Lithiated Imines: Solvent-Dependent Aggregate Structures and Mechanisms of Alkylation

Stephan J. Zuend, Antonio Ramírez, Emil Lobkovsky, and David B. Collum* Contribution from the Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853-1301

Supporting Information

Page

S5

Part 1: Experimental Procedures

Part 2: NMR Spectroscopic Studies

Ι	¹ H NMR and ¹³ C NMR spectra of [¹⁵ N]cyclohexylcarboxamide	
II	1 H NMR and 13 C NMR spectra of [15 N]cyclohexylammonium tosylate	
III	¹ H NMR and ¹³ C NMR spectra of [¹⁵ N]5	
IV	Syn/anti selectivities for the alkylation of 3 with n -C ₇ H ₁₅ I	
V	¹ H NMR and ¹³ C NMR spectra of 2-heptyl cyclohexanone	
VI	¹ H NMR and ¹³ C NMR spectra of 2-octyl cyclohexanone	S13
VII	⁶ Li NMR spectra of [⁶ Li, ¹⁵ N] 3 in <i>n</i> -BuOMe/toluene at -90 °C	S14
VIII	¹⁵ N NMR spectra of [⁶ Li, ¹⁵ N] 3 in <i>n</i> -BuOMe at -90 °C	S14
IX	⁶ Li NMR spectra of [⁶ Li, ¹⁵ N] 3 in <i>n</i> -BuOMe at variable temp	S15
X	⁶ Li NMR spectra of [⁶ Li, ¹⁵ N]3 in <i>n</i> -BuOMe/THP/toluene	
XI	⁶ Li NMR spectra of [⁶ Li, ¹⁵ N] 3 in <i>n</i> -BuOMe/THP at variable temp	S18
XII	⁶ Li NMR spectra of [⁶ Li, ¹⁵ N] 3 in Et ₂ O/toluene at -90 °C	S19
XIII	^{15}N NMR spectra of [6Li, ^{15}N]3 in Et2O at -90 °C	S19
XIV	⁶ Li NMR spectra of [⁶ Li, ¹⁵ N] 3 in Et ₂ O at variable temp	S20
XV	⁶ Li NMR spectra of [⁶ Li, ¹⁵ N] 3 in <i>t</i> -BuOMe/toluene at -90 °C	S21

XVI	¹⁵ N NMR spectra of [⁶ Li, ¹⁵ N] 3 in <i>t</i> -BuOMe at -90 °C		
XVII	⁶ Li NMR spectra of [⁶ Li, ¹⁵ N] 3 in 2,2-Me ₂ THF/toluene at -90 °C		
XVIII	¹⁵ N NMR spectra of [⁶ Li, ¹⁵ N]3 in 2,2-Me ₂ THF at -90 °C	S22	
XIX	⁶ Li NMR spectra of [⁶ Li, ¹⁵ N] 3 in 2-MeTHF/toluene at -90 °C		
XX	¹⁵ N NMR spectra of [⁶ Li, ¹⁵ N] 3 in 2-MeTHF recorded at -90 °C		
XXI	⁶ Li NMR spectra of [⁶ Li, ¹⁵ N] 3 in 2-MeTHF/toluene at variable temp	S25	
XXII	⁶ Li NMR spectra of [⁶ Li, ¹⁵ N] 3 in 2-MeTHF/THP/toluene at -90 °C		
XXIII	⁶ Li NMR spectra of [⁶ Li, ¹⁵ N] 3 in 2-MeTHF/THP at variable temp	S27	
XXIV	⁶ Li NMR spectra of [⁶ Li, ¹⁵ N] 3 in THP/toluene at -90 °C		
XXV	⁶ Li{ ¹⁵ N} NMR spectra of [⁶ Li, ¹⁵ N] 3 in 5.0 M THP/toluene at -90 °C		
XXVI	⁶ Li{ ¹⁵ N} NMR spectra of [⁶ Li, ¹⁵ N] 3 in 1.6 M THP/toluene at -90 °C		
XXVII	¹⁵ N NMR spectra of [⁶ Li, ¹⁵ N]3 in 5.0 M THP/toluene at -90 °C		
XXVIII	Selective ¹⁵ N decoupled ⁶ Li NMR spectra of [⁶ Li, ¹⁵ N]3 in THP/toluene	S32	
XXIX	⁶ Li NMR spectra of [⁶ Li, ¹⁵ N] 3 in 5.0 M THP/toluene at variable temp		
XXX	⁶ Li NMR spectra of [⁶ Li, ¹⁵ N] 3 in THF/toluene at -90 °C		
XXXI	⁶ Li NMR spectra of [⁶ Li, ¹⁵ N] 3 in THF/toluene at -90 °C		
XXXII	15 N NMR spectra of [⁶ Li, ¹⁵ N]3 in THF/toluene at -90 °C		
XXXIII	⁶ Li NMR spectra of [⁶ Li, ¹⁵ N] 3 in 5.0 M THF/toluene at variable temp		
XXXIV	J(⁶ Li, ¹⁵ N)-resolved NMR spectrum of [⁶ Li, ¹⁵ N] 3 in THP/toluene	S38	
Part 3: R	ate Studies		
XXXV	Plot of k_{obsd} vs [<i>n</i> -BuOMe] for the alkylation of 3 with <i>n</i> -C ₇ H ₁₅ I	S39	
XXXVI	Plot of k_{obsd} vs [3] in 2.10 M <i>n</i> -BuOMe/toluene for the alkylation of 3	S40	
XXXVII	Plot of k_{obsd} vs [3] in 6.10 M <i>n</i> -BuOMe/toluene for the alkylation of 3	S41	
XXXVIII	Plot of k_{obsd} vs [<i>t</i> -BuOMe] for the alkylation of 3 with <i>n</i> -C ₇ H ₁₅ I	S42	
XXXIX	Plot of k_{obsd} vs [3] in 2.10 M <i>t</i> -BuOMe/toluene for the alkylation of 3	S43	

XL	Plot of k_{obsd} vs [3] in 6.10 M <i>t</i> -BuOMe/toluene for the alkylation of 3	S44		
XLI	Plot of k_{obsd} vs [2-MeTHF] for the alkylation of 3 with <i>n</i> -C ₈ H ₁₇ Br	S45		
XLII	Plot of k_{obsd} vs [2-MeTHF] for the alkylation of 3 with n -C ₇ H ₁₅ I	S46		
XLIII	Plot of k_{obsd} vs [3] in 1.10 M 2-MeTHF/toluene for the alkylation of 3	S47		
XLIV	Plot of k_{obsd} vs [3] in 4.10 M 2-MeTHF/toluene for the alkylation of 3	S48		
XLV	Plot of k_{obsd} vs [3] in 8.10 M 2-MeTHF/toluene for the alkylation of 3			
XLVI	Plot of k_{obsd} vs [Et ₂ O] for the alkylation of 3 with n -C ₇ H ₁₅ I			
XLVII	Plot of k_{obsd} vs [3] in 2.10 M Et ₂ O/toluene for the alkylation of 3			
XLVIII	Plot of k_{obsd} vs [3] in 8.10 M Et ₂ O/toluene for the alkylation of 3			
XLIX	$k_{\rm obsd}$ in various ethereal solvents for the alkylation of 3 with n -C ₇ H ₁₅ I	S53		
L	Representative decays of n -C ₈ H ₁₇ Br relative to an internal standard	S53		
Part 4: DFT Computational Studies				
LI	Geometries and energies of monomers \mathbf{AS}_n	S54		
LII	Selected bond lengths and angles of monomers \mathbf{AS}_n	S55		
LIII	Geometries and energies of dimers A_2S_n			
LIV	Selected bond lengths and angles of dimers A_2S_n			
LV	Geometries and energies of trimers A_3S_n			
LVI	Selected bond lengths and angles of trimers A_3S_n			
LVII	Geometries and energies of monomer-based transition structures	S68		
LIVIII	Selected bonds and angles of monomer-based transition structures	S69		
LIX	Geometries and energies of dimer-based transition structures	S70		
LX	Selected bond lengths and angles of dimer-based transition structures	S75		
Part 5: GIAO Computational Studies				
LXI	Calculated δ and <i>J</i> for monomers AS_n	S76		
LXII	Calculated δ and <i>J</i> for dimers $\mathbf{A}_2 \mathbf{S}_n$	S77		

LXIII	Calculated δ and <i>J</i> for trimers $\mathbf{A}_{3}\mathbf{S}_{n}$	S78	
LXIV	Effect of solvation and π -complexation upon δ and J for dimers $\mathbf{A}_2 \mathbf{S}_n$	S79	
LXV	Effect of solvation and π -complexation upon δ and J for trimers $\mathbf{A}_{3}\mathbf{S}_{n}$		
Part 6: X-Ray Crystal Data			
LXVI	X-ray crystal data for lithioimine <i>trans</i> -12 (A_2S_2 , S = Me ₂ EtN)	S 80	
LXVII	Ortep drawing of lithioimine trans-12	S87	
Part 7: References		S88	

Part 1: Experimental Procedures

[¹⁵N]Cyclohexylcarboxamide.^[5-1] A 250 mL round bottom flask containing a small stir bar was charged with ¹⁵NH₄Cl (3.01 g, 55.2 mmol) and 15 mL of distilled water. Cyclohexylcarbonyl chloride (11.0 g, 77.1 mmol) in 30 mL anhydrous Et₂O was layered on to the aqueous solution. The reaction mixture was cooled in an ice bath and 50 % aq NaOH (30 mL) was added via syringe with slow stirring to avoid mixing the layers. The reaction mixture was warmed to room temperature and stirred slowly for an additional 15 min. The reaction mixture was then stirred vigorously for 5 min, capped with a glass stopper, and shaken with frequent venting. The white solid that formed was extracted with 3 x 500 mL CH₂Cl₂, washed with 200 mL brine, dried over Na₂SO₄, filtered, and dried in vacuo. The resulting solid was dissolved in hot CH₃CN, filtered, and crystallized at -20 °C to yield 5.65 g of [¹⁵N]cyclohexylcarboxamide (44.4 mmol, 80 %) as white flakes (see S7 for spectral data).

