Formation of Benzynes from 2,6-Dihaloaryllithiums: Mechanistic Basis of the Regioselectivity

Antonio Ramírez^a, John Candler^b, Crystal G. Bashore^b, Michael C. Wirtz^b, Jotham W. Coe^a*, and David B. Collum^b*

Contribution from the Department of Chemistry and Chemical Biology ^aBaker Laboratory, Cornell University, Ithaca, New York 14853-1301 ^bPfizer Global Research and Development, Groton Laboratories, Pfizer, Inc., Groton, CT 06340

Supporting Information

NMR Spectroscopy

I 13 C NMR spectrum of 2-chloro-6-fluorophenyllithium (6) in neat THF.

II ⁶Li NMR spectrum of 2-chloro-6-fluorophenyllithium (6) in THF (10.3 M).

III ⁶Li NMR spectra of 2-chloro-6-fluorophenyllithium (6) in THF (5.0 and 0.3 M).

Kinetics of Benzyne Formation

IV Plot of $k_{obsd(6)}$ versus [6] in THF (0.3 M) and toluene cosolvent for the formation of 3-chloro- and 3-fluorobenzyne.

V Plot of $k_{obsd(6)}$ versus [6] in THF (6.8 M) and toluene cosolvent for the formation of 3-chloro- and 3-fluorobenzyne.

S1

VI Plot of $k_{obsd(6)}$ versus [THF] in toluene cosolvent for the formation of 3-chloroand 3-fluorobenzyne from **6** (0.2 M).

VII Plot of $k_{obsd(2)}$ versus [THF] in toluene cosolvent for the formation of 3chlorobenzyne from **6** (0.2 M).

VIII Plot of $k_{obsd(3)}$ versus [THF] in toluene cosolvent for the formation of 3-fluorobenzyne from **6** (0.2 M).

IX Plot of $k_{obsd(6)}$ versus [spiro[2.4]hepta-4,6-diene] in THF (0.3 M) and toluene cosolvent for the formation of 3-chloro- and 3-fluorobenzyne from **6** (0.2 M).

X Plot of $k_{obsd(6)}$ versus [6] in THF (0.3 M) and toluene cosolvent for the formation of 3-chloro- and 3-fluorobenzyne from 6 (0.2 M).

XI Table of data for plot in Section IV.

XII Table of data for plot in Section V.

XIII Table of data for plot in Section VI.

XIV Table of data for plot in Section VII.

XV Table of data for plot in Section VIII.

XVI Table of data for plot in Section IX.

XVII Table of data for plot in Section X.

XVIII Table of data for observed ratio of [4]:[5].

DFT Calculations

XIX Optimized structures for the serial solvation of 2-chloro-6-fluorophenyllithium.

Experimental Section.

XX Physical and Spectral Data

NMR Spectroscopy

I. ¹³C NMR spectrum in neat THF at -100 °C of 0.4 M [⁶Li]2-chloro-6-fluorophenyllithium (6).

II. ⁶Li NMR spectrum in THF (10.3 M) with toluene cosolvent at -100 °C of 0.2 M [⁶Li]2-chloro-6-fluorophenyllithium (6).

III. ⁶Li NMR spectra in THF and toluene/pentane cosolvent at -85 °C: (**A**) 0.10 M [⁶Li]2-chloro-6-fluorophenyllithium (**6**) in [THF] = 5.0 M; (**B**) 0.10 M [⁶Li]2-chloro-6-fluorophenyllithium (**6**) in [THF] = 0.30 M.

Kinetics of Benzyne Formation

IV. Plot of $k_{obsd(6)}$ versus [6] in THF (0.3 M) and toluene cosolvent for the formation of 3-chloro- and 3-fluorobenzyne at -25 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd(6)} = k[6] + k'$ ($k = 5 \pm 5 \ge 10^{-4}$, $k' = 2.5 \pm 0.1 \ge 10^{-3}$).

