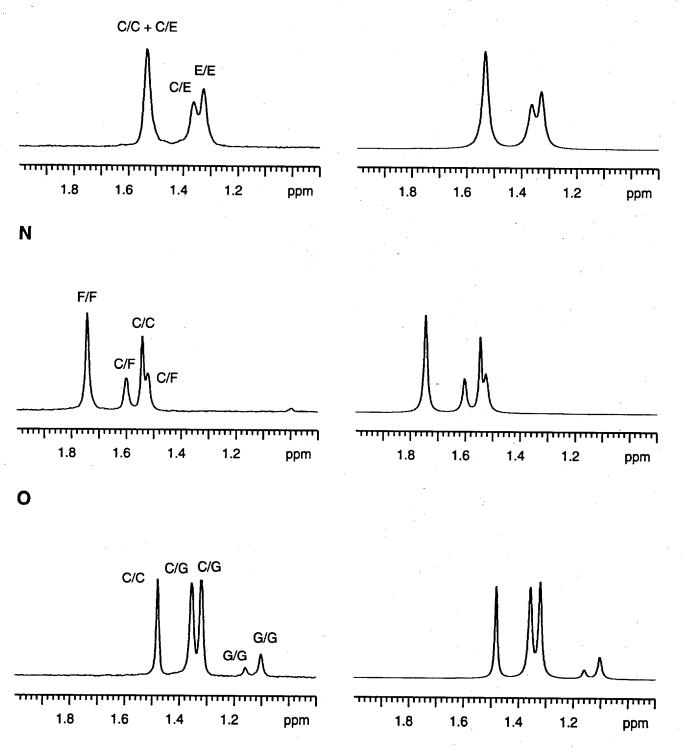
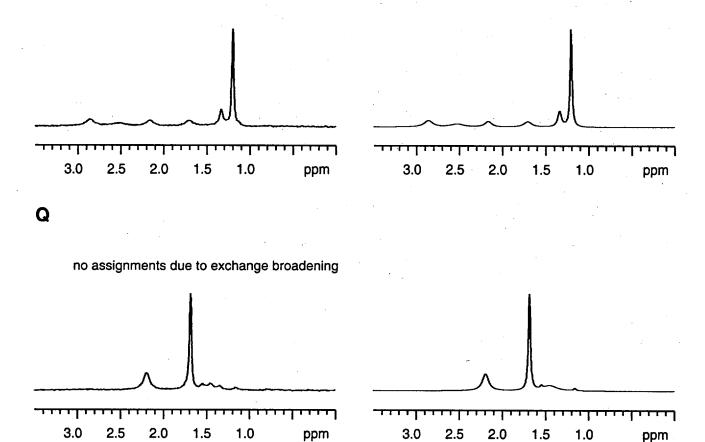



Figure II. (cont.) 6Li NMR spectra (*left*: before deconvolution; *right*: theoretical spectra after deconvolution) of 0.1 M [6Li]PhLi in toluene-d₈ at -100 °C containing the following ligands: (M) 0.7 equiv of 1,2-dipyrrolidinoethane (C) and 5.7 equiv of TMPDA (E); (N) 2.6 equiv of 1,2-dipyrrolidinoethane (C) and 0.6 equiv of *trans-(R,R)-TMCDA* (F); (O) 0.6 equiv of 1,2-dipyrrolidinoethane (C) and 0.6 equiv of (-)-sparteine (G).

P

no assignments due to exchange broadening

R

no assignments due to exchange broadening

Figure II. (cont.) ⁶Li NMR spectra (*left*: before deconvolution; *right*: theoretical spectra after deconvolution) of 0.1 M [⁶Li]PhLi in toluene- d_8 at -100 °C containing the following ligands: (P) 0.6 equiv of 1,2-dipiperidinoethane (**D**) and 0.6 equiv of TMPDA (**E**); (Q) 0.6 equiv of 1,2-dipiperidinoethane (**D**) and 0.6 equiv of *trans-(R,R)-TMCDA* (**F**); (R) 1.2 equiv 1,2-dipiperidinoethane (**D**) and 0.4 equiv of (-)-sparteine (**G**).