[¹⁵N]Cyclohexylammonium tosylate.^[S-2] A 500 mL round bottom flask was charged with [hydroxyl(tosyloxy)iodo]benzene^[S-3] (18.5 g, 47.6 mmol) and 50 mL CH₃CN. [¹⁵N]cyclohexylcarboxamide (5.55 g, 43.6 mmol) was added dissolved in hot CH₃CN (150 mL), and the reaction mixture was heated at reflux for 1 h to give a yellow solution that yielded a white precipitate upon standing at room temperature. The reaction mixture was cooled to -20 °C to complete precipitation. Filtration, drying, and recrystallization from 10:1 THF/EtOH yielded 10.1 g of [¹⁵N]cyclohexylammonium tosylate (37.1 mmol, 85 %) as white needles (see S8 for spectral data).

[¹⁵N]Cyclohexanone cyclohexylimine ([¹⁵N]5). A flame dried 50 mL round bottom flask was charged with [¹⁵N]cyclohexylammonium tosylate (3.05 g, 11.2 mmol) and 3 Å molecular sieves (3.5 g). The flask was evacuated, and freshly distilled Et₃N (25 mL) and cyclohexanone (2.50 mL, 2.37 g, 24.2 mmol) were added under an argon purge. The reaction mixture was stirred for 40 h under argon and filtered to remove the molecular sieves. Distillation (0.1 torr, b.p. 70-72 °C) yielded 1.72 g of [¹⁵N]cyclohexanone cyclohexylimine (9.6 mmol, 86 %) as

a colorless oil (see S9 for spectral data). Unlabelled 5 was prepared by methods described previously.^{5a}

[⁶Li,¹⁵N]Lithiated cyclohexanone cyclohexylimine ([⁶Li,¹⁵N]3). A flame dried 100 mL round bottom flask was charged with recrystallized [⁶Li]LDA^[S-4] (0.50 g, 4.7 mmol) and 20 mL of freshly distilled hexanes under argon. After heating to dissolve the LDA and cooling to room temperature, [¹⁵N]3 (1.0 g, 5.6 mmol) was added neat. The solution immediately turned yellow and a precipitate was observed after ~ 5 min. Stirring for 1 h led to significant formation of a white solid. Further precipitation was achieved by cooling the reaction mixture to -78 °C for 2 h. Filtration, washing with 2 x 10 mL fresh hexanes, and drying in vacuo yielded 0.73 g of [⁶Li,¹⁵N]3 (3.9 mmol, 84 %) as a white powder which was stored in a dry box. Unlabelled 3 for use in rate studies was prepared on multigram scales (5.0 g LDA) using the method described above with a 250 mL round bottom flask and 200 mL hexanes.

I. NMR spectra of [¹⁵N]cyclohexylcarboxamide. (A) ¹H NMR (400 MHz, DMSO d_6 , 20 °C) δ 1.06-1.33 (m, 5H), 1.56-1.62 (m, 2H), 1.64-1.71 (m, 3H), 2.04 (tt, *J* = 11.4, 3.1 Hz, 1H), 6.64 (dd, *J* = 87.3, 2.4 Hz, 1H), 7.15 (dd, *J* = 89.2, 2.4 Hz, 1H). (B) ¹³C{¹H} NMR (100 MHz, DMSO- d_6 , 20 °C) δ 25.4, 25.6, 29.2, 43.7 (d, *J* = 7.5 Hz), 177.4 (d, *J* = 13.9 Hz).

II. NMR spectra of [¹⁵N]cyclohexylammonium tosylate. (A) ¹H NMR (400 MHz, D₂O, 20 °C) δ 1.05-1.16 (m, 1H), 1.19-1.34 (m, 4H), 1.55-1.63 (m, 1H), 1.68-1.77 (m, 2H), 1.87-1.96 (m, 2H), 2.35 (s, 3H), 3.03-3.11 (m, 1H), 7.32 (d, *J* = 8.3 Hz, 2H), 7.65 (d, *J* = 8.3 Hz, 2H). (B) ¹³C{¹H} NMR (75 MHz, D₂O, 20 °C) δ 20.7, 23.9, 24.4, 50.4 (d, *J* = 4.6 Hz), 125.5, 129.5, 139.8, 142.3.

III. NMR spectra of [¹⁵N]5. (A) ¹H NMR (400 MHz, CDCl₃, 20 °C) δ 1.30-1.47 (m, 6H), 1.56-1.81 (m, 11H), 2.22-2.31 (m, 4H), 3.23-3.34 (m, 1H). (B) ¹³C{¹H} NMR (75 MHz, CDCl₃, 20 °C) δ 25.3, 25.8, 26.4, 27.8, 28.1, 29.2 (d, *J* = 2.9 Hz), 34.3 (d, *J* = 2.9 Hz), 58.0, 170.9 (d, *J* = 7.0 Hz).

IV. C=N region of the ¹³C spectra of syn/anti mixtures of imine **6** resulting from the alkylation of **3** with 1.1 equiv of n-C₇H₁₅I in: (A) THF; (B) THP; (C) 2-MeTHF; (D) n-BuOMe; (E) 2,2-Me₂THF; (F) Et₂O; (G) t-BuOMe.

entry	solvent	syn/anti ^b
1	THF	10:1
2	THP	>20:1
3	2-MeTHF	>20:1
4	<i>n</i> -BuOMe	8:1
5	2,2-Me ₂ THF	6:1
6	Et ₂ O	6:1
7	t-BuOMe	5:1

IV. (*Continued*) Syn/anti stereoselectivity of the alkylation of lithiated *N*-alkylimine **3** with n-C₇H₁₅I^{*a*}

^{*a*}Reactions were carried out at -20 °C using 0.1 M solutions of **3** in neat solvent and 1.1 equiv of n-C₇H₁₅I. The sample was sealed in an NMR tube under Ar and kept at -78 °C until the spectra were recorded. Under these conditions, the isomerizations ($t_{1/2} > 6$ h at 40 °C) proved to be slower than the alkylations. ^{*b*}Numerical ratios were obtained from ¹³C NMR spectra. The syn and anti orientations in 2-heptyl imine **6** (R = n-C₇H₁₅) were assigned following protocols described elsewhere.^{5a}

V. NMR spectra of 2-heptyl cyclohexanone. (A) ¹H NMR (300 MHz, CDCl₃, 20 °C) *δ* 0.84 (t, *J* = 6.6 Hz, 3H), 1.16-1.42 (m, 12H), 1.55-1.87 (m, 4H), 1.94-2.12 (m, 2H), 2.17-2.40 (m, 3H). (B) ¹³C{¹H} NMR (75 MHz, CDCl₃, 20 °C) *δ* 14.2, 22.8, 24.9, 27.3, 28.1, 29.3, 29.5, 29.8, 31.9, 33.9, 42.0, 50.9, 213.7.

VII. ⁶Li NMR spectra of 0.10 M [⁶Li,¹⁵N]**3** in *n*-BuOMe/toluene recorded at -90 ^oC: (A) 2.0 M *n*-BuOMe; (B) 4.0 M *n*-BuOMe; (C) 6.0 M *n*-BuOMe; (D) 8.1 M *n*-BuOMe.

VIII. ¹⁵N NMR spectra of 0.10 M [⁶Li,¹⁵N]**3** in *n*-BuOMe recorded at -90 °C: (A) ⁶Li coupled; (B) ⁶Li decoupled.

IX. ⁶Li NMR spectra of 0.10 M [⁶Li,¹⁵N]**3** in *n*-BuOMe recorded at: (A) -90 °C; (B) -70 °C; (C) -60 °C; (D) -50 °C; (E) -40 °C; (F) -20 °C; (G) 0 °C.

IX. (*Continued*) ⁶Li NMR spectra of 0.10 M [⁶Li,¹⁵N]**3** in 4.0 M *n*-BuOMe/toluene recorded at: (A) -90 °C; (B) -100 °C; (C) -110 °C; (D) -120 °C; (E) -130 °C.

X. ⁶Li NMR spectra of 0.10 M [⁶Li,¹⁵N]**3** in 2.0 M *n*-BuOMe/THP/toluene recorded at -90 °C: (A) 0.00 M THP; (B) 0.10 M THP; (C) 0.20 M THP; (D) 0.50 M THP.

XI. ⁶Li NMR spectra of 0.10 M [⁶Li,¹⁵N]**3** in 2.0 M *n*-BuOMe/0.20 M THP/toluene recorded at: (A) -100 °C; (B) -90 °C; (C) -80 °C; (D) -70 °C; (E) -60 °C; (F) -50 °C; (G) -40 °C; (H) -30 °C; (I) -20 °C; (J) 0 °C.

XII. ⁶Li NMR spectra of 0.10 M [⁶Li, ¹⁵N]**3** in Et_2O /toluene recorded at -90 °C: (A) 2.3 M Et_2O ; (B) 4.7 M Et_2O ; (C) 9.4 M Et_2O .

