Reversible Enolization of β-Amino Carboxamides by Lithium Hexamethyldisilazide

Anne J. McNeil and David B. Collum*

Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301

Supporting Information

Structure Chart Synthesis of 1 and [¹⁵ N]1		S6
		S8
Spectroscop	ic Data for Characterization	
Figure S1.	¹ H and ¹³ C NMR spectra of <i>N</i> -Boc 1.	S10
Figure S2.	¹ H and ¹³ C NMR spectra of 1 .	S11
Figure S3.	¹ H and ¹³ C NMR spectra of $[^{15}N]$ 1 .	S12
Figure S4.	¹ H and ¹³ C NMR spectra of 2 .	S13
Figure S5.	¹ H and ¹³ C NMR spectra of 3 .	S14
Figure S6.	¹ H and ¹³ C NMR spectra of 10 .	S15
Figure S7.	¹ H NMR spectra showing racemization of (S) -1.	S16
Figure S8.	¹ H NMR spectra of <i>N</i> -Boc 2 and 3 .	S17

Figure S9.	Single crystal X-ray structure of <i>N</i> -Boc 2 .	S18
------------	--	-----

⁶Li and ¹⁵N NMR Spectra

Figure S10.	⁶ Li NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS and 1	
	at 0.0-0.08 M THF/toluene.	S19

Figure S11.	⁶ Li NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS and 1 at 0.1-1.0 M THF/toluene.	
Figure S12.	⁶ Li NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS and 1 at 2.0-8.0 M THF/toluene.	
Figure S13.	Plot of the ratio center/outer triplet resonance for LiHMDS dimer versus [THF] for spectra in Figure S12.	S25
Table S1.	Table of data for plot in Figure S13.	S25
Figure S14.	Plot of the ⁶ Li chemical shift (ppm) versus [THF].	S26
Table S2.	Table of data for plot in Figure S14.	S26
Figure S15.	⁶ Li NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS and 1 at 2.0 M THF/toluene at various temperatures.	S27
Figure S16.	¹⁵ N NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS and 1 at various THF concentrations.	S28
Figure S17.	⁶ Li, ¹⁵ N-HSQC spectrum of [⁶ Li, ¹⁵ N]LiHMDS and 1 at 4.0 M THF/toluene.	S29
Figure S18.	⁶ Li NMR spectra recorded on [⁶ Li]LiHMDS and [¹⁵ N] 1 at various THF concentrations.	S30
Figure S19.	¹⁵ N NMR spectra recorded on [⁶ Li]LiHMDS and [¹⁵ N] 1 at various THF concentrations.	
Figure S20.	⁶ Li NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS and varying concentrations of 1 in neat toluene.	S33
Figure S21.	⁶ Li NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS and varying concentrations of 1 in 0.06 M THF/toluene.	S34
Figure S22.	⁶ Li NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS and varying concentrations of 1 in 2.0 M THF/toluene.	
Figure S23.	⁶ Li NMR spectra recorded on [⁶ Li]LiHMDS and [¹⁵ N] 1 at 0.06 M THF/toluene.	
Figure S24.	⁶ Li, ¹⁵ N-HSQC spectrum recorded on [⁶ Li]LiHMDS and [¹⁵ N] 1 at 0.06 M THF/toluene.	S36

Figure S25.	⁶ Li NMR spectra recorded on [⁶ Li]LiHMDS and 1 ($X_R = 0.5$) at 0.06 M THF/toluene at various temperatures.	
Figure S26.	⁶ Li NMR spectra recorded on [⁶ Li]LiHMDS and 1 ($X_R = 1.0$) at 0.06 M THF/toluene at various temperatures.	
Figure S27.	⁶ Li NMR spectra recorded on [⁶ Li]LiHMDS and 1 ($X_R = 1.0$) at 0.06 M THF/toluene at 30 °C over 2 h.	
Figure S28.	⁶ Li NMR spectra recorded on [⁶ Li]LiHMDS and 1 at 0.06 M THF/toluene at 30 °C at various X_R .	S40
Table S3.	Job plot data.	S41
Figure S29.	Plot of the mole fraction of the aggregate versus the mole fraction of R enantiomer (X_R) for the tetramer model.	S42
Table S4.	Best-fit values of φ for the tetramer fit.	S42
Table S5.	Percent errors in φ for the tetramer fit.	S42
Figure S30.	Plot of the mole fraction of the aggregate versus the mole fraction of <i>R</i> enantiomer (X_R) for a hexamer model assuming $\mathbf{R_4S_2/R_2S_4}$ and $\mathbf{R_5S_1/R_1S_5}$ overlap.	S43
Table S6.	Best-fit values of φ for the hexamer fit in figure S30.	S43
Table S7.	Percent errors in φ for the hexamer fit in figure S30.	S43
Figure S31.	Plot of the mole fraction of the aggregate versus the mole fraction of <i>R</i> enantiomer (X_R) for a hexamer model assuming $\mathbf{R_4S_2/R_2S_4}$ and $\mathbf{R_3S_3}$ overlap.	S44
Table S8.	Best-fit values of φ for the hexamer fit in figure S31.	S44
Table S9.	Percent errors in φ for the hexamer fit in figure S31.	S44
Figure S32.	2. ⁶ Li NMR spectra recorded on [⁶ Li]LiHMDS and 1 ($X_R = 0.8$) at 0.06 M THF/toluene at 30 °C.	
Figure S33.	Plot of the mole fraction of the aggregate versus [enolate] for the spectra in Figure S32.	S46
Table S10.	Table of data for the plot in Figure S33.	S46
Figure S34.	⁶ Li NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS and 10	