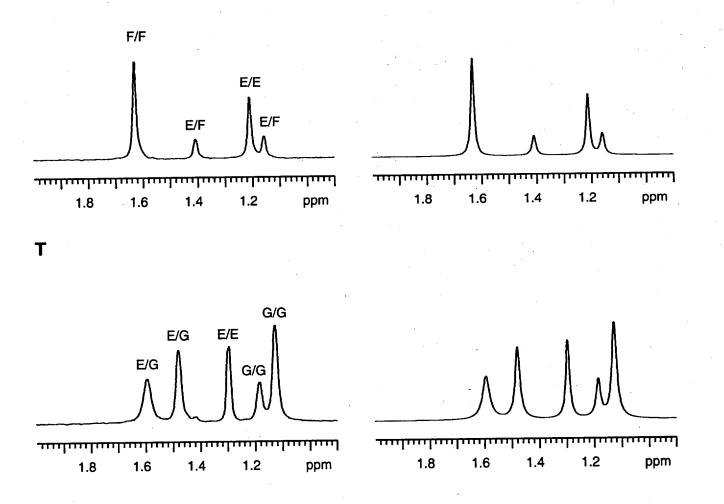


Figure II. (cont.) 6Li NMR spectra (*left*: before deconvolution; *right*: theoretical spectra after deconvolution) of 0.1 M [6Li]PhLi in toluene- d_8 at -100 °C containing the following ligands: (S) 0.6 equiv of TMPDA (E) and 0.6 equiv of *trans-(R,R)-TMCDA* (F); (T) 1.2 equiv of TMPDA (E) and 1.2 equiv of (-)-sparteine (G).

U

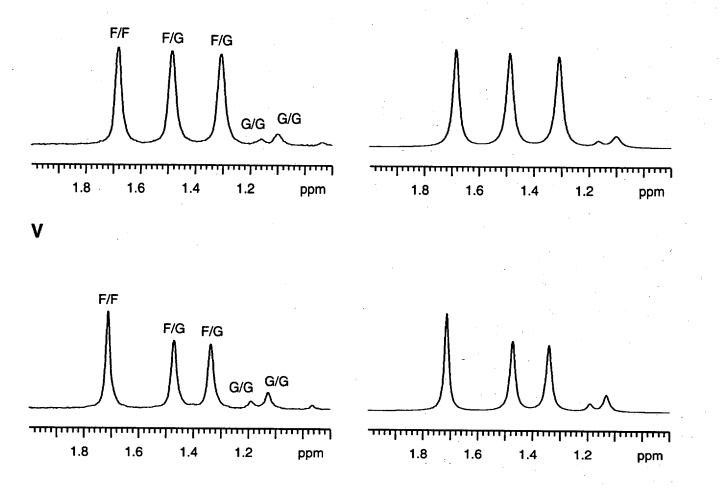


Figure II. (cont.) 6Li NMR spectra (*left*: before deconvolution; *right*: theoretical spectrum after deconvolution) of 0.1 M [6Li]PhLi in toluene- d_8 at -100 °C containing the following ligands: (U) 1.3 equiv of *trans-(R,R)*-TMCDA (**F**) and 5.6 equiv of (-)-sparteine (**G**); (V) 0.7 equiv of *trans-(S,S)*-TMCDA (**F**) and 3.7 equiv of (-)-sparteine (**G**).

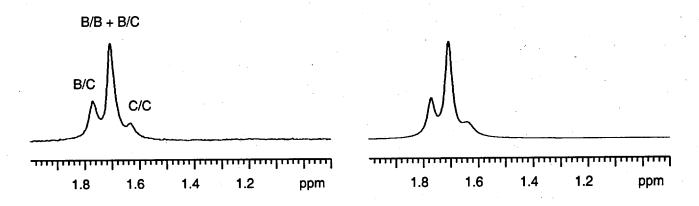


Figure II. (cont.) 6Li NMR spectra (*left*: before deconvolution; *right*: theoretical spectrum after deconvolution) of 0.1 M [6Li]PhLi in pentane/toluene-d₈ (2:1) at -135 °C containing the following ligands: (W) 0.6 equiv of 1,2-dipyrrolidinoethane (C) and 0.6 equiv of TEEDA (B).