XIII. ¹⁵N NMR spectra of 0.10 M [6 Li, ¹⁵N]**3** in Et₂O recorded at -90 °C: (A) 6 Li coupled; (B) 6 Li decoupled.

XIV. ⁶Li NMR spectra of 0.10 M [⁶Li, ¹⁵N]**3** in Et₂O recorded at: (A) -90 °C; (B) -75 °C; (C) -50 °C; (D) -30 °C; (E) 0 °C.

XVI. ¹⁵N NMR spectra of 0.10 M [⁶Li,¹⁵N]**3** in *t*-BuOMe recorded at -90 °C: (A) ⁶Li coupled; (B) ⁶Li decoupled.

XVII. ⁶Li NMR spectra of 0.10 M [6 Li, 15 N]**3** in 2,2-Me₂THF/toluene recorded at - 90 °C: (A) 2.1 M 2,2-Me₂THF; (B) 8.4 M 2,2-Me₂THF.

XVIII. ¹⁵N NMR spectra of 0.10 M [⁶Li,¹⁵N]**3** in 2,2-Me₂THF recorded at -90 °C: (A) ⁶Li coupled; (B) ⁶Li decoupled.

XIX. (A) ⁶Li NMR spectra of 0.10 M [⁶Li,¹⁵N]**3** in toluene recorded at -60 °C. ⁶Li NMR spectra of 0.10 M [⁶Li,¹⁵N]**3** in 2-MeTHF/toluene recorded at -90 °C: (B) 0.05 M 2-MeTHF; (C) 0.075 M 2-MeTHF; (D) 0.10 M 2-MeTHF; (E) 0.20 M 2-MeTHF; (F) 2.40 M 2-MeTHF; (G) 4.90 M 2-MeTHF; (H) 9.90 M 2-MeTHF.

XX. ¹⁵N NMR spectra of 0.10 M [⁶Li,¹⁵N]**3** in 2-MeTHF recorded at -90 °C: (A) ⁶Li coupled; (B) ⁶Li decoupled.

XXI. ⁶Li NMR spectra of 0.10 M [⁶Li,¹⁵N]**3** in 2.4 M 2-MeTHF/toluene recorded at: (A) -115 °C; (B) -110 °C; (C) -90 °C; (D) -75 °C; (E) -60 °C; (F) -50 °C; (G) -40 °C; (H) -20 °C; (I) 0 °C.

XXII. ⁶Li NMR spectra of 0.10 M [⁶Li,¹⁵N]**3** in 2.0 M 2-MeTHF/THP/toluene recorded at -90 °C: (A) 0.00 M THP; (B) 0.10 M THP; (C) 0.20 M THP; (D) 0.50 M THP; (E) 1.0 M THP; (F) 2.0 M THP; (G) 4.0 M THP.

XXIII. ⁶Li NMR spectra of 0.10 M [⁶Li,¹⁵N]**3** in 2.0 M 2-MeTHF/2.0 M THP/toluene recorded at: (A) -90 °C; (B) -75 °C; (C) -60 °C; (D) -50 °C; (E) -40 °C; (F) -20 °C.

XXIV. ⁶Li NMR spectra of 0.10 M [⁶Li,¹⁵N]3 in THP/toluene recorded at -90 °C:
(A) 0.075 M; (B) 0.10 M THP; (C) 0.20 M THP; (D) 0.80 M THP; (E) 1.60 M THP;
(F) 3.30 M THP; (G) 5.0 M THP; (H) 6.70 M THP. * Unassigned.

XXV. ⁶Li{¹⁵N} NMR spectra of [⁶Li,¹⁵N]**3** in 5.0 M THP/toluene recorded at -90 °C: (A) 0.030 M [⁶Li,¹⁵N]**3**; (B) 0.10 M [⁶Li,¹⁵N]**3**; (C) 0.20 M [⁶Li,¹⁵N]**3**.

XXVI. ⁶Li{¹⁵N} NMR spectra of [⁶Li,¹⁵N]**3** in 1.6 M THP/toluene recorded at -90 ^oC: (A) 0.40 M [⁶Li,¹⁵N]**3**; (B) 0.20 M [⁶Li,¹⁵N]**3**; (C) 0.10 M [⁶Li,¹⁵N]**3**; (D) 0.050 M [⁶Li,¹⁵N]**3**; (E) 0.025 M [⁶Li,¹⁵N]**3**.

XXVII. ¹⁵N NMR spectra of 0.20 M [⁶Li,¹⁵N]**3** in 5.0 M THP/toluene recorded at -90 °C: (A) ⁶Li coupled; (B) ⁶Li decoupled.

XXVIII. Selective ¹⁵N decoupled ⁶Li NMR spectra of 0.20 M [⁶Li,¹⁵N]**3** in 5.0 M THP/toluene recorded at -90 °C: (A) 142 ppm; (B) 131 ppm; (C) 125 ppm; (D) 124 ppm.

XXIX. ⁶Li NMR spectra of 0.10 M [⁶Li,¹⁵N]**3** in 5.0 M THP/toluene recorded at: (A) -90 °C; (B) -75 °C; (C) -60 °C; (D) -50 °C; (E) -35 °C; (F) -20 °C; (G) 0 °C.

XXXI. ⁶Li NMR spectra of 0.10 M [⁶Li,¹⁵N]**3** in THF/toluene recorded at -90 °C: (A) 0.50 M THF; (B) 1.0 M THF; (C) 2.0 M THF; (D) 3.0 M THF; (E) 5.0 M THF; (F) 7.0 M THF; (G) 9.0 M THF.

XXXII. ¹⁵N NMR spectra of 0.10 M [⁶Li,¹⁵N]**3** in THF/toluene recorded at -90 °C: (A) 2.0 M THF, ⁶Li decoupled; (B) 9.0 M THF, ⁶Li coupled; (C) 0.50 M THF, ⁶Li coupled.

XXXIII. ⁶Li NMR spectra of 0.10 M [⁶Li,¹⁵N]**3** in 5.0 M THF/toluene recorded at: (A) -110 °C; (B) -100 °C; (C) -90 °C; (D) -80 °C.

XXXIV. *J*(⁶Li,¹⁵N)-resolved NMR spectrum of 0.10 M [⁶Li,¹⁵N]**3** in 0.075 M THP/toluene recorded at -90 °C. * Unassigned.

Part 3: Rate Studies

XXXV. Plot of k_{obsd} vs [*n*-BuOMe] in toluene cosolvent for the alkylation of **3** (0.10 M) with n-C₇H₁₅I (0.005 M) at 0 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a + b[n$ -BuOMe]^{*c*} ($a = 0.13 \pm 0.05$, $b = 0.24 \pm 0.05$, $c = 0.90 \pm 0.09$).

[n-BuOMe] (M)	$k_{\rm obsd} 1 \ge 10^3 ({\rm s}^{-1})$	$k_{\rm obsd} 2 \mathrm{x} 10^3 \mathrm{(s^{-1})}$	$k_{\rm obsd} {\rm av} \ge 10^3 ~{\rm (s}^{-1})$
0.25	0.214 <u>+</u> 6E-3	0.204 <u>+</u> 3E-3	0.209 <u>+</u> 7E-3
0.55	0.254 <u>+</u> 5E-3	0.247 <u>+</u> 5E-3	0.251 <u>+</u> 5E-3
1.05	0.352 <u>+</u> 9E-3	0.392 <u>+</u> 6E-3	0.372 <u>+</u> 3E-2
2.05	0.57 <u>+</u> 2E-2	0.61 <u>+</u> 2E-2	0.59 <u>+</u> 3E-2
4.05	0.94 <u>+</u> 2E-2	0.98 <u>+</u> 1E-2	0.96 <u>+</u> 3E-2
6.05	1.33 <u>+</u> 3E-2	1.38 <u>+</u> 3E-2	1.35 <u>+</u> 3E-2
8.05	1.57 <u>+</u> 3E-2	1.82 <u>+</u> 2E-3	1.69 <u>+</u> 2E-1

XXXVI. Plot of k_{obsd} vs [**3**] in 2.10 M *n*-BuOMe and toluene cosolvent for the alkylation of **3** with n-C₇H₁₅I (0.005 M) at 0 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a$ [**3**]^{*b*} ($a = 4.6 \pm 0.1$, $b = 0.92 \pm 0.02$).

[3] (M)	$k_{\rm obsd} 1 \ge 10^3 ({\rm s}^{-1})$	$k_{\rm obsd} 2 \mathrm{x} 10^3 \mathrm{(s^{-1})}$	$k_{\rm obsd} {\rm av} {\rm x} 10^3 ({\rm s}^{-1})$
0.050	0.315 <u>+</u> 4E-3	0.327 <u>+</u> 9E-3	0.321 <u>+</u> 8E-3
0.10	0.57 <u>+</u> 2E-2	0.61 <u>+</u> 2E-2	0.59 <u>+</u> 3E-2
0.20	0.98 <u>+</u> 4E-2	1.02 <u>+</u> 2E-2	1.00 <u>+</u> 3E-2
0.30	1.49 <u>+</u> 4E-3	1.57 <u>+</u> 2E-2	1.53 <u>+</u> 6E-2
0.40	2.02 <u>+</u> 4E-2	1.99 <u>+</u> 2E-2	2.00 <u>+</u> 2E-2
0.50	2.4 <u>+</u> 1E-1	2.47 <u>+</u> 5E-2	2.45 <u>+</u> 6E-2

XXXVII. Plot of k_{obsd} vs [**3**] in 6.10 M *n*-BuOMe and toluene cosolvent for the alkylation of **3** with n-C₇H₁₅I (0.005 M) at 0 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a$ [**3**]^{*b*} ($a = 8.4 \pm 0.3$, $b = 0.84 \pm 0.04$).