	in toluene.	S47
Figure S35.	¹⁵ N NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS and 10 in toluene.	S49
Figure S36.	⁶ Li NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS and 10 at 2.0 M THF/toluene.	S50
Figure S37.	⁶ Li <i>J</i> -resolved spectrum of [⁶ Li, ¹⁵ N]LiHMDS and 10 at 2.0 M THF/toluene.	S52
Figure S38.	¹⁵ N NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS and 10 at 2.0 M THF/toluene.	S53
Figure S39.	⁶ Li NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS and 10 at 8.0 M THF/toluene.	S54
Figure S40.	Plot of the ⁶ Li chemical shift (ppm) versus the [10] (M) for 0.10 M [⁶ Li, ¹⁵ N]LiHMDS at 8.0 M THF/toluene.	S56
Table S11.	Table of ⁶ Li chemical shifts for the data in Figure S40.	S56
Figure S41.	¹⁵ N NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS and 10 at 8.0 M THF/toluene.	S57
Figure S42.	⁶ Li NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS and 10 at 8.0 M THF/toluene at various temperatures.	S58
Figure S43.	¹⁵ N NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS and 10 at 8.0 M THF/toluene at -105 °C.	S58
Figure S44.	⁶ Li NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS and 23 in toluene.	S59
Figure S45.	¹⁵ N NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS and 23 in toluene.	S61
Figure S46.	⁶ Li NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS and 23 in 2.0 M THF/toluene.	S62
Figure S47.	¹⁵ N NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS and 23 in 2.0 M THF/toluene.	S64
Figure S48.	⁶ Li NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS and 23 in 8.0 M THF/toluene.	S65

Figure S49.	¹⁵ N NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS and 23 in 8.0 M THF/toluene.		
Figure S50.	⁶ Li NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS at various THF concentrations.	S68	
Figure S51.	¹⁵ N NMR spectra recorded on [⁶ Li, ¹⁵ N]LiHMDS at various THF concentrations.	S70	
IR Spectra			
Figure S52.	IR spectra recorded on 1 and LiHMDS/1 at 11.7 M THF/toluene.	S71	
Figure S53.	IR spectra recorded on 10 and LiHMDS/ 10 at 8.0 M THF/toluene.	S71	
Figure S54.	IR spectra recorded on solutions of LiHMDS and 10 at various THF concentrations.	S72	
General Pro	cedure for Alkylation	S73	
Table S12.	Table of alkylation diastereoselectivities	S73	

Structure Chart

Structure Chart (continued)

Procedure for the synthesis of 1 and [¹⁵N]1.

(Adapted from the procedure used to couple an amino acid with a diazoketone by the Arndt-Eistert protocol, see Podlech, J.; Seebach, D. *Angew. Chem., Int. Ed. Engl.* **1995**, *34*, 471-472)

N-(*tert*-butoxycarbonyl)-L-alanine (2.5 g, 13.1 mmol) or [¹⁵N] *N*-(*tert*-butoxycarbonyl)-L-alanine was dissolved in THF (60 mL) and cooled to 0 °C. Et₃N (1.89 mL, 13.1 mmol) and ethyl chloroformate (1.26 mL, 13.1 mmol) were added to the flask. A white precipitate formed on stirring. Diazomethane was prepared from Diazald (5.61 g, 26.2 mmol) dissolved in Et₂O (50 mL) and distilled from a basic solution of KOH (5.7 g) in EtOH (95%, 11 mL) and H₂O (9 mL). The ethereal diazomethane solution was poured into the THF solution containing the mixed anhydride and the ice-water bath was removed. After stirring for 2-3 h or until evolution of N₂ had ceased, EtOAc (50 mL) was added to the reaction mixture and the heterogeneous mixture was extracted with aqueous solutions of NaHCO₃ (50 mL), NH₄Cl (50 mL), and NaCl (50 mL), dried over MgSO₄, and concentrated to give a yellow solid. The crude product was purified by silica gel chromatography (2/1 petroleum ether/EtOAc) to give the diazoketone (2.46 g, 88% yield). ¹H NMR (400 MHz, CDCl₃): δ 1.30 (d, *J* = 6.8 Hz, 3H), 1.42 (s, 9H), 4.19 (bm, 1H), 5.12 (bm, 1H), 5.42 (s, 1 H).

The diazoketone (2.46 g, 11.5 mmol) was dissolved in THF (40 mL) and the flask was wrapped with a dark cloth to exclude light. The homogeneous solution was cooled to -45 $^{\circ}$ C, and a solution of silver benzoate (0.29 g, 1.27 mmol) dissolved in Bu₂NH was added. The reaction was allowed to reach room temperature over 3-4 h. Et₂O (50 mL) was added to the reaction and the mixture was washed with a 1 M HCl solution (2 x 25 mL) followed by extraction with saturated solutions of NaHCO₃ (50 mL), NH₄Cl (50 mL),

S8

and NaCl (50 mL). The organic layer was dried over MgSO₄ and concentrated to give a yellow oil. The crude product was purified by silica gel chromatography (5/1 petroleum ether/EtOAc) to give the *N*-Boc-carboxamide (3.28 g, 91% yield). See Figure S1 for ¹H and ¹³C NMR spectra.