V. Plot of $k_{obsd(6)}$ versus [6] in THF (6.8 M) and toluene cosolvent for the formation of 3chloro- and 3-fluorobenzyne at -25 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd(6)} = k[6] + k'$ ($k = 1 \pm 2 \ge 10^{-4}$, $k' = 8.6 \pm 0.6 \ge 10^{-4}$).

VI. Plot of $k_{obsd(6)}$ versus [THF] in toluene cosolvent for the formation of 3-chloro- and 3-fluorobenzyne from **6** (0.2 M) at -25 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd(6)} = k$ [THF]ⁿ + k' ($k = 4.0 \pm 0.4 \times 10^{-5}$, n = -1.12 \pm 0.09, $k' = 7.3 \pm 0.3 \times 10^{-4}$).

VII. Plot of $k_{obsd(2)}$ versus [THF] in toluene cosolvent for the formation of 3chlorobenzyne from **6** (0.2 M) at -25 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd(2)} = k[\text{THF}]^n + k'$ ($k = 4.2 \pm 0.6 \text{ x } 10^{-4}$, $n = -1.1 \pm 0.1$, $k' = 1 \pm 4 \text{ x} 10^{-5}$).

VIII. Plot of $k_{obsd(3)}$ versus [THF] in toluene cosolvent for the formation of 3fluorobenzyne from **6** (0.2 M) at -25 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd(3)} = k$ [THF] + k' ($k = -1 \pm 4 \ge 10^{-6}$, $k' = 7.1 \pm 0.2 \ge 10^{-4}$).

IX. Plot of $k_{obsd(6)}$ versus [spiro[2.4]hepta-4,6-diene] in THF (0.3 M) and toluene cosolvent for the formation of 3-chloro and 3-fluorobenzyne from **6** (0.2 M) at -25 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd(6)} = k$ [diene] + k' (k = $-1 \pm 4 \ge 10^{-4}$, k' = $2.2 \pm 0.1 \ge 10^{-3}$).

X. Plot of $k_{obsd(6)}$ versus [1] in THF (0.3 M) and toluene cosolvent for the formation of 3chloro and 3-fluorobenzyne from **6** (0.2 M) at -25 °C. The curve depicts the result of an unweighted least-squares fit to $k_{obsd(6)} = k[1] + k'$ ($k = 1 \pm 2 \ge 10^{-4}$, $k' = 2.3 \pm 0.1 \ge 10^{-3}$).

XI. Table of data for plot in Section IV

[6] (M)	$k_{\text{obsd(6)}} \ 1 \ (\text{s}^{-1})$	$k_{\text{obsd}(6)} \ 2 \ (\text{s}^{-1})$	$k_{\text{obsd}(6)}$ (avg) (s ⁻¹)
0.050	0.0029 <u>+</u> 3E-4	4 0.0022 <u>+</u> 2E-4	0.0026 <u>+</u> 5E-4
0.100	0.0022 <u>+</u> 1E-4	$0.0025 \pm 2E-4$	0.0023 <u>+</u> 3E-4
0.150	0.0026 <u>+</u> 1E-4	$0.0028 \pm 3E-4$	0.0027 <u>+</u> 1E-4
0.200	0.0022 <u>+</u> 2E-4	$0.0023 \pm 2E-4$	0.0022 <u>+</u> 1E-4
0.250	0.0025 <u>+</u> 3E-4	$0.0023 \pm 2E-4$	0.0024 <u>+</u> 1E-4
0.300	0.0025 <u>+</u> 2E-4	$0.0022 \pm 2E-4$	0.0024 <u>+</u> 2E-4
0.400	0.0024 <u>+</u> 2E-4	$0.0025 \pm 3E-4$	0.0024 <u>+</u> 1E-4