[3] (M)	$k_{\rm obsd} 1 \ge 10^3 ({\rm s}^{-1})$	$k_{\rm obsd} 2 \mathrm{x} 10^3 \mathrm{(s^{-1})}$	$k_{\rm obsd} {\rm av} {\rm x} 10^3 ({\rm s}^{-1})$
0.050	0.77 <u>+</u> 2E-2	0.84 <u>+</u> 1E-2	0.80 <u>+</u> 5E-2
0.10	1.38 <u>+</u> 3E-2	1.32 <u>+</u> 2E-2	1.35 <u>+</u> 4E-2
0.20	2.14 <u>+</u> 3E-2	2.07 <u>+</u> 2E-2	2.11 <u>+</u> 5E-2
0.30	2.97 <u>+</u> 5E-2	2.98 <u>+</u> 1E-2	2.98 <u>+</u> 1E-2
0.40	3.9 <u>+</u> 2E-1	3.74 <u>+</u> 9E-2	3.8 <u>+</u> 1E-1
0.50	5.04 <u>+</u> 7E-2	4.69 <u>+</u> 5E-2	4.9 <u>+</u> 2E-1

XXXVIII. Plot of k_{obsd} vs [*t*-BuOMe] in toluene cosolvent for the alkylation of **3** (0.10 M) with n-C₇H₁₅I (0.005 M) at 0 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a + b[t$ -BuOMe] ($a = 0.18 \pm 0.06$, $b = 0.28 \pm 0.01$).

[<i>t</i> -BuOMe] (M)	$k_{\rm obsd} 1 { m x} 10^3 ({ m s}^{-1})$	$k_{\rm obsd} 2 \mathrm{x} 10^3 \mathrm{(s^{-1})}$	$k_{\rm obsd} {\rm av} {\rm x} 10^3 ({\rm s}^{-1})$
1.05	0.45 <u>+</u> 2E-2	0.413 <u>+</u> 4E-3	0.44 <u>+</u> 3E-2
2.05	0.711 <u>+</u> 6E-3	0.68 <u>+</u> 1E-2	0.69 <u>+</u> 2E-2
3.05	1.07 <u>+</u> 2E-2	1.08 <u>+</u> 2E-2	1.08 <u>+</u> 1E-2
4.05	1.36 <u>+</u> 2E-2	1.325 <u>+</u> 8E-3	1.34 <u>+</u> 2E-2
6.05	1.99 <u>+</u> 5E-2	1.98 <u>+</u> 2E-2	1.99 <u>+</u> 1E-2
8.05	2.22 <u>+</u> 1E-2	2.45 <u>+</u> 2E-2	2.34 <u>+</u> 2E-1

XXXIX. Plot of k_{obsd} vs [**3**] in 2.10 M *t*-BuOMe and toluene cosolvent for the alkylation of **3** with n-C₇H₁₅I (0.005 M) at 0 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a$ [**3**]^{*b*} ($a = 4.5 \pm 0.2$, $b = 0.81 \pm 0.02$).

[3] (M)	$k_{\rm obsd} 1 \mathrm{x} 10^3 \mathrm{(s^{-1})}$	$k_{\rm obsd} 2 \mathrm{x} 10^3 \mathrm{(s^{-1})}$	$k_{\rm obsd} { m av} \ge 10^3 ~{ m (s^{-1})}$
0.025	0.262 <u>+</u> 6E-3	0.228 <u>+</u> 5E-3	0.24 <u>+</u> 2E-2
0.05	0.412 <u>+</u> 5E-3	0.433 <u>+</u> 3E-3	0.42 <u>+</u> 1E-2
0.10	0.711 <u>+</u> 6E-3	0.68 <u>+</u> 1E-2	0.69 <u>+</u> 2E-2
0.15	0.96 <u>+</u> 2E-2	0.96 <u>+</u> 1E-2	0.96 <u>+</u> 1E-2
0.20	1.28 <u>+</u> 2E-2	1.25 <u>+</u> 1E-2	1.26 <u>+</u> 2E-2

XL. Plot of k_{obsd} vs [**3**] in 6.10 M *t*-BuOMe and toluene cosolvent for the alkylation of **3** with n-C₇H₁₅I (0.005 M) at 0 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a$ [**3**]^{*b*} ($a = 9 \pm 1$, $b = 0.64 \pm 0.04$).

[3] (M)	$k_{\rm obsd} 1 \ge 10^3 ({\rm s}^{-1})$	$k_{\rm obsd} 2 \mathrm{x} 10^3 \mathrm{(s^{-1})}$	$k_{\rm obsd} { m av} { m x} 10^3 ({ m s}^{-1})$
0.025	0.77 <u>+</u> 2E-2	0.85 <u>+</u> 1E-2	0.81 <u>+</u> 6E-2
0.05	1.28 <u>+</u> 1E-2	1.36 <u>+</u> 2E-2	1.32 <u>+</u> 6E-2
0.075	1.78 <u>+</u> 1E-2	1.79 <u>+</u> 2E-2	1.78 <u>+</u> 1E-2
0.10	1.99 <u>+</u> 5E-2	1.98 <u>+</u> 2E-2	1.99 <u>+</u> 1E-2

XLI. Plot of k_{obsd} vs [2-MeTHF] in toluene cosolvent for the alkylation of **3** (0.10 M) with n-C₈H₁₇Br (0.005 M) at 0 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a + b$ [2-MeTHF]^{*c*} ($a = 0.08 \pm 0.01$, $b = 0.068 \pm 0.003$, $c = 1.78 \pm 0.02$).

[2-MeTHF] (M)	$k_{\rm obsd} 1 \ge 10^3 ({\rm s}^{-1})$	$k_{\rm obsd} 2 \ge 10^3 ({\rm s}^{-1})$	$k_{\rm obsd} {\rm av} {\rm x} 10^3 ({\rm s}^{-1})$
	- -		
0.55	0.0759 <u>+</u> 5E-4	0.0788 <u>+</u> 3E-4	0.077 <u>+</u> 2E-3
1.05	0.157 <u>+</u> 1E-3	0.156 <u>+</u> 1E-3	0.156 <u>+</u> 1E-3
2.05	0.342 <u>+</u> 2E-3	0.358 <u>+</u> 2E-3	0.35 <u>+</u> 1E-2
4.05	0.909 <u>+</u> 1E-3	0.929 <u>+</u> 6E-3	0.92 <u>+</u> 1E-2
6.05	1.71 <u>+</u> 3E-2	1.744 <u>+</u> 6E-3	1.73 <u>+</u> 2E-2
8.05	2.864 <u>+</u> 7E-3	2.857 <u>+</u> 7E-3	2.861 <u>+</u> 5E-3
9.55	3.87 <u>+</u> 4E-2	3.86 <u>+</u> 2E-2	3.86 <u>+</u> 1E-2

XLII. Plot of k_{obsd} vs [2-MeTHF] in toluene cosolvent for the alkylation of **3** (0.10 M) with n-C₇H₁₅I (0.005 M) at 0 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a + b$ [2-MeTHF]^{*c*} ($a = 0.6 \pm 0.2$, $b = 4.0 \pm 0.3$, $c = 1.5 \pm 0.1$).

[2-MeTHF] (M)	$k_{\rm obsd} 1 \ge 10^3 ({\rm s}^{-1})$	$k_{\rm obsd} 2 \mathrm{x} 10^3 \mathrm{(s^{-1})}$	$k_{\rm obsd} { m av} \ge 10^3 ~{ m (s^{-1})}$
0.00	0.341 <u>+</u> 5E-3	0.395 <u>+</u> 7E-3	0.37 <u>+</u> 4E-2
0.10	0.65 <u>+</u> 2E-2	0.626 <u>+</u> 7E-3	0.64 <u>+</u> 2E-2
0.20	0.844 <u>+</u> 5E-3	1.21 <u>+</u> 2E-2	1.0 <u>+</u> 3E-1
0.55	2.66 <u>+</u> 1E-2	2.533 <u>+</u> 9E-3	2.60 <u>+</u> 9E-2
1.05	5.2 <u>+</u> 1E-1	5.25 <u>+</u> 3E-2	5.22 <u>+</u> 3E-2
1.55	8.00 <u>+</u> 8E-2	9.40 <u>+</u> 6E-2	8.70 <u>+</u> 6E-2
2.05	13.9 <u>+</u> 4E-1	13.7 <u>+</u> 1E-1	13.8 <u>+</u> 1E-1

XLIII. Plot of k_{obsd} vs [**3**] in 1.10 M 2-MeTHF and toluene cosolvent for the alkylation of **3** with n-C₈H₁₇Br (0.005 M) at 0 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a$ [**3**]^{*b*} ($a = 0.66 \pm 0.01$, $b = 0.61 \pm 0.02$).

[3] (M)	$k_{\rm obsd} \ge 10^3 ({\rm s}^{-1})$
0.025	0.076 + 1E-3
0.05	0.110 <u>+</u> 1E-3
0.10	$0.156 \pm 1E-3^{a}$
0.20	0.246 <u>+</u> 2E-3
0.30	0.310 <u>+</u> 6E-3
0.40	0.367 <u>+</u> 3E-1
0.50	0.44 <u>+</u> 2E-2

XLIV. Plot of k_{obsd} vs [**3**] in 4.10 M 2-MeTHF and toluene cosolvent for the alkylation of **3** with n-C₈H₁₇Br (0.005 M) at 0 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a$ [**3**]^{*b*} ($a = 3.8 \pm 0.1$, $b = 0.62 \pm 0.01$).