The *N*-Boc-carboxamide (3.28 g, 10.4 mmol) was dissolved in MeOH (25 mL) and TsOH H₂O (1.98 g, 10.4 mmol) was added. The solution was refluxed for 3 h until evolution of CO₂ has ceased. The MeOH is partially removed via rotary evaporation and CH₂Cl₂ (50 mL) was added followed by concentration. This procedure was repeated until the MeOH was completely removed as shown via ¹H NMR spectroscopy. ¹H NMR (300 MHz, CDCl₃): δ 0.92 (t, *J* = 7.2 Hz, 3H), 0.93 (t, *J* = 7.2 Hz, 3H), 1.28 (m, 4H), 1.44 (m, 4H), 1.48 (d, *J* = 6.6 Hz, 3 H), 2.38 (s, 3H), 2.66 (dd, *J* = 3.9, 17.1 Hz, 1H), 2.79 (dd, *J* = 8.7, 17.4 Hz, 1H), 3.13 (m, 2H), 3.26 (t, *J* = 7.5 Hz, 2H), 3.71 (bm, 1H), 7.19 (d, *J* = 8.1 Hz, 2H), 7.76 (d, *J* = 8.1 Hz, 2H), 8.07 (bs, 3H).

Anhydrous NH₃ (15 mL) was condensed in a 100 mL RBF equipped with a dry iceacetone condenser. The ammonium tosylate salt was dissolved in CH_2Cl_2 (10 mL) and added to the flask via syringe. The mixture was refluxed for 15 min. Anhydrous Et₂O (50 mL) distilled from Na/benzophenone was then added, and the excess NH₃ is evaporated. The NH₄OTs salt was removed via filtration and the solution was concentrated to give **1** (1.28 g, 46% overall yield from amino acid).

Optical rotation measurements (MeOH) for (*R*)-1 and (*S*)-1 are -0.0239 and +0.0223, respectively.

Figure S1. ¹H NMR (400 MHz, CDCl₃): δ 0.87 (t, *J* = 7.6 Hz, 3H), 0.89 (t, *J* = 7.2 Hz, 3H), 1.18 (d, *J* = 6.4 Hz, 3H), 1.25 (sept, *J* = 7.2 Hz, 4H), 1.37 (s, 9H), 1.45 (m, 4H), 2.36 (dd, *J* = 5.6, 15.2 Hz, 1H), 2.54 (dd, *J* = 4.4, 15.2 Hz, 1H), 3.17 (m, 2H), 3.26 (m, 2H), 3.93 (m, 1H), 5.61 (bs, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 14.0, 14.1, 20.3, 20.5, 20.6, 28.6, 30.1, 31.4, 38.3, 44.2, 45.8, 48.1, 155.6, 170.8.

Figure S2. ¹H NMR (400 MHz, CDCl₃): δ 0.86 (t, *J* = 7.6 Hz, 3H), 0.89 (t, *J* = 7.2 Hz, 3H), 1.05 (d, *J* = 6.4 Hz, 3H), 1.25 (sept, *J* = 7.6 Hz, 4H), 1.45 (sept, *J* = 5.6 Hz, 4H), 1.56 (bs, 2H), 2.18 (dd, *J* = 9.2, 16 Hz, 1H), 2.31 (dd, *J* = 4, 16 Hz, 1H), 3.13 (m, 2H), 3.24 (t, *J* = 7.6 Hz, 2H), 3.41 (ddt, *J* = 3.6, 6.4, 10.4 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 14.0, 14.1, 20.3, 20.5, 23.7, 30.1, 31.3, 42.8, 44.2, 45.8, 47.8, 171.4.

Figure S3. ¹H NMR (400 MHz, CDCl₃): δ 0.87 (t, J = 7.2 Hz, 3H), 0.90 (t, J = 7.2 Hz, 3H), 1.07 (dd, J = 2.8, 6.4 Hz, 3H), 1.26 (sept, J = 7.6 Hz, 4H), 1.45 (m, 4H), 1.78 (bs, 2H), 2.20 (ddd, J = 1.6, 8.8, 15.6 Hz, 1H), 2.33 (dt, J = 3.6, 16 Hz, 1H), 3.13 (m, 2H), 3.43 (dd, J = 7.6, 8 Hz, 2H), 3.41 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 14.0, 14.1, 20.3, 20.5, 23.6 (J = 2.3 Hz), 30.1, 31.3, 42.6 (J = 2.3 Hz), 44.2 (J = 4.0 Hz), 45.8, 47.8, 171.4.

Figure S4. ¹H NMR (300 MHz, CDCl₃): δ 0.88 (t, J = 7.5 Hz, 3H), 0.91 (t, J = 7.5 Hz, 3H), 1.07 (d, J = 5.1 Hz, 3H), 1.10 (d, J = 4.8 Hz, 3H), 1.27 (sept, J = 7.5 Hz, 4H), 1.49 (sept, J = 7.5 Hz, 4H), 2.32 (bs, 2H), 2.43 (quin, J = 7.2, 1H), 3.15 (q, J = 6.6 Hz, 2H), 3.18 (m, 1H), 3.25 (q, J = 6.9 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 14.0, 14.1, 15.9, 20.3, 20.5, 20.8, 30.1, 31.9, 43.7, 46.0, 48.0, 50.3, 175.6.

Figure S5. ¹H NMR (300 MHz, CDCl₃): δ 0.91 (t, J = 7.2 Hz, 3H), 0.94 (t, J = 7.2 Hz, 3H), 1.11 (d, J = 6.6 Hz, 3H), 1.15 (d, J = 6.9 Hz, 3H), 1.29 (sept, J = 7.8 Hz, 4H), 1.50 (sept, J = 7.8 Hz, 4H), 2.38 (bs, 2H), 2.43 (quin, J = 6.9, 1H), 3.22 (m, 2H), 3.24 (m, 1H), 3.28 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 13.5, 14.0, 14.1, 20.3, 20.5, 21.6, 30.1, 32.0, 42.3, 46.2, 48.1, 49.6, 175.9.