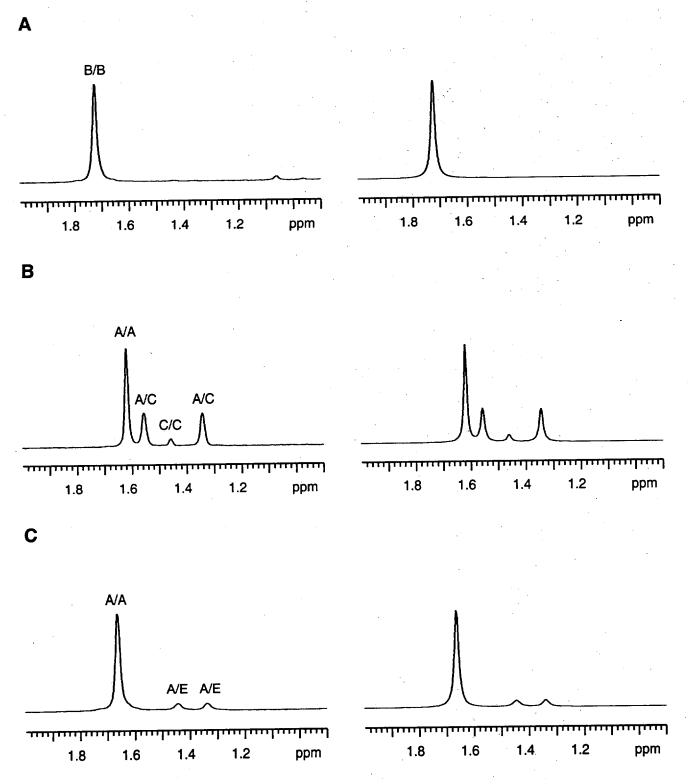


Figure III. 6Li NMR spectra (*left*: before deconvolution; *right*: theoretical spectra after deconvolution) of 0.1 M [6Li]PhLi in toluene-d₈ at -100 °C containing the following ligands: (A) 1.5 equiv of TMEDA (A) and 15.0 equiv of TEEDA (B); (B) 1.5 equiv of TMEDA (A) and 9.0 equiv of 1,2-dipyrrolidinoethane (C); (C) 1.5 equiv of TMEDA (A) and 10.0 equiv of TMPDA (E). Note: The combination of TMEDA and D was not investigated at high ligand concentrations due to unassignable peaks in the spectrum (see Figure II (C)).

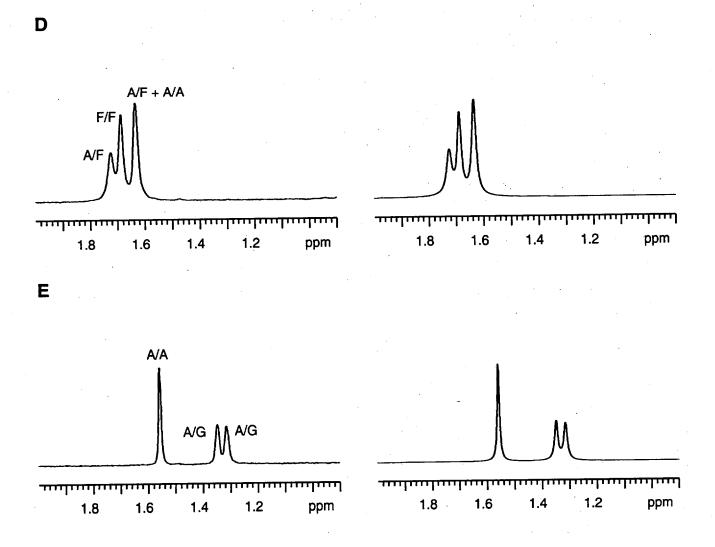


Figure III. (cont.) 6Li NMR spectra (*left*: before deconvolution; *right*: theoretical spectra after deconvolution) of 0.1 M [6Li]PhLi in toluene-d₈ at -100° C containing the following ligands: (D) 1.5 equiv of TMEDA (**A**) and 1.5 equiv of *trans-(R,R)-TMCDA* (**F**); (E) 1.3 equiv of TMEDA (**A**) and 1.3 equiv of (-)-sparteine (**G**).

F

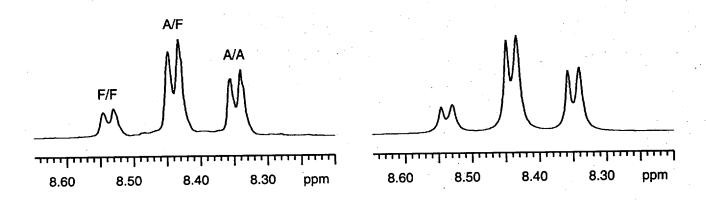


Figure III. (cont.) Partial ¹H NMR spectra (*left*: before deconvolution; *right*: theoretical spectrum after deconvolution) depicting the *ortho*-proton region of 0.1 M [⁶Li]PhLi in toluene-d₈ at -70 °C containing the following ligands: (F) 2.4 equiv of TMEDA (A) and 1.2 equiv of *trans-(R,R)-TMCDA* (F). Note: The *ortho*-protons of the two homosolvates and the mixed solvate are well resolved in the ¹H NMR spectrum for all TMCDA/diamine combinations.