			•		~ .	
XII.	Table	of data	for	plot in	Section	V

[6] (M)	$k_{obsd(6)} \ 1 \ (s^{-1})$	$k_{\text{obsd(6)}} 2 \text{ (s}^{-1})$	$k_{\mathrm{obsd}(6)}$ (av	g) (s^{-1})
0.050	0.0008 <u>+</u> 1	E-4 0.0011 <u>+</u>	<u>1E-4</u> 0.0	0009 <u>+</u> 2E-4
0.100	0.00082 <u>+</u>	5E-5 0.00074	<u>+</u> 3E-5 0.0	00078 <u>+</u> 6E-5
0.150	0.00088 <u>+</u>	4E-5 0.00082	<u>+</u> 5E-5 0.0	00085 <u>+</u> 4E-5
0.200	0.00075 <u>+</u>	8E-5 0.00078	<u>+</u> 5E-5 0.0	00077 <u>+</u> 2E-5
0.300	0.0008 <u>+</u> 1	E-4 0.00077	<u>+</u> 4E-5 0.0	00081 <u>+</u> 5E-5
0.400	0.0008 <u>+</u> 1	E-4 0.00089	<u>+</u> 1E-5 0.0)0086 <u>+</u> 5E-5

XIII. Table of data for plot in Section VI

[THF] (M)	$k_{\text{obsd}(6)}$ (s ⁻¹)	$k_{\text{obsd(6)}} \ 2 \ (\text{s}^{-1})$	$k_{\text{obsd}(6)}$ (avg) (s ⁻¹)
0.30	0.0022 <u>+</u> 2E-4	0.0023 <u>+</u> 2E-4	0.0022 <u>+</u> 1E-4
0.50	0.0017 <u>+</u> 1E-4	0.0016 <u>+</u> 2E-4	0.0017 <u>+</u> 1E-4
0.80	0.0012 <u>+</u> 1E-5	0.0012 <u>+</u> 1E-4	0.0012 <u>+</u> 1E-4
1.30	0.0010 <u>+</u> 1E-5	0.00096 <u>+</u> 8E-5	0.00099 <u>+</u> 4E-5
1.80	0.00092 <u>+</u> 5E-5	0.0010 <u>+</u> 1E-4	0.00096 <u>+</u> 5E-5
2.80	0.00087 <u>+</u> 4E-5	0.00084 <u>+</u> 5E-5	0.00086 <u>+</u> 2E-5

3.80	0.00082 <u>+</u> 4E-6	0.00090 <u>+</u> 3E-5	0.00086 <u>+</u> 6E-5
4.80	0.0009 <u>+</u> 1E-4	0.00080 <u>+</u> 5E-5	0.00083 <u>+</u> 4E-5
6.80	0.00075 <u>+</u> 8E-5	0.00078 <u>+</u> 5E-5	0.00077 <u>+</u> 2E-5
9.00	0.00071 <u>+</u> 6E-5	0.00077 <u>+</u> 8E-5	0.00074 <u>+</u> 4E-5

XIV. Table of data for plot in Section VII

[THF] (M)	$k_{\text{obsd}(2)} \ 1 \ (\text{s}^{-1})$	$k_{\text{obsd(2)}} 2 (\text{s}^{-1})$	$k_{\text{obsd}(2)}$ (avg) (s ⁻¹)
0.30	0.0015 <u>+</u> 1E-4	0.0016 <u>+</u> 1E-4	0.0015 <u>+</u> 1E-4
0.50	0.0011 <u>+</u> 1E-4	0.00097 <u>+</u> 6E-5	0.0010 <u>+</u> 1E-4
0.80	0.00048 <u>+</u> 5E-5	0.00049 <u>+</u> 5E-5	0.00048 <u>+</u> 1E-5
1.30	0.00030 <u>+</u> 4E-5	0.00028 <u>+</u> 3E-5	0.00029 <u>+</u> 1E-5
1.80	0.00018 <u>+</u> 2E-5	0.00020 <u>+</u> 2E-5	0.00019 <u>+</u> 1E-5
2.80	0.00014 <u>+</u> 2E-5	0.00013 <u>+</u> 1E-5	0.00014 <u>+</u> 1E-5
3.80	0.00011 <u>+</u> 1E-5	0.00012 <u>+</u> 1E-5	0.00011 <u>+</u> 1E-5
4.80	0.000086 <u>+</u> 8E-6	0.00008 <u>+</u> 1E-5	0.000083 <u>+</u> 4E-6
6.80	0.000082 <u>+</u> 9E-6	0.000086 <u>+</u> 8E-6	0.000084 <u>+</u> 3E-6
9.00	0.000057 <u>+</u> 8E-6	0.000062 <u>+</u> 7E-6	0.000059 <u>+</u> 3E-6