Figure S6. ¹H NMR (400 MHz, CDCl₃): δ 0.85 (t, *J* = 7.2 Hz, 3H), 0.89 (d, *J* = 6.4 Hz, 6H), 0.90 (t, *J* = 7.2 Hz, 3H), 1.25 (m, 4H), 1.44 (m, 4H), 2.09 (m, 1H), 2.10 (t, *J* = 7.2 Hz, 2H), 3.15 (t, *J* = 7.8 Hz, 2H), 3.24 (t, *J* = 7.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 14.0, 14.1, 20.3, 20.5, 22.9, 26.0, 30.1, 31.5, 42.1, 45.8, 47.9, 172.2.

Figure S7. ¹H NMR spectra (CDCl₃) recorded on the product of reaction of (*S*)-1 (0.10 M, 100% ee) with LiHMDS (0.10 M) in 0.075 M THF/toluene at 20 °C: (A) and (B) 2 h; (C) and (D) 24 h. Spectra A and C were recorded with addition of 1 equiv of (+)-TADDOL.

Figure S8. ¹H NMR spectra (500 MHz, d_8 -THF) recorded on (A) *N*-Boc **3**; (B) *N*-Boc **3** (J = 7, 8.8 Hz) with an unshifted squared sinusoidal weighting function; (C) *N*-Boc **2** (J = 3.5, 6.5 Hz). **2** and **3** were separated by column chromatography (80/20 petroleum ether/EtOAc) after Boc protection of the amine.

Figure S9. ORTEP of the *N*-Boc derivative of 2.

Experimental: Crystals of *N*-Boc **2** were obtained from an EtOAc solution by evaporation at ambient temperature. A single crystal suitable for X-ray diffraction was transferred to the goniometer head of a Bruker X8 APEX II diffractometer ($\lambda = 0.71073$ Å, T = 173 K). The crystal belongs to the space group P2(1). 1093 frames were collected using 0.5 deg. omega and phi scans ($2\theta_{max} = 49.42^{\circ}$). The data were processed with Bruker SAINT and SADABS programs to yield a total of 6869 unique reflections (R(int)=0.0173). The structure was solved using direct method (SHELXS) completed by subsequent Fourier synthesis and refined by full-matrix least-squares procedures (SHELXL). At final convergence, R(1) = 0.0757 for 3433 Fo > 4sig(Fo) and GOF = 1.067 for 505 parameters.

Figure S10. ⁶Li NMR spectra recorded on $[{}^{6}Li, {}^{15}N]LiHMDS$ (0.08 M) and **1** (0.023 M) at various THF concentrations with toluene at -75 °C: (A) and (B) 0.0 M; (C) and (D) 0.01 M; (E) and (F) 0.02 M; (G) and (H) 0.04 M; (I) and (J) 0.06 M; (K) and (L) 0.08 M. Spectra B, D, F, H, J, and L were recorded with ${}^{15}N$ broad-band decoupling.

Figure S11. ⁶Li NMR spectra recorded on $[{}^{6}Li, {}^{15}N]LiHMDS$ (0.08 M) and **1** (0.023 M) at various THF concentrations with toluene at -75 °C: (A) and (B) 0.1 M; (C) and (D) 0.3 M; (E) and (F) 0.5 M; (G) and (H) 0.7 M; (I) and (J) 1.0 M. Spectra B, D, F, H, and J were recorded with ${}^{15}N$ broad-band decoupling.

Figure S11 (continued)

Figure S12. ⁶Li NMR spectra recorded on $[{}^{6}Li, {}^{15}N]LiHMDS$ (0.08 M) and **1** (0.023 M) at various THF concentrations with toluene at -75 °C: (A) and (B) 2.0 M; (C) and (D) 3.0 M; (E) and (F) 4.0 M; (G) and (H) 6.0 M; (I) and (J) 8.0 M. Spectra B, D, F, H, and J were recorded with ${}^{15}N$ broad-band decoupling.

Figure S13. Plot of the relative integration of the center/outer triplet resonances versus [THF] (M) for solutions of $[{}^{6}Li, {}^{15}N]LiHMDS$ (0.08 M) and **1** (0.023 M) in THF/toluene solutions at -78 °C.

Table S1. Data for plot in Figure S13.

[THF] (M)	Relative ratio
0.00	0.00
0.01	2.17
0.02	2.56
0.04	2.89
0.06	2.90
0.08	2.76
0.10	2.78
0.30	2.41
0.50	2.41
0.70	2.25
1.0	2.03
2.0	2.00
3.0	2.02
4.0	1.97

Figure S14. Plot of the ⁶Li chemical shift (ppm) versus [THF] (M) with toluene for solutions of $[{}^{6}Li, {}^{15}N]LiHMDS$ [dimer (•), monomer (•)] and $[{}^{6}Li, {}^{15}N]LiHMDS/1$ [dimer (•), monomer (•)] at -75 °C.

Table S2. Data for the plot in Figure S14.

[THF] (M)	dimer (monomer (•)	dimer (\bullet)	monomer (\mathbf{v})
0.1	0.966	_	0.916	—
0.3	_	—	0.942	—
0.5	_	—	0.945	—
0.7	_	—	0.947	—
1	0.964	—	0.961	—
2	0.97	_	0.97	—
3	_	—	0.975	0.001
4	1.004	-0.096	0.993	0.032
6	_	_	1.017	0.083
8	1.045	-0.016	_	0.143

Figure S15. ⁶Li NMR spectra recorded on [${}^{6}Li$, ${}^{15}N$]LiHMDS (0.08 M) and 1 (0.023 M) at 1.0 M THF/toluene at various temperatures: (A) -75 °C; (B) -85 °C; (C) -95 °C; (D) - 105 °C; (E) -115 °C.