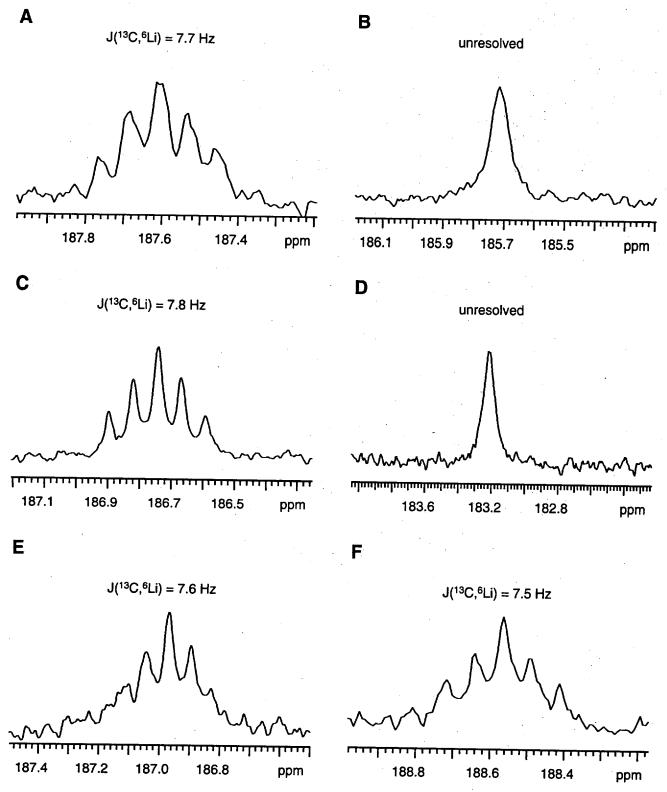


Figure IV. Partial 13 C{ 1 H} NMR spectra of 0.1 M [6 Li]PhLi in toluene-d₈ at -70 °C showing the PhLi *ipso*-carbon resonances ($^{\circ}$ CH₂Li). The samples contained the following ligands: (A) 1.0 equiv of TMEDA (A); (B) 3.0 equiv of TEEDA (B); (C) 1.2 equiv of 1,2-dipyrrolidinoethane (C); (D) 1.5 equiv of 1,2-dipiperidinoethane (D); (E) 2.1 equiv of TMPDA (E); (F) 1.2 equiv of *trans-(R,R)-TMCDA* (F). Note: PhLi does not dissolve with(-)-sparteine (G).

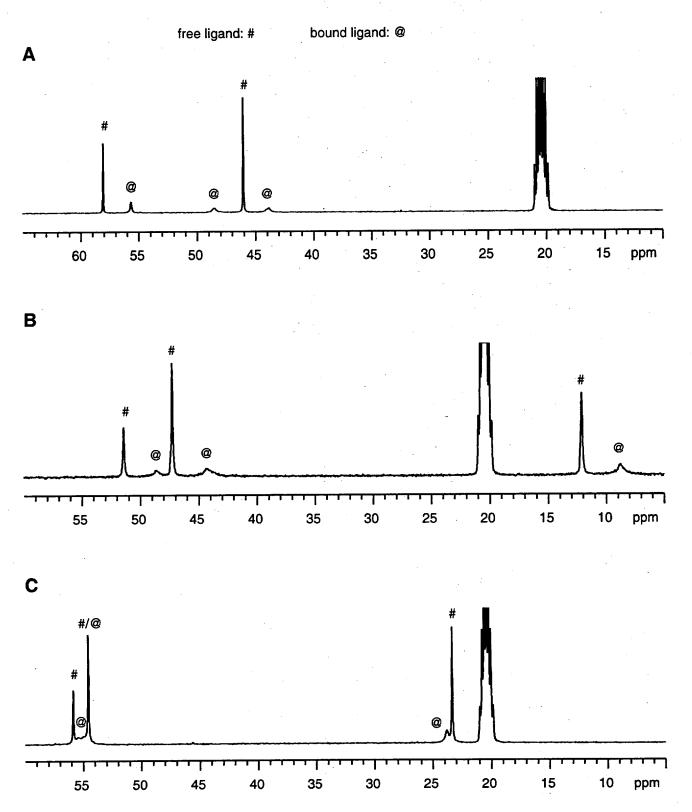


Figure V. Inverse gated $^{13}C\{^{1}H\}$ NMR spectra of 0.1 M [^{6}Li]PhLi in toluene-d₈ at -100 °C containing the following ligands: (A) 3.0 equiv of TMEDA (A); (B) 3.0 equiv of TEEDA (B); (C) 3.2 equiv of 1,2-dipyrrolidinoethane (C).