[3] (M)	$k_{\rm obsd} 1 \ge 10^3 ({\rm s}^{-1})$	$k_{\rm obsd} 2 \mathrm{x} 10^3 \mathrm{(s^{-1})}$	$k_{\rm obsd} { m av} { m x} 10^3 ({ m s}^{-1})$
0.025	0.368 <u>+</u> 4E-3	0.357 <u>+</u> 5E-3	0.363 <u>+</u> 8E-3
0.05	0.610 <u>+</u> 3E-3	0.591 <u>+</u> 3E-3	0.60 <u>+</u> 1E-2
0.10	0.909 <u>+</u> 1E-3	0.929 <u>+</u> 6E-3	0.92 <u>+</u> 1E-2
0.15	1.20 <u>+</u> 1E-2	1.21 <u>+</u> 1E-2	1.20 <u>+</u> 1E-2
0.20	1.34 <u>+</u> 2E-2	1.43 <u>+</u> 1E-2	1.39 <u>+</u> 6E-2
0.30	1.84 <u>+</u> 3E-2	1.75 <u>+</u> 2E-2	1.80 <u>+</u> 6E-2
0.40	2.0 <u>+</u> 1E-1	2.15 <u>+</u> 3E-2	2.10 <u>+</u> 1E-1
0.50	2.57 <u>+</u> 1E-2	2.46 <u>+</u> 5E-2	2.52 <u>+</u> 8E-2

XLV. Plot of k_{obsd} vs [**3**] in 8.10 M 2-MeTHF and toluene cosolvent for the alkylation of **3** with n-C₈H₁₇Br (0.005 M) at 0 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a$ [**3**]^{*b*} ($a = 14.0 \pm 0.3$, $b = 0.68 \pm 0.02$).

[3] (M)	$k_{\rm obsd} \ge 10^3 ({\rm s}^{-1})$
0.025	1.17 <u>+</u> 2E-2
0.05	2.061 <u>+</u> 9E-3
0.10	$2.861 \pm 5E-3^{a}$
0.20	4.75 <u>+</u> 4E-2
0.30	5.95 <u>+</u> 9E-2
0.40	7.49 <u>+</u> 5E-2
0.50	8.9 <u>+</u> 1E-1

XLVI. Plot of k_{obsd} vs [Et₂O] in toluene cosolvent for the alkylation of **3** (0.10 M) with n-C₇H₁₅I (0.005 M) at 0 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a$ [Et₂O]^{*b*} ($a = 0.38 \pm 0.03$, $b = 0.65 \pm 0.03$).

$[Et_2O]$ (M)	$k_{\rm obsd} 1 \ge 10^3 ({\rm s}^{-1})$	$k_{\rm obsd} 2 \ge 10^3 ({\rm s}^{-1})$	$k_{\rm obsd} { m av} { m x} 10^3 ({ m s}^{-1})$
1.05	0.333 <u>+</u> 5E-3	0.397 <u>+</u> 4E-3	0.365 <u>+</u> 4E-2
2.05	0.57 <u>+</u> 1E-2	0.554 <u>+</u> 5E-3	0.563 <u>+</u> 1E-2
4.05	0.97 <u>+</u> 2E-2	0.977 <u>+</u> 9E-3	0.974 <u>+</u> 5E-3
5.25	1.19 <u>+</u> 2E-2	1.12 <u>+</u> 2E-2	1.157 <u>+</u> 5E-3
6.55	1.28 <u>+</u> 2E-2	1.31 <u>+</u> 3E-2	1.30 <u>+</u> 2E-2
8.05	1.52 <u>+</u> 4E-2	1.56 <u>+</u> 2E-2	1.54 <u>+</u> 3E-2
9.15	1.51 <u>+</u> 2E-2	1.48 <u>+</u> 2E-2	1.50 <u>+</u> 2E-2

XLVII. Plot of k_{obsd} vs [3] in 2.10 M Et₂O and toluene cosolvent for the alkylation of **3** with n-C₇H₁₅I (0.005 M) at 0 °C. The curve depicts an unweighted leastsquares fit to $k_{\text{obsd}} = a[3]^b$ ($a = 3.0 \pm 0.1$, $b = 0.73 \pm 0.03$).

[3] (M)	$k_{\rm obsd} \ge 10^3 ({\rm s}^{-1})$
0.025	0.206 <u>+</u> 3E-3
0.05	0.374 <u>+</u> 7E-3
0.10	0.563 <u>+</u> 1E-2 ^a
0.15	0.72 <u>+</u> 1E-2
0.20	0.99 <u>+</u> 1E-2
0.30	1.20 <u>+</u> 3E-2
0.40	1.57 <u>+</u> 5E-2

XLVIII. Plot of k_{obsd} vs [3] in 8.10 M Et₂O and toluene cosolvent for the alkylation of **3** with n-C₇H₁₅I (0.005 M) at 0 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a$ [**3**]^{*b*} ($a = 7.5 \pm 0.3$, $b = 0.69 \pm 0.03$).

[3] (M)	$k_{\rm obsd} \ge 10^3 ({\rm s}^{-1})$
0.025	$0.59 \pm 2E.2$
0.025	$0.39 \pm 2E-2$ 0.98 + 3E-2
0.00	$1.54 + 3E-2^{a}$
0.20	2.48 + 8E-2
0.30	3.2 <u>+</u> 1E-1
0.40	4.3 <u>+</u> 1E-1
0.50	4.53 <u>+</u> 9E-2

XLIX. Table of data for k_{obsd} in various ethereal solvents (1.10 M) and toluene cosolvent for the alkylation of **3** (0.10 M) with n-C₇H₁₅I (0.005 M) at 0 °C.

Solvent	$k_{\rm obsd} 1 \mathrm{x} 10^3 \mathrm{(s^{-1})}$	$k_{\rm obsd} 2 \mathrm{x}10^3 \mathrm{(s^{-1})}$	$k_{\rm obsd} {\rm av} {\rm x} 10^3 ({\rm s}^{-1})$	$k_{\rm rel}$
Et ₂ O	0.333 <u>+</u> 5E-3	0.397 <u>+</u> 4E-3	0.36 <u>+</u> 4E-2	1.0
<i>n</i> -BuOMe	0.352 <u>+</u> 9E-3	0.392 <u>+</u> 6E-3	0.37 <u>+</u> 3E-2	1.0
t-BuOMe	0.45 <u>+</u> 2E-2	0.41 <u>+</u> 4E-2	0.43 <u>+</u> 3E-2	1.2
THP	3.42 <u>+</u> 8E-2	3.68 <u>+</u> 6E-2	3.55 <u>+</u> 2E-1	10
2-MeTHF	5.2 <u>+</u> 1E-1	5.25 <u>+</u> 3E-2	5.22 <u>+</u> 4E-2	14
THF	23.3 <u>+</u> 4E-1	20.8 <u>+</u> 4E-1	22 <u>+</u> 2	61

L. Representative plots of the time-dependent decay of n-C₈H₁₇Br relative to an n-C₈H₁₈ internal standard (relative area under the curve, AUC).

(A) Plot of the GC integration of n-C₈H₁₇Br vs time (s) for sequentially quenched samples of a reaction mixture containing **3** (0.1 M), 2-MeTHF (4.10 M), n-C₈H₁₇Br (0.005 M), and toluene cosolvent at 0 °C. The curve depicts a least squares fit to $f(x) = ae^{-bx}$ ($a = 1.273 \pm 0.001$, $b = k_{obsd} = (0.909 \pm 0.001) \times 10^{-3}$. (B) Plot of the natural logarithm of the data plotted in A vs time (s). The curve depicts a least squares fit to f(x) = ax + b ($a = (-9.128 \pm 0.008) \times 10^{-3}$, $b = 0.24 \pm 0.01$).

Part 4: DFT Computational Studies

LI. Optimized geometries and free energies (*G*, Hartrees) of monomers AS_n .^{*a*}

A. Syn isomers AS_n . n = 0-3, $S = Me_2O$ ($\Delta G = -154.97011$ Hartrees).

^aOnly selected hydrogens shown for clarity.

	Ι	II	III	IV	V	VI	VII	VIII
Li-N ^b	1.80	1.83	1.89	1.95	1.85	1.88	1.92	1.96
Li-C1 ^b	2.60	2.77	2.83	2.86	2.09	2.16	2.25	2.83
Li-C2 ^b					2.11	2.15	2.22	3.03
Li-O1		1.89	1.95	2.10		1.93	2.02	2.09
Li-O2			1.96	2.07			1.99	2.07
Li-O3				2.06				2.05
N-C1	1.38	1.37	1.37	1.37	1.35	1.35	1.35	1.37
C1-C2	1.36	1.36	1.36	1.37	1.41	1.40	1.39	1.38
Li-N-C1	109.0	119.1	119.5	117.4	80.9	81.7	83.6	115.4
N-Li-C2					73.4	71.5	69.0	52.8
N-C1-C2	129.8	129.2	129.4	129.4	118.6	119.2	119.9	123.5
Li-N-C1-C2	182.9	184.9	206.8	216.6	39.6	41.7	42.2	179.5

LII. Selected bond lengths (Å) and angles (deg) of monomers AS_n .^{*a,b*}

"See 3D representations in Section LI for atom numbering.

^{*b*}N-C1-C2 constitute the azaallylic moiety.