Figure S16. ¹⁵N NMR spectra recorded on [⁶Li,¹⁵N]LiHMDS (0.08 M) and **1** (0.023 M) at various THF concentrations with toluene at -75 °C: (A) and (B) 0.0 M; (C) and (D) 4.0 M; (E) and (F) 6.0 M. Spectra B, D, and F were recorded with ⁶Li broad-band decoupling. (Note: The relative intensities of the ¹⁵N resonances for mixed dimer **20** are attenuated relative to the LiHMDS dimer and monomer in these INEPT spectra.)

Figure S17. ⁶Li, ¹⁵N-heteronuclear single quantum correlation (HSQC) spectrum recorded on [⁶Li, ¹⁵N]LiHMDS (0.08 M) and **1** (0.023 M) at 4.0 M THF/toluene at -75 °C. (Note: The ¹⁵N resonances of mixed dimer **20** accurately reflect their abundance in the sample in this direct detect spectrum.)

Figure S18. ⁶Li NMR spectra recorded on $[{}^{6}Li]LiHMDS$ (0.08 M) and $[{}^{15}N]1$ (0.023 M) at various THF concentrations with toluene at -75 °C: (A) and (B) 0.0 M; (C) and (D) 0.1 M; (E) and (F) 1.0 M; (G) and (H) 3.0 M; (I) and (J) 6.0 M. Spectra B, D, F, H, and J were recorded with ${}^{15}N$ broad-band decoupling.

Figure S18 (continued)

Figure S19. ¹⁵N NMR spectra recorded on [6 Li]LiHMDS (0.08 M) and [15 N]**1** (0.023 M) at various THF concentrations with toluene at -75 °C: (A) and (B) 0.0 M; (C) and (D) 3.0 M; (E) 0.0 M (only [15 N]**1**). Spectra B and D were recorded with ⁶Li broad-band decoupling.

Figure S20. ⁶Li NMR spectra recorded on $[{}^{6}Li, {}^{15}N]LiHMDS$ (0.08 M) and varying concentrations of **1** in neat toluene at -75 °C: (A) and (B) 0.04 M; (C) and (D) 0.08 M; (E) and (F) 0.12 M. Spectra B, D, and F were recorded with ${}^{15}N$ broad-band decoupling. (*denotes an unassigned resonance.)

Figure S21. ⁶Li NMR spectra recorded on $[{}^{6}Li, {}^{15}N]LiHMDS$ (0.08 M) and varying concentrations of 1 at 0.06 M THF/toluene at -75 °C: (A) and (B) 0.04 M; (C) and (D) 0.08 M; (E) and (F) 0.12 M. Spectra B, D, and F were recorded with ${}^{15}N$ broad-band decoupling. (*denotes an unassigned resonance.)

Figure S22. ⁶Li NMR spectra recorded on $[{}^{6}Li, {}^{15}N]LiHMDS$ (0.08 M) and varying concentrations of **1** at 2.0 M THF/toluene at -75 °C: (A) and (B) 0.04 M; (C) and (D) 0.08 M; (E) and (F) 0.12 M. Spectra B, D, and F were recorded with ${}^{15}N$ broad-band decoupling.

Figure S23. ⁶Li NMR spectra recorded on [⁶Li]LiHMDS (0.08 M) and [¹⁵N]**1** (0.08 M) at 0.06 M THF/toluene at -75 °C. Spectrum B was recorded with ¹⁵N broad-band decoupling. (*denotes an unassigned resonance.)

Figure S24. ⁶Li, ¹⁵N-heteronuclear single quantum correlation (HSQC) spectrum recorded on [⁶Li]LiHMDS (0.08 M) and [¹⁵N]**1** (0.08 M) at 0.06 M THF/toluene at -75 °C. (*denotes an unassigned resonance.)

Figure S25. ⁶Li NMR spectra recorded on [⁶Li]4 (0.10 M, $X_R = 0.5$) at 0.06 M THF/toluene at various temperatures: (A) -75 °C; (B) -55 °C; (C) -25 °C; (D) 0 °C; (E) 25 °C; (F) -75 °C after aging. **R**₃**S**₃/**R**₄**S**₂/**R**₂**S**₄(•); **R**₅**S**₁/**R**₁**S**₅(•); **R**₆/**S**₆(•).

Figure S26. ⁶Li NMR spectra recorded on [⁶Li]4 (0.10 M, $X_R = 1.0$) at 0.06 M THF/toluene at various temperatures: (A) -75 °C; (B) 20 °C; (C) -75 °C after aging. (*denotes an unassigned resonance.) **R**₃**S**₃/**R**₄**S**₂/**R**₂**S**₄(•); **R**₅**S**₁/**R**₁**S**₅(•); **R**₆/**S**₆(•).

Figure S27. ⁶Li NMR spectra recorded on [⁶Li]4 (0.10 M, $X_R = 1.0$) at 0.06 M THF/toluene at 30 °C over 2 h. **R**₃**S**₃/**R**₄**S**₂/**R**₂**S**₄(•); **R**₅**S**₁/**R**₁**S**₅(•); **R**₆/**S**₆(•).