XV. Table of data for plot in Section VIII

[THF] (M)	$k_{\text{obsd}(3)} \ 1 \ (\text{s}^{-1})$	$k_{\text{obsd}(3)} 2 (s^{-1})$	$k_{\text{obsd}(3)}$ (avg) (s ⁻¹)
0.30	0.00068 <u>+</u> 6E-5	0.00072 <u>+</u> 5E-5	0.00070 <u>+</u> 3E-5
0.50	0.00068 <u>+</u> 6E-5	0.00062 <u>+</u> 5E-5	0.00065 <u>+</u> 4E-5

0.80	0.00069 <u>+</u> 7E-5	0.00071 <u>+</u> 7E-5	$0.00070 \pm 1E-5$
1.30	0.00073 <u>+</u> 8E-5	0.00068 <u>+</u> 7E-5	0.00070 <u>+</u> 3E-5
1.80	0.00074 <u>+</u> 8E-5	0.00080 <u>+</u> 8E-5	0.00077 <u>+</u> 4E-5
2.80	0.00073 <u>+</u> 8E-5	0.00071 <u>+</u> 6E-5	0.00072 <u>+</u> 2E-5
3.80	0.00072 <u>+</u> 7E-5	0.00079 <u>+</u> 7E-5	0.00075 <u>+</u> 5E-5
4.80	0.00077 <u>+</u> 8E-5	0.00072 <u>+</u> 7E-4	0.00075 <u>+</u> 4E-5
6.80	0.00067 <u>+</u> 7E-5	0.00070 <u>+</u> 5E-5	0.00068 <u>+</u> 2E-5
9.00	0.00065 <u>+</u> 8E-5	0.00071 <u>+</u> 8E-5	0.00068 <u>+</u> 4E-5

XVI. Table of data for plot in Section IX

[Diene] (M)	$k_{\text{obsd}(6)} \ 1 \ (\text{s}^{-1})$	$k_{\text{obsd(6)}} 2 (\text{s}^{-1})$	$k_{obsd(6)}$ (avg) (s ⁻¹)
0.02	0.0022 <u>+</u> 2E-4	0.00212 <u>+</u> 4E-5	0.00216 <u>+</u> 5E-5
0.04	0.0022 <u>+</u> 2E-4	0.0023 <u>+</u> 2E-4	0.00225 <u>+</u> 8E-5
0.10	0.0020 <u>+</u> 1E-4	0.00217 <u>+</u> 4E-5	0.00211 <u>+</u> 9E-5
0.20	0.00207 <u>+</u> 3E-5	0.0021 <u>+</u> 2E-4	0.00210 <u>+</u> 4E-5

 $\boldsymbol{XVII}.$ Table of data for plot in Section X

[1] (M)	$k_{\text{obsd(6)}} \ 1 \ (\text{s}^{-1})$	$k_{\text{obsd(6)}} 2 (\text{s}^{-1})$	$k_{\text{obsd}(6)}$ (avg) (s ⁻¹)	
0.00	0.0025 ± 31	E-4 0.0021 <u>+</u>	2E-4 0.0023 <u>+</u> 3	3E-4
0.10	0.0022 ± 21	E-4 0.0024 <u>+</u>	3E-4 0.0023 <u>+</u>	1E-4
0.20	0.0022 ± 21	E-4 0.0023 <u>+</u>	2E-4 0.00225 <u>+</u>	8E-5
0.30	0.00225 <u>+</u> 3	3E-5 0.0025 <u>+</u>	2E-4 0.0024 <u>+</u>	1E-4

XVIII. Table of data for observed ratio of [4]:[5] versus [THF] in toluene cosolvent for the formation of 3-chloro and 3-fluorobenzyne from **6** (0.2 M).

