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The long-held belief that strongly coordinating solvents neces- LiHIMDS dimer
sarily accelerate organolithium reactions due to intervening de- /
aggregations is not altogether logiéale illustrate the point with
a truism: High reaction rates stem froselectve stabilization of
the rate-limiting transition structure®lative to the reactants. It 4-dy 4-d;
follows that reaction rates should be maximized in solvents showing 7.d,
little or no affinity for the reactants and a high affinity for the
transition structure(s). It is unclear why strongly coordinating
solvents would be so discriminating. Nevertheless, a preoccupation
with highly Lewis basic solvents has practical consequences. For
example, whereas solvents perceived to be strongly coordinating T T T T ]
are prominent in organolithium chemistrypoorly coordinating 25 20 15 10 0.5ppm
trialkylamines have been abandoned by all but a few polymer Figure 1. 5Li NMR spectrum of fLi, SN]LIHMDS (0.10 M in pentane) at
chemistg’ > The lithium hexamethyldisilazide (LIHMDS)-mediated ~ —120°C showing complexation by ketorfeds (0.2 equiv) and EN (3.0
enolization illustrated in eq 1 suggests that trialkylamines deserve €auiv).
further evaluation. The rate studies described herein reveal that the

acceleration imparted by 4 stems from a dimer-based mechanism
(Scheme 1). In contrast, the slower enolization in THF appears to 6
derive from a monomer-based mechanfs. ~ 51
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The highly solvent-dependent enolization is best understood in [Et;N] (M)
the context of the low reactivity of LIHMDS in neat toluene. Figure 2. Plot of kensqversus [EsN] in toluene for the enolization df-ds
Treatment of freshly recrystallized LiIHMBS0.05-0.30 M) in (0.004 M) by LIHMDS (0.10 M) at-78 °C. The curve depicts the results
toluene with low concentrations of ketodg0.004 M; IR: 1722 of an unweighted least-squares fitkgysa = a[EtsNJ/(1 + b[EtsN]).
cm™Y) affords LiIHMDS-ketone comple8 (1707 cnt?) quantita- Scheme 1
tively.® Complex3 was fully characterized usinéLfi, *>N]LIHMDS EtN
and well-establisheéLi and >N NMR spectroscopie¥:1! Using Mesioy Lio S R vesi., Ly oS
in situ IR spectroscopy to follow the loss & and its 2,6,6- Mesi” 7 Sivtes Mesi :ﬁ)’ siMde
trideuterated analogu8-{s) reveals first-order decays and a large Me i 3 Me 4
kinetic isotope effectkopsdfKobsa) = 10 = 1 at —40 °C).*2 In \é \i‘j
conjunction with a first-order dependence @j, [a zeroth-order
dependence on [LIHMDS] indicates that enolization proceeds via / \
a dimer-based transition structure suctbgScheme 13314 MeSi  SiMes Mesi,  siMe ]}
Enolization of ketond. by LIHMDS/Et;N mixtures also proceeds Mes S",N’ ‘N j<SiMes MesStan - N‘S'Me’
via a dimer-based mechanism. The conversion of conpidow l (; - B 7Nty
[EtsN] to 4 at elevated [EN] is accompanied by a characteristic CG
downfield shift® of the SLi resonance corresponding to thest e

solvatedSLi nucleus (Figure 138 The 6Li spectrum also includes 6

the primary product, mixed dimet.1%17 IR spectroscopy reveals

that the ketone remains complexed to the lithiurd-efven at high 2) displays saturation kinetics consistent with recalcitrant conversion
[EtsN]. Monitoring the enolization using IR spectroscopy reveals of 3to 4. A zeroth-order dependence on{l} and [LiIHMDS] (at
afirst-order loss oft and a substantial isotope effekidsqfKobsd(o) high [EN]), in conjunction with the first-order loss df indicates
=5+ 1 at =78 °C). A plot of kosq Versus [EIN] (Figure that dimer4 reacts via a monosolvated-dimer-based transition
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. . . porting Information).
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