Figure S28. ⁶Li NMR spectra recorded on [⁶Li]**4** (0.10 M) at 0.06 M THF/toluene at 30 °C at various X_R : (A) 1.0; (B) 0.8; (C) 0.6; (D) 0.4; (E) 0.2; and (F) 0.0. **R**₃**S**₃/**R**₄**S**₂/**R**₂**S**₄ (•); **R**₅**S**₁/**R**₁**S**₅(•); **R**₆/**S**₆(•). (*denotes the beginning of racemization)

X_R	$R_3S_3/R_4S_2/R_2S_4$	R_5S_1/R_1S_5	R ₆ / S ₆
1	0.00 ± 0.00	0.00 ± 0.00	1.00 ± 0.00
0.9	0.07 ± 0.01	0.46 ± 0.04	0.46 ± 0.05
0.85	0.166 ± 0.002	0.59 ± 0.02	0.24 ± 0.02
0.8	0.23 ± 0.03	0.54 ± 0.05	0.22 ± 0.06
0.75	0.335 ± 0.002	0.568 ± 0.004	0.097 ± 0.006
0.7	0.42 ± 0.02	0.49 ± 0.04	0.09 ± 0.06
0.6	0.55 ± 0.08	0.43 ± 0.05	0.02 ± 0.02
0.5	0.661 ± 0.004	0.339 ± 0.004	0.00 ± 0.00
0.4	0.569 ± 0.008	0.414 ± 0.003	0.02 ± 0.01
0.3	0.40 ± 0.01	0.54 ± 0.01	0.05 ± 0.02
0.25	0.287 ± 0.008	0.59 ± 0.02	0.13 ± 0.03
0.2	0.25 ± 0.04	0.56 ± 0.05	0.19 ± 0.02
0.15	0.22 ± 0.07	0.572 ± 0.007	0.20 ± 0.07
0.1	0.12 ± 0.02	0.56 ± 0.06	0.32 ± 0.07
0	0.00 ± 0.00	0.00 ± 0.00	1.00 ± 0.00

 Table S3.
 Table of data for Job plot.

Figure S29. Plot of the mole fraction of the $\mathbf{R_nS_{4-n}}/\mathbf{R_{4-n}S_n}$ aggregate $(X_n + X_{4-n})$ versus the mole fraction of *R* enantiomer (X_R) for the tetramer model. $\mathbf{R_2S_2}(\bullet)$; $\mathbf{R_3S_1}/\mathbf{R_1S_3}(\bullet)$; $\mathbf{R_4}/\mathbf{S_4}(\bullet)$.

Table S4. Best-fit values of φ for the tetramer fit.

ϕ_0/ϕ_4	ϕ_1/ϕ_3	φ ₂
1	10.72	32.44

Table S5. Percent errors in ϕ_n for the tetramer fit.

n	0	1	2
ϕ_n/ϕ_0	0	8.3	13.7
ϕ_n/ϕ_1	8.3	0	4.8
ϕ_n/ϕ_2	13.7	4.8	0

Figure S30. Plot of the mole fraction of the $\mathbf{R_nS_{6-n}/R_{6-n}S_n}$ aggregate $(X_n + X_{6-n})$ versus the mole fraction of *R* enantiomer (X_R) for the hexamer model assuming superposition of $\mathbf{R_5S_1/R_1S_5}$ and $\mathbf{R_4S_2/R_2S_4}$. $\mathbf{R_3S_3}(\bullet)$; $\mathbf{R_5S_1/R_1S_5/R_4S_2/R_2S_4}(\bullet)$; $\mathbf{R_6/S_6}(\bullet)$.

Table S6. Best-fit values of φ for the hexamer fit in Figure S30.

$\varphi_0(\varphi_6)$	$\varphi_1(\varphi_5)$	$\varphi_2(\varphi_4)$	φ3
1	1.68	0	1.91

Table S7.	Percent	errors in φ_n	for the	hexamer	fit in	Figure	S30.
-----------	---------	-----------------------	---------	---------	--------	--------	------

n	0	1	2	3
ϕ_n/ϕ_0	0	7.7	73	13.9
ϕ_n/ϕ_1	7.7	0	76	5.4
ϕ_n/ϕ_2	73	76	0	77
ϕ_n/ϕ_3	13.9	5.4	77	0

Figure S31. Plot of the mole fraction of the $\mathbf{R_nS_{6-n}/R_{6-n}S_n}$ aggregate $(X_n + X_{6-n})$ versus the mole fraction of *R* enantiomer (X_R) for the hexamer model assuming superposition of $\mathbf{R_3S_3}$ and $\mathbf{R_4S_2/R_2S_4}$. $\mathbf{R_3S_3/R_4S_2/R_2S_4}$ (•); $\mathbf{R_5S_1/R_1S_5}$ (•); $\mathbf{R_6/S_6}$ (•).

Table S8. Best-fit values of φ for the hexamer fit in Figure S31.

$\varphi_0(\varphi_6)$	$\varphi_1(\varphi_5)$	$\varphi_2(\varphi_4)$	φ3
1	1.91	0.53	1.10

0 2 3 1 n 0 10.0 20.3 18.0 φ_n/φ_0 ϕ_n/ϕ_1 10.0 0 12.4 12 20.3 12.4 0 21.4 ϕ_n/ϕ_2

12

21.4

0

18.0

Table S9. Percent errors in φ_n for the hexamer fit in Figure S31.

 $\phi_n\!/\phi_3$

Figure S32. ⁶Li NMR spectra recorded on varying concentrations of [⁶Li]4 ($X_R = 0.8$) at 0.06 M THF/toluene at 30 °C: (A) 0.015 M; (B) 0.03 M; (C) 0.06 M; (D) 0.10 M. R₃S₃/R₄S₂/R₂S₄(•); R₅S₁/R₁S₅(•); R₆/S₆(•).

Figure S33. Plot of the mole fraction of the $\mathbf{R_nS_{6-n}/R_{6-n}S_n}$ aggregate $(X_n + X_{6-n})$ versus [enolate] for the spectra in Figure S32. For the case where n = 3, only X_3 is plotted. $\mathbf{R_3S_3/R_4S_2/R_2S_4}(\bullet)$; $\mathbf{R_5S_1/R_1S_5}(\bullet)$; $\mathbf{R_6/S_6}(\bullet)$.

Table S10. Table of data for the plot in Figure S33.