[THF] (M)	ratio [4]:[5] (avg)
0.30	0.69 <u>+</u> 0.08
0.50	0.61 <u>+</u> 0.07
0.80	0.41 ± 0.05
1.30	0.29 ± 0.02
1.80	0.20 ± 0.02
2.80	0.16 ± 0.02
3.80	0.13 <u>+</u> 0.01
4.80	0.10 ± 0.01
6.80	0.11 ± 0.01
9.00	0.08 ± 0.01

DFT Calculations

XIX Optimized structures for the serial solvation of 2-chloro-6-fluorophenyllithium using Gaussian 98W at the B3LYP level of DFT theory with the 6-31G* basis set. Only the most stable isomers are shown. THF is modeled by Me₂O. Vibrational frequencies calculated at the same level characterize these stationary points as minima (NIMAG = 0). Enthalpies (ΔH , kcal/mol) include thermal corrections at 248 °C.

	<u>H (Hartrees)</u>
Me ₂ O	-154.94063
Α	-797.92399
В	-952.89941
С	-1107.85826
D	-1262.81714

Geometries of stationary points are given below:

Me_2O							
SCF Done	e: E(RB+HF-LY	P) = -155.02	5044227 A	.U. after	1 cycles		
Zero-point correction=			0.0	0.08030 (Hartree/Particle)			
Thermal correction to Energy=		0.0	0.083627				
Thermal	correction to	Enthalpy=	0.0	84413			
Center Atomic Atomic			Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z		
1	8	0	0.000000	-0.589888	-0.000009		
2	6	0	-1.171072	0.195261	0.000015		
3	6	0	1.171072	0.195261	-0.000009		
4	1	0	1.232500	0.839668	0.892951		
5	1	0	2.021947	-0.491384	-0.000033		
6	1	0	1.232477	0.839704	-0.892944		
7	1	0	-1.232496	0.839702	-0.892920		
8	1	0	-2.021947	-0.491385	0.000010		
9	1	0	-1.232480	0.839670	0.892975		
	1		2		3		
	A		A		А		
Frequencies 224.0277			250.185	2	415.2505		

A

SCF Done: Zero-poin Thermal c Thermal c	E (RB+HF-LM t correction correction to correction to	YP) = -798.00 h= b Energy= b Enthalpy=	2004980 A 0.0 0.0 0.0	.U. after 71769 (Hartr 77227 78012	14 cycles ee/Particle)	
Center Atomic Atomic			Coord	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	6	0	-0.193425	-0.864690	-0.000013	
2	6	0	-1.416565	-0.239413	0.00003	
3	9	0	-2.538598	-1.169689	-0.000019	
4	6	0	-1.728034	1.108292	0.000023	
5	6	0	-0.621208	1.963405	0.000034	
6	6	0	0.676630	1.441627	0.000023	
7	6	0	0.852017	0.053561	-0.000004	
8	17	0	2.536845	-0.542211	-0.000014	
9	3	0	-1.237038	-2.549999	-0.000035	
10	1	0	-2.749682	1.473450	0.000029	
11	1	0	-0.770017	3.039494	0.000052	
12	1	0	1.535346	2.105143	0.000033	
		1	2		3	
А			A	А		
Frequencies 134.6060			180.2365	5	218.7280	