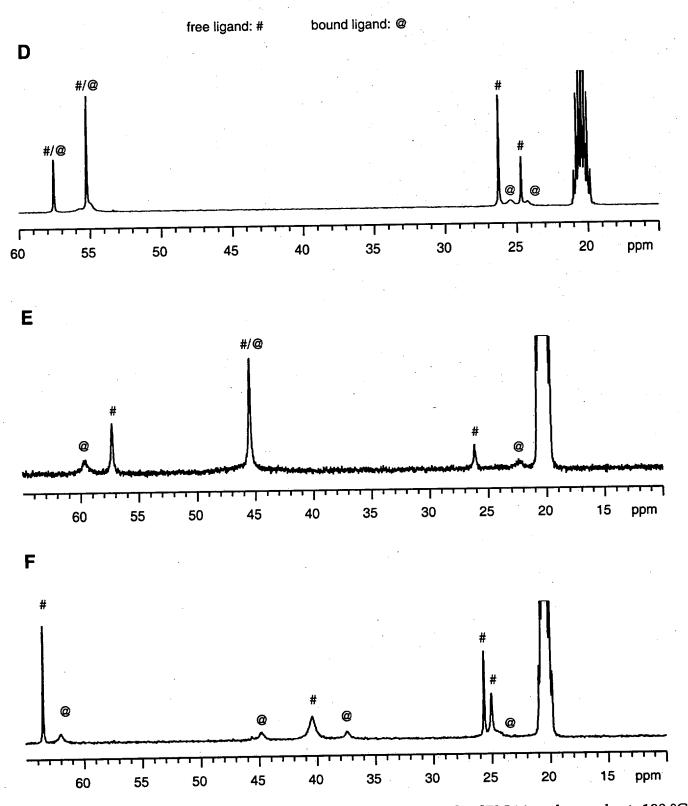


Figure V. (cont.) Inverse gated 13 C{ 1 H} NMR spectra of 0.1 M [6 Li]PhLi in toluene-d $_{8}$ at -100 °C containing the following ligands: (D) 3.0 equiv of 1,2-dipiperidinoethane (D); (E) 2.1 equiv of TMPDA (E); (F) 3.2 equiv of *trans-(R,R)-TMCDA* (F).

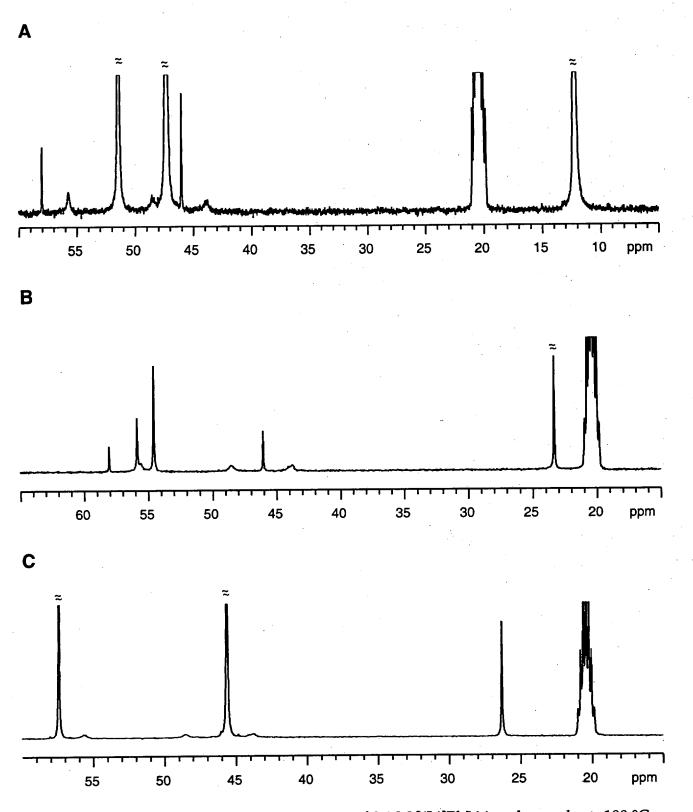


Figure VI. Inverse gated 13 C{ 1 H} NMR spectra of 0.1 M [6 Li]PhLi in toluene-d₈ at -100 $^{\circ}$ C containing molar excesses of each of the following ligands: (A) 1.5 equiv of TMEDA (A) and 15.0 equiv of TEEDA (B); (B) 1.5 equiv of TMEDA (A) and 1.5 equiv of 1,2-dipyrrolidinoethane (C); (C) 1.5 equiv of TMEDA (A) and 10.0 equiv of TMPDA (E).

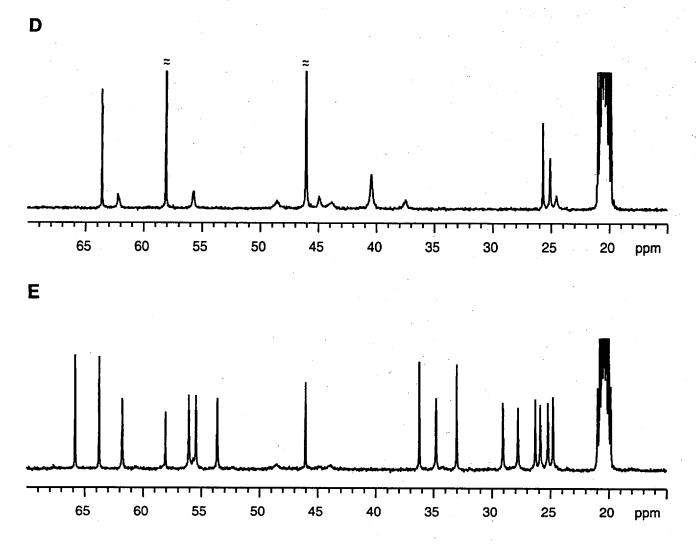
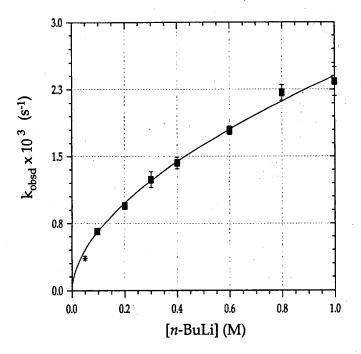


Figure VI. (cont.) Inverse gated ¹³C{¹H} NMR spectra of 0.1 M [6Li]PhLi in toluene-d₈ at -100 °C containing molar excesses of each of the following ligands: (D) 2.4 equiv of TMEDA (A) and 1.2 equiv of *trans-(R,R)-TMCDA* (F); (E) 1.3 equiv of TMEDA (A) and 3.1 equiv of (-)-sparteine (G).