LIII. Optimized geometries and free energies (*G*, Hartrees) of dimers $A_2 S_n$.^a

A. Unsolvated trans isomers $\mathbf{A}_2 \mathbf{S}_n$. n = 0.

B. Unsolvated cis isomers A_2S_n

^{*a*}Only selected hydrogens shown for clarity.

LIII (Continued).

C. Monosolvated trans isomers A_2S_n . n = 1, $S = Me_2O$ (G = -154.97011 Hartrees).

D. Monosolvated cis isomers A_2S_n . n = 1, $S = Me_2O$

^aOnly selected hydrogens shown for clarity.

LIII (Continued).

E. Disolvated trans isomers A_2S_n . n = 2, $S = Me_2O$ (G = -154.97011 Hartrees).

^aOnly selected hydrogens shown for clarity.

^{*b*}Li2 and the azaallyl moiety N1-C1-C2 show no evidence of π complexation.

	IX	X	XI	XII	XIII	XIV	XV
Li1-N1 ^b	1.98	1.94	2.07	1.93	1.97	1.96	2.05
Li1-N2 ^b	1.98	1.97	2.01	1.93	1.99	1.95	2.01
Li2-N1 ^b	1.97	2.03	2.01	2.18	1.99	2.01	2.01
Li2-N2 ^b	1.98	2.11	2.07	2.18	1.98	2.17	2.05
$Li1-C1^b$			2.22				2.23
$Li1-C2^b$			2.19				2.17
Li2-C1 ^b				2.28			
$Li2-C2^b$				2.19			
$Li2-C5^b$		2.25	2.22	2.28		2.26	2.23
Li2-C6 ^b		2.16	2.19	2.19		2.15	2.16
N1-C1	1.39	1.39	1.37	1.37	1.39	1.39	1.37
N2-C5	1.39	1.37	1.37	1.37	1.40	1.36	1.37
C1-C2	1.36	1.36	1.38	1.38	1.36	1.36	1.39
C5-C6	1.36	1.39	1.38	1.38	1.36	1.39	1.39
Li1-N1-C1-C2	150.0	144.0	46.0	45.0	149.7	136.1	42.1
Li2-N2-C5-C6	136.2	42.5	46.0	6.5	150.4	44.0	42.1

LIV. Selected bond lengths (Å) and angles (deg) calculated for unsolvated dimers A_2 .^{*a, b*}

"See 3D representations in Section LIII for atom numbering.

^{*b*}N1-C1-C2, and N2-C5-C6 constitute the azaallylic moieties.

Li1-N1 ^b 2.082.042.202.022.052.062.05Li1-N2 ^b 2.062.072.092.022.072.032.11Li2-N1 ^b 1.952.001.972.051.971.981.98Li2-N2 ^b 1.942.102.022.201.962.132.03Li1-C1 ^b 2.302.43Li1-C2 ^b 2.242.46Li2-C1 ^b 2.26Li2-C2 ^b 2.26Li2-C5 ^b 2.232.222.232.45Li2-C6 ^b 2.172.232.212.17Li2-C6 ^b 2.172.181.921.951.971.911.942.00
Li1-N2b2.062.072.092.022.072.032.11Li2-N1b1.952.001.972.051.971.981.98Li2-N2b1.942.102.022.201.962.132.03Li1-C1b2.302.43Li1-C2b2.242.46Li2-C1b2.29Li2-C2b2.26Li2-C5b2.232.222.232.45Li2-C6b2.172.232.212.172.18Li1-O1.921.951.951.971.911.942.00
Li2-N1 ^b 1.952.001.972.051.971.981.98Li2-N2 ^b 1.942.102.022.201.962.132.03Li1-C1 ^b 2.302.43Li1-C2 ^b 2.242.46Li2-C1 ^b 2.29Li2-C2 ^b 2.26Li2-C5 ^b 2.232.222.232.45Li2-C6 ^b 2.172.232.212.172.18Li1-O1.921.951.951.971.911.942.00
Li2-N2 ^b 1.942.102.022.201.962.132.03Li1-C1 ^b 2.302.43Li1-C2 ^b 2.242.46Li2-C1 ^b 2.292.46Li2-C2 ^b 2.26Li2-C5 ^b 2.232.222.232.45Li2-C6 ^b 2.172.232.212.17Li1-O1.921.951.951.971.911.942.00
Li1-C1 ^b 2.302.43Li1-C2 ^b 2.242.46Li2-C1 ^b 2.29Li2-C2 ^b 2.26Li2-C5 ^b 2.232.222.23Li2-C6 ^b 2.172.232.21Li1-O1.921.951.951.971.911.94
Li1-C2 ^b 2.242.46Li2-C1 ^b 2.29Li2-C2 ^b 2.26Li2-C5 ^b 2.232.222.232.452.18Li2-C6 ^b 2.172.232.212.172.18Li1-O1.921.951.951.971.911.942.00
Li2-C1 ^b 2.29Li2-C2 ^b 2.26Li2-C5 ^b 2.232.222.232.45Li2-C6 ^b 2.172.232.212.17Li1-O1.921.951.951.971.911.942.00
Li2-C2 ^b 2.26Li2-C5 ^b 2.232.222.232.452.18Li2-C6 ^b 2.172.232.212.172.18Li1-O1.921.951.951.971.911.942.00
Li2-C5 ^b 2.232.222.232.452.18Li2-C6 ^b 2.172.232.212.172.18Li1-O1.921.951.951.971.911.942.00
Li2-C6 ^b 2.17 2.23 2.21 2.17 2.18 Li1-O 1.92 1.95 1.95 1.97 1.91 1.94 2.00
Li1-O 1.92 1.95 1.95 1.97 1.91 1.94 2.00
N1-C1 1.39 1.39 1.35 1.37 1.39 1.39 1.37
N2-C5 1.39 1.37 1.37 1.37 1.39 1.37 1.37
C1-C2 1.36 1.36 1.38 1.38 1.36 1.36 1.37
C5-C6 1.36 1.38 1.39 1.38 1.36 1.39 1.39
Li1-N1-C1-C2 126.3 133.2 47.2 38.5 116.0 117.4 40.3
Li2-N2-C5-C6 159.1 43.9 46.4 51.7 161.1 44.7 45.8

LIV (*Continued*). Selected bond lengths (Å) and angles (deg) calculated for monosolvated dimers A_2S .^{*a, b*}

"See 3D representations in Section LIII for atom numbering.

^{*b*}N1-C1-C2, and N2-C5-C6 constitute the azaallylic moieties.

	XXV	XXVI	XXVII	XXIX	XXX	XXXI
Li1-N1 ^b	2.04	2.00	2.12	2.02	2.01	2.10
Li1-N2 ^b	2.03	2.03	2.05	2.07	2.03	2.08
Li2-N1 ^b	2.06	2.13	2.05	2.07	2.10	2.03
Li2-N2 ^b	2.06	2.13	2.12	2.01	2.08	2.01
Li1-C1 ^b			2.29			2.30
Li1-C2 ^b			2.30			2.32
$Li2-C5^b$		2.36	2.29		2.30	2.83
Li2-C6 ^b		2.33	2.29		2.32	2.97
Li1-O	1.95	1.95	1.96	1.93	1.97	1.99
Li2-O	1.92	1.96	1.96	1.93	2.00	1.97
N1-C1	1.39	1.39	1.36	1.39	1.40	1.38
N2-C5	1.39	1.37	1.36	1.39	1.38	1.39
C1-C2	1.36	1.37	1.38	1.36	1.36	1.38
C5-C6	1.36	1.38	1.38	1.36	1.38	1.36
Li1-N1-C1-C2	136.1	162.6	47.7	157.5	154.8	47.6
Li2-N2-C5-C6	150.0	44.1	47.7	156.9	52.9	6.5

LIV (*Continued*). Selected bond lengths (Å) and angles (deg) calculated for disolvated dimers A_2S_2 .^{*a,b*}

^{*a*}See 3D representations in Section LIII for atom numbering. ^{*b*}N1-C1- C2, and N2-C5-C6 constitute the azaallylic moieties.

i-Pr *i*-Pr *i-*Pr *i*-Pr i-Pr *i-*Pr Ĺi Li Li. Li Li. i-Pr -Pr XXXIII XXXIV XXXV XXXVI C2 Li1 Li1 Li1 Li1 C12 C10 Н C11 ¢ C11 Li3 Li2 Li3 C10C10 Li3 Li3 C6 C C8 Эн Ĥ Н C7 η^1 -syn, η^3 -anti, η^3 -anti η^3 -syn, η^3 -syn, η^1 -syn ^{b,c} η^3 -syn, η^3 -syn, η^3 -anti ^b η^3 -syn, η^3 -anti, η^3 -anti ^b -894.10477 -894.11213 -894.11550 -894.11224 *i*-Pr *i-*Pr i-P i-P i-F XXXVIII XXXVII XXXIX C11 Li1€ НC C11 210 Li1 C11 N C10 .i2 Li3 С6 P C8 C7 Н () C7 C $O_{\rm H}$ *vic*-all η³-anti gem-all ŋ³-anti *gem*-all η³-anti -894.11834 -894.11906 -894.10971

LV. Optimized geometries and free energies (*G*, Hartrees) of trimers A_3S_n .^{*a*} **A.** Unsolvated cis, trans isomers A_3S_n . n = 0.

^aOnly selected hydrogens shown for clarity.

 ${}^{b}\eta^{1}$ -Syn azaallyl moieties turned into η^{3} -syn upon geometry optimization.

^{*c*} All η^3 -syn not found.

LV (Continued).