SCF Done: Zero-point Thermal co Thermal co	E(RB+HF-L) correction rrection to rrection to	YP) = -953.06 n= o Energy= o Enthalpy=	4378177 A. 0.15 0.16 0.16	U. after 54053 (Hartr 54183 54969	14 cycles ee/Particle)
Center	Atomic	Atomic	Coord	stroms)	
Number	Number	Туре	Х	Y	Z
1	6	0	0.517707	-0.097437	-0.000476
2	6	0	1.657750	0.695168	-0.000110
3	6	0	2.967961	0.205485	0.000482
4	6	0	3.168674	-1.178510	0.000714
5	6	0	2.074672	-2.050366	0.000360
6	6	0	0.834489	-1.435254	-0.000214
7	9	0	-0.320455	-2.305072	-0.000618
8	17	0	1.476361	2.484006	-0.000386
9	3	0	-1.409738	-0.682707	-0.001178
10	8	0	-3.164529	-0.001791	0.000023
11	6	0	-3.253293	1.429716	0.000814
12	6	0	-4.433844	-0.649305	0.000061
13	1	0	2.190355	-3.129549	0.000518
14	1	0	4.179222	-1.577679	0.001170
15	1	0	3.814451	0.884673	0.000751
16	1	0	-5.006245	-0.375859	0.895737
17	1	0	-4.250755	-1.726097	-0.000339
18	1	0	-2.230337	1.811378	0.000551
19	1	0	-3.781265	1.775216	0.898331
20	1	0	-3.782093	1.776163	-0.895851
21	1	0	-5.006626	-0.375238	-0.895182
		1	2		3
А		A	А		A
Frequencies 16.4185		24.5809		36.7070	

B

Zero-point correction=			0.2	0.236176 (Hartree/Particle)		
Thermal correction to Energy=			0.2	0.255708		
Thermal	correction	to Enthalpy=	= 0.2	256652		
Center	Atomic	Atomic	Coo	rdinates (Ang	stroms)	
Number	Number	Туре	Х	Y	Z	
1	6	0	-0.941928	-0.004917	0.006531	
2	6	0	-2.203597	0.394607	0.424847	
3	6	0	-3.412979	-0.126936	-0.047072	
4	6	0	-3.372515	-1.131278	-1.018607	
5	6	0	-2.143289	-1.593294	-1.500385	
6	6	0	-1.021205	-0.992964	-0.950024	
7	9	0	0.247461	-1.448197	-1.435408	
8	17	0	-2.339067	1.694548	1.669751	
9	3	0	1.111564	-0.061364	-0.092483	
10	8	0	2.349638	-1.171238	0.950354	
11	8	0	2.139234	1.421288	-0.804696	
12	6	0	1.424015	2.620173	-1.115815	
13	6	0	3.352912	1.283858	-1.533547	
14	6	0	1.982743	-2.545182	1.097865	
15	6	0	2.914665	-0.620222	2.137273	
16	1	0	-2.072095	-2.369119	-2.256733	
17	1	0	-4.298707	-1.552209	-1.400715	
18	1	0	-4.362701	0.239047	0.330154	
19	1	0	3.159723	1.261759	-2.614802	
20	1	0	3.807402	0.340082	-1.224188	
21	1	0	0.493060	2.585753	-0.548322	
22	1	0	1.199163	2.665216	-2.189590	
23	1	0	1.500054	-2.842287	0.166558	
24	1	0	1.278555	-2.669456	1.930662	
25	1	0	2.200985	-0.673205	2.970091	
26	1	0	3.150597	0.424845	1.925489	
27	1	0	2.874965	-3.160040	1.275794	
28	1	0	3.833969	-1.155470	2.410559	
29	1	0	2.015391	3.499768	-0.828612	
30	1	0	4.038038	2.112392	-1.307662	
		1	2		3	
		A	A		А	
Frequencies 15.623		15.6234	27.28	27.2839		