Table 1. 6Li NMR spectroscopic data of diamine-solvated PhLi dimers, (PhLi)₂SS'.a


S	S'	δ ⁶ Li	S	S'	δ ⁶ Li	S	S'	δ ⁶ Li
A	. A	1.68	A	В	1.64, 1.40	G	В	1.32, 1.56
В	В	1.55	A	C	1.65, 1.40	G	C	1.36, 1.39
C	C	1.53	A	D	1.60, 1.52, 1.32b	G	D	c,c
D	D	2.20	Α	E	1.46, 1.35	G	E	1.49, 1.59
E	E	1.31	\mathbf{A}	F	d,d	$\mathbf{G}^{^{i}}$	F	1.35, 1.52
F	F	1.69	A	Ğ	1.47, 1.44	•		
G	G	1.20, 1.14 ^d						

aSpectra were recorded on 0.1 M solutions of [6Li]PhLi in toluene- d_8 at -100 °C. Samples contain a single diamine (A-G; S = S') or mixtures of two diamines (S \neq S'). 6Li chemical shifts are reported relative to 0.3 M 6LiCl/MeOH at -100 °C (0.0 ppm). The shifts are temperature and concentration dependent. bThe additional resonance may stem from slow conformational exchange within the piperidine ring. See discussion of this topic in a footnote of the manuscript. cRapid exchange at -100 °C causes severe (50-60 Hz) resonance broadening. dComplete overlap of resonances is observed. eThe two resonances may stem from two possible sparteine orientations.

Table 2. ¹³C NMR spectroscopic data of diamine-solvated PhLi dimers, (PhLi)₂S_{2.a}

13C(1H): free ligand (δ, ppm)	58.07, 46.05	51.46, 47.30, 12.15	55.89, 54.60,b 23.35	57.56,555.23,526.23, 24.67	57.28, 45.47,b 26.16	63.54, 40.42, 25.66, 25.03
13C(1H) (8, ppm) (ipso-carbon of phenyl)	187.69	186.35	186.89	182.93	187.65	188.80
13C(1H): bound ligand	55.66, 48.57, 43.85	48.61, 44.20, 8.72	55.46, 54.60,5 23.79	57.56,55.23,5 25.40, 24.22	59.64, 45.47,b 22.39	62.01, 44.76, 37.46,c
cmpd	5A	.5B	50	5 D	SE E	$5_{ m F}$

^aSpectra were recorded on 0.1 M solutions of [6Li]PhLi (containing diamines A-G) in toluene-d₈ at -100 °C. ¹³C chemical shifts are reported relative to toluene-d₈ at -100 °C (8 20.4 ppm). ⁵Average of free and bound ligand resonance. cPeaks are too small to be observed above baseline.

[n-BuLi](M)	k_{obs}	_{sd} x10 ³ (s-1)	Average k _{obsd} x10 ³ (s ⁻¹	
0.05a,b	0.362(6)			
0.096 ^b	0.67(2)	0.65(2)	0.66	
0.2	0.91(2)	0.98(1)	0.95	
0.3	1.33(2)	1.15(2)	1.24	
0.4	1.36(2)	1.49(̇5)	1.43	
0.6	1.75(5)	1.84(5)	1.80	
0.8	2.13(9)	2.3(1)	2.22	
1.0	2.18(7)	2.5(1)	2.34	

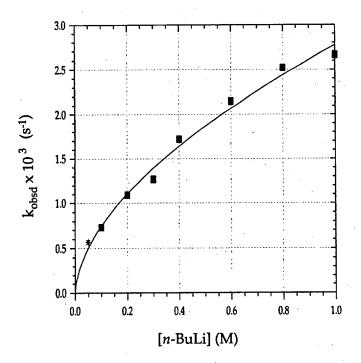
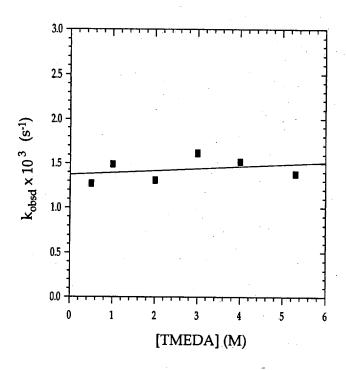

aNot included in fit. b[1] = 0.004 M.