[enolate] (M)	$R_3S_3/R_4S_2/R_2S_4$	R_5S_1/R_1S_5	R_6/S_6
0.015	0.26	0.56	0.19
0.03	0.19	0.55	0.26
0.06	0.20	0.56	0.24
0.10	0.23	0.54	0.23

Figure S34. ⁶Li NMR spectra recorded on [${}^{6}Li$, ${}^{15}N$]LiHMDS (0.10 M) and varying concentrations of **10** in toluene at -75 °C: (A) and (B) 0.02 M; (C) and (D) 0.05 M; (E) and (F) 0.10 M; (G) and (H) 0.20 M; (I) and (J) 0.50 M. Spectra B, D, F, H, and J were recorded with ${}^{15}N$ broad-band decoupling.

Figure S35. ¹⁵N NMR spectra recorded on $[{}^{6}Li, {}^{15}N]LiHMDS$ (0.10 M) and varying concentrations of **10** in toluene at -75 °C: (A) and (B) 0.05 M; (C) and (D) 0.10 M; (E) and (F) 0.50 M. Spectra B, D, and F were recorded with ${}^{6}Li$ broad-band decoupling.

Figure S36. ⁶Li NMR spectra recorded on [${}^{6}Li$, ${}^{15}N$]LiHMDS (0.10 M) and varying concentrations of **10** at 2.0 M THF/toluene at -75 °C: (A) and (B) 0.02 M; (C) and (D) 0.05 M; (E) and (F) 0.10 M; (G) and (H) 0.20 M; (I) and (J) 0.50 M. Spectra B, D, F, H, and J were recorded with ${}^{15}N$ broad-band decoupling.

Figure S36 (continued)

Figure S37. ⁶Li *J*-resolved spectrum recorded on a solution of [⁶Li,¹⁵N]LiHMDS (0.10 M) and **10** (0.05 M) at 2.0 M THF/toluene at -75 °C.

Figure S38. ¹⁵N NMR spectra recorded on [${}^{6}Li$, ${}^{15}N$]LiHMDS (0.10 M) and varying concentrations of **10** at 2.0 M THF/toluene at -75 °C: (A) and (B) 0.02 M; (C) and (D) 0.05 M; (E) and (F) 0.50 M. Spectra B, D, and F were recorded with ${}^{6}Li$ broad-band decoupling.

Figure S39. ⁶Li NMR spectra recorded on $[{}^{6}Li, {}^{15}N]LiHMDS$ (0.10 M) and varying concentrations of **10** at 8.0 M THF/toluene at -75 °C: (A) and (B) 0.02 M; (C) and (D) 0.05 M; (E) and (F) 0.10 M; (G) and (H) 0.20 M; (I) and (J) 0.30 M; (K) and (L) 0.50 M. Spectra B, D, F, H, J, and L were recorded with ${}^{15}N$ broad-band decoupling.

Figure S39 (continued)

Figure S40. Plot of the ⁶Li chemical shift (ppm) versus the [**10**] (M) for 0.10 M [⁶Li, ¹⁵N]LiHMDS at 8.0 M THF/toluene as shown in Figure S39. The curve depicts an unweighted least-squares fit to y = (ax)/(1+bx), where $a = 5.7 \pm 0.4$ and $b = 4.9 \pm 0.5$.

Table S11. Table of ⁶Li chemical shifts for the data shown in Figures S39-S40.

Chemical Shift (ppm)	$J(\mathrm{Hz})$
0.005	5.0
0.134	5.1
0.218	5.1
0.384	5.1
0.587	5.1
0.668	5.1
0.757	5.2
0.846	5.2
	Chemical Shift (ppm) 0.005 0.134 0.218 0.384 0.587 0.668 0.757 0.846

Figure S41. ¹⁵N NMR spectra recorded on $[{}^{6}Li, {}^{15}N]LiHMDS$ (0.10 M) and varying concentrations of **10** at 8.0 M THF/toluene at -75 °C: (A) and (B) 0.20 M; (C) and (D) 0.30 M; (E) and (F) 0.40 M. Spectra B, D, and F were recorded with ${}^{6}Li$ broad-band decoupling. (*denotes an unassigned resonance.)

Figure S42. ⁶Li NMR spectra recorded on [${}^{6}Li$, ${}^{15}N$]LiHMDS (0.10 M) and **10** (0.30 M) at 8.0 M THF/toluene at various temperatures: (A) -75 °C; (B) -85 °C; (C) -95 °C; (D) - 105 °C.

Figure S43. ¹⁵N NMR spectra recorded on [⁶Li,¹⁵N]LiHMDS (0.10 M) and **10** (0.30 M) at 8.0 M THF/toluene at -105 °C. Spectrum B was recorded with ⁶Li broad-band decoupling.

Figure S44. ⁶Li NMR spectra recorded on $[{}^{6}Li, {}^{15}N]LiHMDS$ (0.10 M) and varying concentrations of **23** in neat toluene at -75 °C: (A) and (B) 0.02 M; (C) and (D) 0.05 M; (E) and (F) 0.10 M; (G) and (H) 0.20 M; (I) and (J) 0.50 M. Spectra B, D, F, H, and J were recorded with ${}^{15}N$ broad-band decoupling.

Figure S45. ¹⁵N NMR spectra recorded on [${}^{6}Li$, ${}^{15}N$]LiHMDS (0.10 M) and varying concentrations of **23** in neat toluene at -75 °C: (A) and (B) 0.05 M; (C) and (D) 0.20 M. Spectra B and D were recorded with ${}^{6}Li$ broad-band decoupling.

Figure S46. ⁶Li NMR spectra recorded on [${}^{6}Li$, ${}^{15}N$]LiHMDS (0.10 M) and varying concentrations of **23** at 2.0 M THF/toluene at -75 °C: (A) and (B) 0.02 M; (C) and (D) 0.05 M; (E) and (F) 0.10 M; (G) and (H) 0.20 M; (I) and (J) 0.50 M. Spectra B, D, F, H, and J were recorded with ${}^{15}N$ broad-band decoupling.