C SCF Done: E(RB+HF-LYP) = -1108.11491248 A.U. after 2 cycles

D SCF Done: Zero-point Thermal co Thermal co	E(RB+HF-LY t correction prrection to prrection to	YP) = -1263.1 n= p Energy= p Enthalpy=	5555432 A 0.31 0.33 0.33	.U. after 18964 (Hartro 37628 38413	1 cycles ee/Particle)
Center Number	Atomic Number	Atomic Type	Coord X	linates (Ang: Y	stroms) Z
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ \end{array} $			$\begin{array}{c} 1.237202\\ 2.379766\\ 3.700645\\ 3.919881\\ 2.832849\\ 1.568395\\ 0.503343\\ 2.206331\\ -0.865117\\ -1.667152\\ -1.571027\\ -2.113353\\ -1.681818\\ -3.399541\\ -0.587545\\ -2.812640\\ -1.367372\\ -1.520667\\ 2.962245\\ 4.933122\\ 4.531412\\ -0.726277\\ -1.569304\\ -3.415516\\ -3.620298\\ -2.707589\\ -3.511773\\ 0.329057\\ -0.402336\\ -1.486140\\ -0.336034\\ -0.495897\end{array}$	$\begin{array}{c} -0.183550\\ 0.606120\\ 0.158558\\ -1.216726\\ -2.094241\\ -1.526871\\ -2.438785\\ 2.413110\\ 0.029217\\ 1.900208\\ -0.702604\\ -0.718243\\ -1.717046\\ -0.205562\\ -1.280256\\ -1.388955\\ 2.703681\\ 2.625809\\ -3.170738\\ -1.601323\\ 0.856854\\ -2.090196\\ -1.289142\\ 0.225650\\ 0.575531\\ -2.429305\\ -0.864021\\ -0.707728\\ -2.326084\\ 2.066267\\ 3.069820\\ 3.001635\end{array}$	$\begin{array}{c} -0.101580\\ -0.113680\\ -0.216079\\ -0.313210\\ -0.300318\\ -0.192752\\ -0.163327\\ 0.029336\\ 0.034984\\ 0.046561\\ 1.813882\\ -1.416262\\ -2.339968\\ -1.730425\\ 2.675543\\ 1.880201\\ -1.095365\\ 1.267254\\ -0.367208\\ -0.395573\\ -0.217218\\ -1.976835\\ -3.345869\\ -2.742051\\ -1.001204\\ 1.542061\\ 1.226563\\ 2.534081\\ 2.402321\\ -1.973809\\ -1.051284\\ 1.372752\end{array}$
33 34 35 36 37 38 39	1 1 1 1 1 1 1	0 0 0 0 0 0	-1.741727 -2.065314 -2.228120 -0.919848 -3.204603 -4.160687 -2.409418	1.926638 3.550702 3.466711 -1.221232 -1.384351 -0.997522 -2.540273	2.075260 -1.159531 1.299378 3.721395 2.907314 -1.675024 -2.380415
Frequenci	es 27.	1 A .4884	2 A 29.5158	3	3 A 40.0022

Experimental Section

Reagents and Solvents. 1-Chloro-3-fluorobenzene (1) is commercially available. *n*-BuLi used in the kinetics was recrystallized [see ref 10 in text]. Spiro[2.4]hepta-4,6diene was prepared and purified according to literature procedures [see ref 8 in text]. [⁶Li]*n*-BuLi was prepared and recrystallized as described previously [Chadwick, S. T.; Rennels, R. A.; Rutherford, J. L.; Collum, D. B. *J. Am. Chem. Soc.* **2000**, *122*, 8640]. THF, *n*-pentane and toluene were distilled from sodium/benzophenone. The pentane still contained 1% tetraglyme to dissolve the ketyl. The diphenylacetic acid used to check solution titers [Kofron, W. G.; Baclawski, L. M. *J. Org. Chem.* **1976**, *41*, 1879] was recrystallized from methanol and sublimed at 120 °C under full vacuum. Air- and moisture sensitive materials were manipulated under argon or nitrogen using standard glove box, vacuum line, and syringe techniques.

NMR Spectroscopic Analyses. Samples for spectroscopic analyses were prepared by using a protocol described elsewhere [Romesberg, F. E.; Bernstein, M. P.; Fuller, D. J.; Harrison, A. T.; Collum, D. B. *J. Am. Chem. Soc.* **1993**, *115*, 3475]. ⁶Li and ¹³C NMR spectra were recorded on a Varian XL-400 spectrometer operating at 58.84 and 100.58 MHz, respectively. The ⁶Li and ¹³C resonances are referenced to 0.30 M [⁶Li]LiCl/MeOH (0.0 ppm, -100 °C), and the THF β-methylene resonance (25.37 ppm, -100 °C), respectively.