Figure VII. Plot of k_{obsd} vs. [n-BuLi] for the 1,2-addition to imine 1 (0.01 M) in TMEDA (0.5 M excess) and pentane at -40 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = a[n$ -BuLi] b ($a = 2.40(4) \times 10^{-3}$, b = 0.56(2)). (Asterisk (*) not included in fit.)

[TMEDA] (M)		$k_{obsd} \times 10^3$ (s	s-1)	Average k _{obso}	1 x10 ³ (s ⁻¹)
0.5	1.33(2)	1.15(2)		1.24	
1.0	1.31(2)	1.37(2)		1.34	
2.0	1.29(3)	1.47(3)		1.38	
2.7	1.71(4)	1.60(4)	1.44(3)	1.58	
4.0	1.93(4)	1.73(4)	1.59(4)	1.75	
5.3	1.45(3)	1.66(4)	` ,	1.56	


Figure VIII. Plot of k_{obsd} vs. [TMEDA] for the 1,2-addition of n-BuLi (0.3 M) to imine 1 (0.01 M) in pentane at -40 °C. The curve depicts the result of an unweighted least-squares fit to k_{obsd} = a[TMEDA] + b (a = 8(3) x 10-5, b = 1.26(9) x 10-3).

[n-BuLi] (M)	k _{obsd} x10 ³ (s-1)
0.05a,b	0.566(9)
0.1 ^b	0.73(1)
0.2	1.09(1)
0.3	1.27(2)
0.4	1.72(3)
0.6	2.15(4)
0.8	2.52(5)
1.0	2.66(8)

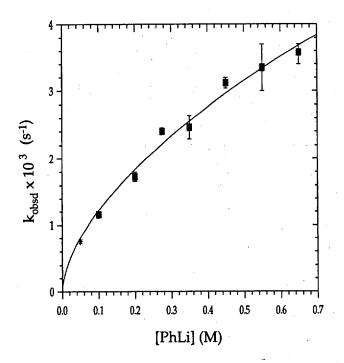
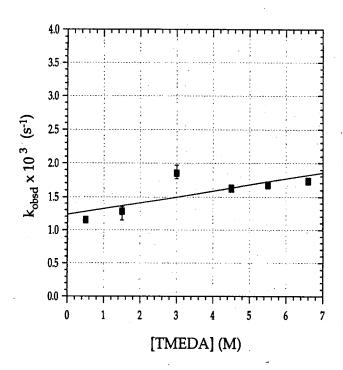

aNot included in fit. b[1] = 0.004 M.

Figure IX. Plot of k_{obsd} vs. [n-BuLi] for the α -lithiation of 6 (0.01 M) in TMEDA (0.5 M excess) and pentane at -40 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = a[n$ -BuLi] b ($a = 2.77(7) \times 10^{-3}$, b = 0.57(4)). (Asterisk (*) not included in fit.)

[TMEDA] (M)	$k_{obsd} \times 10^3 (s^{-1})$
0.5	1.27(2)
1.0	1.49(2)
2.0	1.31(2)
3.0	1.62(5)
4.0	1.52(8)
5.3	1.38(2)


Figure X. Plot of k_{obsd} vs. [TMEDA] for the α -lithiation of imine 6 (0.01 M) with n-BuLi (0.3 M) in pentane at -40 °C. The curve depicts the result of an unweighted least-squares fit to k_{obsd} = a[TMEDA] + b (a = 2(3) x 10-5, b = 1.4(1) x 10-3).

[PhLi] (M)	k _{ob}	_{sd} x10 ³ (s-1)		Average k _{ob}	sd x103 (s-1)
0.05a	0.75(2)				
0.1	1.16(3)	1.15(4)		1.16	
0.2	1.80(8)	1.66(6)		1.73	
0.275	2.41(3)	2.40(4)		2.41	
0.35	2.64(5)	2.29(3)		2.47	,
0.45	3.2(2)	3.04(4)		3.12	
0.55	3.0(9)	3.7(1)		3.35	
0.65	3.63(9)	3.4(2)	3.7(1)	3.58	

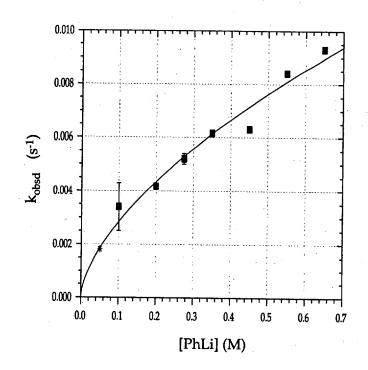
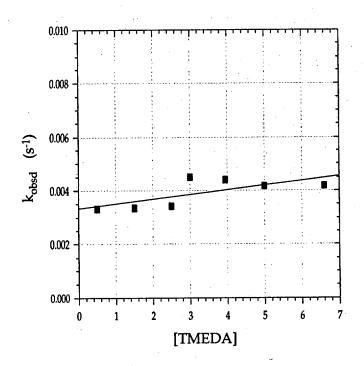

^a Not included in fit. b[1] = 0.004 M

Figure XI. Plot of k_{obsd} vs. [PhLi] for the 1,2-addition to imine 1 (0.01 M) in neat TMEDA at 19 °C. The curve depicts the result of an unweighted least-squares fit to k_{obsd} = a[PhLi]^b (a = 4.8(2) x 10⁻³, b= 0.59(4)). (Asterisk (*) not included in fit.)