Figure S46 (continued)

Figure S47. ¹⁵N NMR spectra recorded on [${}^{6}Li$, ${}^{15}N$]LiHMDS (0.10 M) and varying concentrations of **23** at 2.0 M THF/toluene at -75 °C: (A) and (B) 0.10 M; (C) and (D) 0.50 M. Spectra B and D were recorded with ${}^{6}Li$ broad-band decoupling.

Figure S48. ⁶Li NMR spectra recorded on $[{}^{6}Li, {}^{15}N]LiHMDS$ (0.10 M) and varying concentrations of **23** at 8.0 M THF/toluene at -75 °C: (A) and (B) 0.02 M; (C) and (D) 0.05 M; (E) and (F) 0.10 M; (G) and (H) 0.20 M; (I) and (J) 0.50 M. Spectra B, D, F, H, and J were recorded with ${}^{15}N$ broad-band decoupling.

Figure S48 (continued)

Figure S49. ¹⁵N NMR spectra recorded on [${}^{6}Li$, ${}^{15}N$]LiHMDS (0.10 M) and varying concentrations of **23** at 8.0 M THF/toluene at -75 °C: (A) and (B) 0.05 M; (C) and (D) 0.50 M. Spectra B and D were recorded with ${}^{6}Li$ broad-band decoupling.

Figure S50. ⁶Li NMR spectra recorded on [${}^{6}Li$, ${}^{15}N$]LiHMDS (0.10 M) at varying THF concentrations with toluene at -75 °C: (A) and (B) 0.10 M; (C) and (D) 1.0 M; (E) and (F) 2.0 M; (G) and (H) 4.0 M; (I) and (J) 8.0 M. Spectra B, D F, H, and J were recorded with ${}^{15}N$ broad-band decoupling.

Figure S50 (continued)

Figure S51. ¹⁵N NMR spectra recorded on [⁶Li,¹⁵N]LiHMDS (0.10 M) in varying THF concentrations with toluene at -75 °C: (A) and (B) 0.10 M; (C) and (D) 4.0 M; (E) and (F) 8.0 M. Spectra B, D, and F were recorded with ⁶Li broad-band decoupling.

Figure S52. IR spectra recorded on 1 (1640 cm⁻¹, solid, 0.01 M) and LiHMDS/1 (1630 cm⁻¹, dashed, 0.02/0.01 M) at 11.7 M THF/toluene at -78 °C.

Figure S53. IR spectra recorded on **10** (1640 cm⁻¹, solid, 0.01 M) and LiHMDS/**10** (1640 and 1620 cm⁻¹, dashed, 0.10/0.05 M) at 8.0 M THF/toluene at -78 °C.

Figure S54. IR spectra recorded on solutions of LiHMDS (0.10 M) and **10** (0.05 M) at various THF concentrations with toluene at -78 $^{\circ}$ C: 0.0 M (1618 cm⁻¹, solid); 2.0 M (1640 and 1620 cm⁻¹, dotted); 8.0 M (1640 and 1620 cm⁻¹, dashed).
Alkylation Diastereoselectivities

Sample procedure. LiHMDS (117 mg, 0.7 mmol) was dissolved in 0.07 M THF (60 μ L THF) and toluene (9.9 mL) and cooled to -78 °C. β -Amino amide **1** (41.3 mg, 0.2 mmol) was added neat. After 30 min, CH₃I (20 μ L, 0.3 mmol) was added to the flask. After 30 min at -78 °C, the reaction was quenched with H₂O and warmed to ambient temperature. The slurry was extracted with Et₂O (3 x 25 mL), and the organic layer was dried over MgSO₄ and concentrated in vacuo. GC analysis of the crude reaction mixture shows a 59:1 ratio of **2:3** in 90% conversion. Column chromatography (90/10 CH₂Cl₂/MeOH) yields 30.6 mg of **2** (69%).

Entry	equiv LiHMDS	[THF]	Temp.	2:3	% Yield ^{<i>a,b</i>}
			(°C)		h
1	1.2	12.3 M	0	6:1	70 ^b
2	2.0	12.3 M	0	7:1	80^{b}
3	3.0	0.0 M	0	33:1	75^a
4	3.5	1 equiv	-78	135:1	78^a
5	3.5	1 equiv	-78	72:1	87^a
6	3.5	1 equiv	-78	59:1	$90^{a}, 69^{b}$
7	3.5	5 equiv	-78	87:1	79^a
8	3.5	6.0 M	-78	79:1	80^a
9	3.5	0.0 M	-78	55:1	81 ^{<i>a</i>}
10	3.5	0.01 M	-78	59:1	69 ^{<i>a</i>}
11	3.5	0.04 M	-78	27:1	93 ^{<i>a</i>}
12	3.5	0.5 M	-78	56:1	76 ^{<i>a</i>}
13	3.5	4.0 M	-78	61:1	84^a
14	3.5	11.0 M	-78	40:1	91 ^{<i>a</i>}
15	1.0	0.0 M	-78	61:1	88^a
16	2.0	0.0 M	-78	74:1	80^a
17	3.0	0.0 M	-78	80:1	88^a
18	3.5	8.0 M	-78	46:1	$87^{a}, 78^{b}$
19	1.0	0.5 equiv	25	11:1	98 ^a
20	1.0	0.0 M	25	11:1	98 ^{<i>a</i>}

Table S12. Alkylation Diastereoselectivities using 1.5 equiv CH₃I.

^{*a*}Yield determined by GC integration relative to remaining 1. ^{*b*}Isolated yield after column chromatography.