B. Unsolvated cis, cis isomers $\mathbf{A}_{3}\mathbf{S}_{n}$. n = 0.^{*a*}

-894.11328

 a Only selected hydrogens shown for clarity. $^{b}\eta^{3}\text{-}Syn$ isomer not found.

LV (Continued).

C. Solvated cis, trans isomers A_3S_n . n = 1-3, S = Me₂O (G = -154.97011 Hartrees).

LV (Continued).

D. Solvated cis, cis isomers A_3S_n . n = 1-3, $S = Me_2O$ (G = -154.97011 Hartrees).

 a Only selected hydrogens shown for clarity. $^{b}\eta^{3}\text{-}Syn$ azaallyl moiety not found.

 $^{a}\eta^{3}$ -Anti azaallyl moiety turned into η^{1} -anti upon geometry optimization. d Optimization of **XLX** converges to its isomer **XLIX**.

Li1-N1 ^b	2.00	1.96	2.28	2.21	2.29	1.98
Li1-N3 ^b	2.21	2.05	1.96	2.00	1.96	2.05
Li2-N1 ^b	2.01	2.00	1.94	1.93	1.95	2.11
Li2-N2 ^b	2.13	2.04	2.04	1.93	2.04	2.16
Li3-N3 ^b	1.93	2.18	2.13	2.01	2.13	1.95
Li3-N2 ^b	1.93	1.99	1.98	2.13	1.98	1.92
Li1-N1-N3	140.9	141.5	134.4	140.9	134.3	138.4
Li2-N1-N2	140.3	144.0	143.7	144.6	143.2	135.7
Li3-N2-N3	144.6	136.3	141.2	140.3	141.1	152.6

LVI. Selected bond lengths (Å) and angles (deg) calculated for unsolvated trimers A_3S .^{*a*, *b*}

XXXIII XXXIV XXXV XXXVI XXXVII XXXVIII

	XXXIX	XL	XLI	XLII	XLIII	XLIV
Li1-N1 ^b	1.96	1.99	1.97	1.98	1.95	2.03
Li1-N3 ^b	2.07	1.95	2.02	2.07	1.96	1.98
Li2-N1 ^b	2.12	1.96	2.02	2.10	2.22	2.00
Li2-N2 ^b	2.16	2.01	2.16	2.02	2.00	2.05
Li3-N3 ^b	1.95	1.98	1.96	1.96	2.03	2.02
Li3-N2 ^b	1.93	1.95	1.91	1.95	2.05	1.99
Li1-N1-N3	138.3	144.1	153.0	138.7	147.6	137.7
Li2-N1-N2	137.7	147.3	134.8	141.3	136.5	140.0
Li3-N2-N3	156.1	145.5	145.7	152.6	143.2	139.7

"See 3D representations in Section LV for atom numbering.

^{*b*}N1-C3-C2, N2-C5-C6, and N3-C9-C10 constitute the azaallylic moieties.

	XLV	XLVI	XLVII	XLVIII	XLIX	LI	LII	LIII	LIV	LV
Li1-N1 ^b	2.02	2.05	2.06	2.02	2.05	2.05	2.07	2.10	2.06	2.06
Li1-N3 ^b	1.95	2.06	2.08	1.96	2.09	2.07	2.14	2.05	2.12	2.08
Li2-N1 ^b	2.07	2.16	2.07	2.10	1.99	2.09	2.07	2.04	2.13	2.08
Li2-N2 ^b	2.07	2.09	2.06	2.14	2.03	2.15	1.98	1.99	2.06	2.06
Li3-N3 ^b	2.13	2.08	2.03	2.11	2.14	2.09	2.00	2.01	1.99	2.07
Li3-N2 ^b	2.12	1.97	1.97	2.11	2.11	2.07	2.04	2.07	2.04	2.08
Li1-N1-N3	142.7	134.8	132.4	147.1	131.0	136.0	132.2	135.8	136.9	135.3
Li2-N1-N2	137.2	140.1	133.0	131.2	150.8	99.8	141.7	144.8	129.6	98.9
Li3-N2-N3	148.1	92.6	154.2	128.2	131.1	137.2	142.3	86.2	144.0	99.8
Li-O (av)	1.97	2.00	2.00	2.01	2.02	2.05	2.00	1.98	2.01	2.06

LVI (*Continued*). Selected bond lengths (Å) and angles (deg) calculated for solvated trimers A_3S_n .^{*a,b*}

"See 3D representations in Section LV for atom numbering.

^{*b*}N1-C3-C2, N2-C5-C6, and N3-C9-C10 constitute the azaallylic moieties.

LVII. Optimized geometries and free energies (*G*, Hartrees) of monomer-based transition structures $[AS_n CH_3 Br]^{\ddagger, a, b}$

A. Syn alkylations $[AS_n CH_3Br]^*$. n = 1-3. $S = Me_2O$, G = -154.97011 Hartrees. MeBr, G = -2613.76945 Hartrees.

B. Anti alkylations $[AS_n CH_3 Br]^{\ddagger}$.

^{*a*} Only selected hydrogens shown for clarity. ^{*b*} Only most stable conformers shown.

	Α	В	С	D	Ε	F
$Li-N^b$	1.89	1.94	1.99	1.91	1.94	2.02
Li-C1 ^b	2.64	2.80	2.95	2.33	2.80	2.92
Li-C2 ^b				2.24	2.97	3.13
Li-O1	1.88	1.95	2.06	1.89	1.95	2.04
Li-O2		1.93	2.03		1.94	2.05
Li-O3			2.03			2.12
N-C1	1.34	1.34	1.34	1.33	1.34	1.34
C1-C2	1.40	1.40	1.40	1.43	1.41	1.40
С2-Са	2.33	2.34	2.31	2.35	2.34	2.36
Ca-Br	2.42	2.40	2.41	2.40	2.37	2.35
C2-Ca-Br	172.8	175.5	175.5	177.3	172.3	171.5
Li-N-C1	108.4	116.0	123.4	90.2	115.7	119.3

LVIII. Selected bond lengths (Å) and angles (deg) calculated for monomer-based transition structures A-F.^{*a, b*}

"See 3D representations in Section LVII for atom numbering.

^{*b*}N-C1-C2 constitutes the azaallylic moiety.

LIX. Optimized geometries and free energies (*G*, Hartrees) of dimer-based transition structures $[A_2S_n CH_3Br]^{\ddagger,a,b}$

A. Exo alkylations $[A_2S_nCH_3Br]^{\ddagger}$. n = 1-2. S = Me₂O, G = -154.97011 Hartrees. MeBr, G = -2613.76945 Hartrees.

^a Only selected hydrogens shown for clarity.

^bOnly most stable conformers shown.

^{*c*} TS optimization collapsed into an endo isomer following a Li-Br interaction (see below).

^{*c*} TS optimization collapsed into an endo isomer following a Li-Br interaction (see below).

^{*d*}The isomer with an intact Li_2N_2 core couldn't be located.

 $^{\circ}$ TS optimization collapsed into an endo isomer following a Li-Br interaction (see below).
A. Exo alkylations $[A_2S_nCH_3Br]^{\dagger}$

^{*c*} TS optimization collapsed into an endo isomer following a Li-Br interaction (see below).

LIX (Continued).

B. Endo alkylations $[A_2S_n CH_3Br]^{\ddagger}$. n = 1-2. $S = Me_2O$, G = -154.97011 Hartrees. MeBr, G = -2613.76945 Hartrees.

 $[A_2S_nCH_3Br]^*$ syn or anti,*anti* not found^{*c*}

^cIsomers, including species with different solvation numbers, couldn't be located. ^eEndo alkylations of anti lithioimine subunits collapsed into their exo isomers or couldn't be located.

	G	Ι	J	L	Μ	0	Р	R	S	U
Li1-N1	2.16	2.27	2.15	2.34	2.23	2.16	2.15	2.15	2.15	2.13
Li1-N2	2.08	2.00	2.02	2.08	2.01	1.98	2.00	1.96	2.06	1.99
Li2-N1	1.97	2.05	2.00	2.03	1.97	2.02	2.01	2.05	2.03	2.09
Li2-N2	1.91	2.03	1.99	1.98	1.93	2.00	2.01	3.32	1.93	2.02
C2-Ca	2.18	2.23	2.25	2.26	2.26	2.24	2.25	2.22	2.20	2.20
Ca-Br	2.48	2.44	2.45	2.45	2.47	2.46	2.45	2.47	2.46	2.46
Li1-N1-N2	100.6	103.1	103.1	100.0	100.4	101.5	103.6	127.0	102.7	105.6
Li2-N1-N2	114.0	110.4	110.3	111.3	113.6	105.9	108.3	82.7	112.3	106.0
C2-Ca-Br	178.3	176.6	177.5	178.2	179.5	138.3	179.3	178.9	172.5	174.7
Li-O (av)	1.91	1.94	1.92	1.94	1.91	1.92	1.93	1.95	1.91	1.93
	V	w	x	Ŷ	AA	BB	DD	EE	FF	
Li1-N1	2.12	2.28	2.10	2.15	2.20	2.13	2.23	1.91	1.94	
Li1-N2	2.00	2.00	2.00	2.00	2.02	2.05	2.09	2.05	2.04	
Li2-N1	2.03	2.16	2.14	2.01	2.07	2.04	2.07			
Li2-N2	2.02	2.07	2.02	2.01	2.03	2.03	2.01	1.98	2.05	
C2-Ca	2.21	2.42	2.24	2.25	2.25	2.24	2.26	2.60	2.51	
Ca-Br	2.45	2.43	2.43	2.45	2.43	2.43	2.04	2.31	2.36	
Li-Br								2.59	2.78	
Li1-N1-N2	105.5	102.7	106.4	103.6	105.4	104.3	101.6	145.2	152.5	
Li2-N1-N2	108.2	106.0	104.4	108.3	109.8	108.8	110.7			
C2-Ca-Br	173.9	101.2	175.3	179.3	175.1	172.5	175.2	167.8	167.9	
Li-O (av)	1.93	1.98	1.95	1.91	1.92	1.93	1.94	1.94	2.04	

LX. Selected bond lengths (Å) and angles (deg) calculated for dimer-based transition structures **G-FF**.^{*a, b*}

^{*a*}See 3D representations in Section **LIX** for atom numbering. ^{*b*}N-C1-C2, and N2-C5-C6 constitutes the azaallylic moieties.