Kinetics. For a kinetic run corresponding to a single rate constant, a relatively concentrated (2.2 M) solution of *n*-BuLi in toluene at -78 °C was prepared and titrated to determine the precise concentration. The solution was diluted to a concentration appropriate for the particular series and titrated a second time. A series of oven-dried, argon-flushed 5 mL serum vials (10 per rate constant) fitted with stir bars were charged with a stock solution containing 1-chloro-3-fluorobenzene (1), spiro[2.4]hepta-4,6-diene, THF, and *n*-octane as a GC standard. The reaction vials were held under argon at -25.0 ± 0.2 °C. The reactions were initiated by adding aliquots of a stock solution of *n*-BuLi in

S19

toluene, also refrigerated at –25 °C, to achieve a concentration 0.2 M below the actual 1chloro-3-fluorobenzene (1) concentration. The metalations were monitored by following the decrease of 1 relative to the internal standard at early percent conversion. The vessels were periodically quenched with 1:1 H₂O-THF at intervals chosen to ensure an adequate sampling of early conversion at 10% consumption of the starting material. The quenched aliquots were extracted into Et₂O and the extracts analyzed using an auto injecting GC fitted with a 60 meter DB-5 column. The initial rates were determined by linear leastsquares analyses, and were shown to be reproducible within \pm 10%. Following the formation of cycloadducts 4 and 5 afforded equivalent rate constants within \pm 10%. Beyond 20% consumption of the starting material, GC analyses showed detectable amounts (< 5%) of butyl adducts resulting from nucleophilic addition of *n*-BuLi to the intermediate 3-halobenzyne [Coe, J. W.; Wirtz, M. C.; Bashore, C. G.; Candler, J. *Org. Lett.* 2004, *6*, 1589]. The observed rate constants (k_{obsd}) were calculated by dividing the initial rates (linear slopes) by the corresponding concentrations of 2-chloro-6fluorophenyllithium (6). The reported errors correspond to one standard deviation.

XX. Physical and Spectral Data.

5-Chloro-9,9-spirocyclopropyl-1,4-dihydro-1,4-methano-naphthalene (4). Clear colorless oil. TLC: $R_f = 0.60 (100\% \text{ hexanes})$; MS $m/z 202 (M)^+$. ¹H NMR (400 MHz, CDCl₃) δ 7.04 (d, J = 6.6 Hz, 1H), 6.89 (dd, J = 7.9, 1.2 Hz, 1H), 6.87 - 6.82 (m, 3H), 3.56 (d, J = 2.1 Hz, 1H), 3.32 (br s, 1H), 0.67 - 0.52 (m, 2H), 0.50 - 0.43 (m, 2H). Anal. Calcd for C₁₃H₁₁Cl: C, 77.04; H, 5.47. Found: C, 75.78; H, 5.57. Anal. Calcd for C₁₃H₁₁Cl·1/4H₂O: C, 75.36; H, 5.59.

5-Fluoro-9,9-spirocyclopropyl-1,4-dihydro-1,4-methano-naphthalene (5). Clear colorless oil. TLC: $R_f = 0.60 (100\% \text{ hexanes})$; MS m/z 186, 184 (M)⁺. ¹H NMR (400 MHz, CDCl₃) δ 6.97 (d, J = 7.0 Hz, 1H), 6.87 (m, 1H), 6.83 (br s, 2H), 6.63 (ddd, J = 8.7, 8.3, 0.9 Hz, 1H), 3.58 (d, J = 1.6 Hz, 1H), 3.32 (m, 1H), 0.66 - 0.61 (m, 2H), 0.60 - 0.45 (m, 2H). Anal. Calcd for C₁₃H₁₁F: C, 83.84; H, 5.95. Found: C, 83.40; H, 6.12.