[TMEDA] (M)		$k_{obsd} \times 10^3$	(s-1)	Average k _{obsd} x10 ³ (s-1)
0.5	1.19(3)	1.11(5)		1.15	
1.5	1.01(3)	1.42(5)	1.40(4)	1.28	
3.0	1.68(5)	2.09(4)	1.77(6)	1.85	
4.5	1.70(3)	1.55(4)		1.63	
5.5	1.64(7)	1.71(5)		1.68	
6.6	1.80(8)	1.66(6)		1.73	


Figure XII. Plot of k_{obsd} vs. [TMEDA] for the 1,2-addition of PhLi (0.2 M) to imine 1 (0.01 M) in pentane at 19 °C. The curve depicts the result of an unweighted least-squares fit to k_{obsd} = a[TMEDA] + b (a = 9(4) x 10-5, b = 1.2(2) x 10-3).

[PhLi] (M)	k _{obsd}	x10 ³ (s-1)	Average k _{obsd} x10 ³ (s ⁻¹		
0.05a,b 0.1b 0.2 0.275 0.35 0.45 0.55 0.65	1.81(4) 4.3(2) 4.22(7) 5.4(2) 6.2(2) 6.3(2) 8.4(4) 9.3(3)	2.51(7) 4.14(8) 5.0(2) 6.1(2)	3.41 4.18 5.20 6.15		

aNot included in fit. b[1] = 0.004 M.

Figure XIII. Plot of k_{obsd} vs. [PhLi] for the α -lithiation of 6 (0.01 M) in neat TMEDA at 19 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd} = a[PhLi]^b$ ($a = 1.17(8) \times 10^{-2}$, b = 0.61(7)). (Asterisk (*) not included in fit.)

[TMEDA] (M)	k _{obsd} x10 ³ (s-1)
0.5	3.32(5)
1.5	3.35(5)
2.5	3.42(7)
3.0	4.50(4)
3.95	4.4(1)
5.0	4.17(7)
6.6	4.18(7)

Figure XIV. Plot of k_{obsd} vs. [TMEDA] for the α -lithiation of 6 (0.01 M) with PhLi (0.2 M) in pentane at 19 °C. The curve depicts the result of an unweighted least-squares fit to k_{obsd} = a[TMEDA] + b (a = 1.7(8) x 10-4, b = 3.3(3) x 10-3).

Table 3. k_{obsd} (s-1) for the 1,2-addition and α -lithiation of imine 1 and imine 6, respectively, with n-BuLi and PhLi in pentane and diamines **A-G**.

	Bul	_ja	PhLic		
<u>Ligand</u>	1,2-addition	α -lithiation	1,2-addition	α -lithiation	
A (TMEDA)	2.2(1)	3.2(4)	1.15(5)	3.3(3)	
B (TEEDA)	1.23(2)	3.1(6)	1.62(8)	2.05(9)d	
C	0.147(3)	0.273(4)	0.133(8)	2.1(1)	
D	0.39(1)	0.96(5)b	0.54(2)	2.5(1)d	
E (TMPDA)	0.77(2)	0.89(3)	0.95(2)	0.75(1)	
$\mathbf{F}(R,R)$ -TMCD	A) 1.16(8)	1.16(5)	2.2(2)	3.6(3)	
G (-)-sparteine	0.65(2)	2.4(2)	е	е	

aMeasured at -20 °C with 0.1 M n-BuLi and 0.6 M (0.5 M excess) diamine in pentane. $^{b}[D] = 0.4$ M (excess). cMeasured at 19 °C. Solubility problems required variations in the PhLi molarities; scaling to 0.2 M assuming a 1/2 order dependence is not included in this table: A, [PhLi] = 0.2 M; B, [PhLi] = 0.2 M; C, [PhLi] = 0.07 M; D, [PhLi] = 0.2 M (addition), 0.1 M (α-lithiation); E, [PhLi] = 0.2 M; F, [PhLi] = 0.1 M. The diamines were maintained at 0.5 M excess in pentane. dLow concentrations of possible imine/PhLi precomplexes appear to form (1645-1655 cm⁻¹). ePhLi is insoluble in (-)-sparteine/pentane.