Part 5: GIAO Computational Studies

LXI. Calculated chemical shifts $(\delta, ppm)^a$ and coupling constants (*J*, Hz) for monomers $\mathbf{AS}_{\mathbf{n}}^{b, c}$

Structure	noπ/ J _{Li-N}	no S δ_{Li}	no л J _{Li-N}	$t / S \delta_{Li}$	π/r J _{Li-N}	to S δ_{Li}	π / $J_{\text{Li-N}}$	δ_{Li}
I	6.6	0.0						
II			3.6	-0.7				
III			6.9	-0.5				
IV			6.8	-0.4				
V					3.2	0.8		
VI							2.9	-0.5
VII							2.0	-1.1
VIII			6.4	0.1				

^{*a*}Chemical shifts are referenced to the calculated shielding value of monomer I. ^{*b*}See Chart 2 for atom numbering. ^{*c*}N, C(1) and C(2) constitute the azaallylic moiety.

Structure	no π/	no S	no π	: / S	π/r	no S	π/S
	$J_{\rm Li-N}$	δ_{Li}	$J_{\rm Li-N}$	δ_{Li}	$J_{ m Li-N}$	δ_{Li}	$J_{ m Li-N} = \delta_{ m Li}$
IX	4.0	0.0					
X	3.7	-0.2			1.7	0.1	
XI					2.1	-0.7	
XII					3.4	-0.7	
XIII	4.1	0.0					
XIV	3.4	0.6			1.6	-0.7	
XV					1.7	-0.2	
XVII	5.1	0.0	3.3	0.0			
XVIII			4.6	0.0	1.9	0.1	
XIX					2.5	-0.6	1.4 -1.5
XX			5.2	0.2	1.9	-0.9	
XXI	5.4	0.4	3.2	0.3			
XXII			3.2	0.2	1.8	-0.5	
XXIII					2.1	-0.5	
XXV			4.3	0.2			2.1 -1.1
XXVI			5.4	0.1			1.8 -1.0
XXVII							1.9 -1.5
XXIX			4.4	0.3			
XXX			5.3	0.4			2.1 -1.1
XXXI							3.3 0.2
av	4.3	0.1	4.3	0.1	2.1	-0.5	2.1 -1.0
σ	0.7	0.3	0.9	0.2	0.5	0.3	0.6 0.6

LXII. Calculated chemical shifts (δ , ppm) and coupling constants (*J*, Hz) for dimers A_2S_n .^{*a,b*}

^{*a*}Chemical shifts are referenced to the calculated shielding value of dimer **IX**. ^{*a*}See Chart 2 for atom numbering. ^{*b*}N, C(1) and C(2) constitute the azaallylic moiety. ^{*c*}Double π complexation not included.

Structure	no $\pi/2$	no S	no	π/S	π / n	o S	π /	S
	$J_{\rm Li-N}$	δ_{Li}	$J_{ m Li-N}$	δ_{Li}	$J_{ m Li-N}$	δ_{Li}	$J_{ m Li-N}$	$\delta_{\rm Li}$
XXXIII		0.0			1.0^{c}	-1.1 ^c		
XXXIV					1.1^{c}	-1.2 ^c		
XXXV					1.7^{c}	-0.8 ^c		
XXXVI		0.0			2.2 ^{<i>c</i>}	-0.7 ^c		
XXXVII		0.0			2.2 ^{<i>c</i>}	-1.2 ^c		
XXXVIII		0.1			1.9^{d}	-0.7^{d}		
XXXIX		0.1			2.0^{d}	-0.7^{d}		
XL	4.7°	0.6 ^c						
XLI	4.5 ^c	0.5^{c}			0.6	-0.3		
XLII	4.6	0.3			1.4^{c}	-0.8 ^c		
XLIII	3.8	1.3			1.9°	-0.5 ^c		
XLIV					1.9°	-0.5 ^c		
XLV				0.2	2.2^{d}	-0.3 ^d		
XLVI				-0.1	2.1^{d}	-0.6 ^d		
XLVII			e	-0.1	e	-0.7 ^c		
XLVIII			e		e	-0.2 ^c	e	-1.7
XLIX			e	-0.2	e	-0.1 ^c	e	-1.5
LI			e	-0.7 ^c			e	-1.6
LII					1.9^{c}	-0.3 ^c	2.7	-1.4
LIII			4.6	-0.2	2.0^{c}	-0.2 ^c		
LIV			e	-0.7	e	-0.1	e	-1.1
LV				-0.5 ^c				
av	4.4	0.3	4.6	-0.3	1.7	-0.6	2.7	-1.5
σ	0.4	0.4		0.3	0.5	0.3		0.2

LXIII. Calculated chemical shifts (δ , ppm) and coupling constants (*J*, Hz) for trimers A_3S_n .^{*a*, *b*}

^{*a*}Chemical shifts are referenced to the calculated shielding value (90.2) for the no π / no S Li atom in trimer **XXXIII**. ^{*b*}N1-C1-C2, N2-C5-C6, and N3-C9-C10 constitute the azaallylic moieties. ^{*c*}Average values. ^{*d*}Double π complexation not included. ^{*e*}The size of the system precluded the calculation of coupling constants.

LXIV. Effect of solvation and π -complexation upon calculated chemical shifts (δ , ppm) and coupling constants (*J*, Hz) for dimers A_2S_n .

LXV. Effect of solvation and π -complexation upon calculated chemical shifts (δ , ppm) and coupling constants (*J*, Hz) for trimers $\mathbf{A_3S_n}^a$

 ${}^{a}\Delta J_{\text{Li-N}}$ values of statistical significance not calculated due to low populations.

Part 6: X-Ray Crystal Data

LXVI. X-ray crystal data for lithioimine *trans*-**12** (A_2S_2 , $S = Me_2EtN$, Figure 5).

Identification code	ar4				
Empirical formula	C16 H31 Li N2	C16 H31 Li N2			
Formula weight	258.37				
Temperature	173(2) K				
Wavelength	0.71073 Å				
Crystal system	Triclinic				
Space group	P-1				
Unit cell dimensions	a = 9.2212(11) Å	$\alpha = 82.311(5)^{\circ}$.			
	b = 9.3182(11) Å	$\beta = 72.770(5)^{\circ}.$			
	c = 10.5245(13) Å	$\gamma = 70.616(6)^{\circ}.$			
Volume	814.14(17) Å ³				
Z	2				
Density (calculated)	1.054 Mg/m ³				
Absorption coefficient	0.060 mm ⁻¹				
F(000)	288				
Crystal size	0.40 x 0.30 x 0.20 mm	n ³			
Theta range for data collection	2.03 to 30.59°.				
Index ranges	-13<=h<=12, -13<=k<	<=13, -15<=1<=13			
Reflections collected	18562				
Independent reflections	4910 [R(int) = 0.0398]]			
Completeness to theta = 30.59°	98.1 %				
Absorption correction	Semi-empirical from e	quivalents			
Max. and min. transmission	0.9881 and 0.9763				
Refinement method	Full-matrix least-squar	es on F ²			
Data / restraints / parameters	4910 / 0 / 283				
Goodness-of-fit on F ²	1.076				
Final R indices [I>2sigma(I)]	R1 = 0.0494, wR2 = 0	0.1447			
R indices (all data)	R1 = 0.0710, wR2 = 0	0.1576			
Largest diff. peak and hole	0.312 and -0.225 e.Å ⁻³				

Table 1. Crystal data and structure refinement.

	Х	у	Z	U(eq)
Li(1)	4059(2)	4681(2)	996(2)	24(1)
N(1)	3937(1)	6862(1)	159(1)	19(1)
N(2)	1918(1)	4119(1)	1933(1)	27(1)
C(1)	2891(1)	8110(1)	-473(1)	20(1)
C(2)	2561(1)	7566(1)	-1635(1)	22(1)
C(3)	1469(1)	8863(1)	-2303(1)	26(1)
C(4)	2136(1)	10195(1)	-2765(1)	29(1)
C(5)	2452(1)	10753(1)	-1608(1)	29(1)
C(6)	3566(1)	9442(1)	-976(1)	27(1)
C(7)	3948(1)	7127(1)	1423(1)	21(1)
C(8)	2601(1)	8355(1)	2277(1)	30(1)
C(9)	3049(5)	8653(3)	3538(3)	32(1)
C(10)	3670(4)	7151(4)	4272(3)	36(1)
C(9')	2444(3)	8134(4)	3758(2)	36(1)
C(10')	4079(3)	7797(4)	3984(2)	37(1)
C(11)	5215(1)	6261(1)	3368(1)	32(1)
C(12)	5120(1)	6194(1)	1972(1)	24(1)
C(13)	1744(2)	3370(2)	845(2)	40(1)
C(14)	589(2)	5473(2)	2278(2)	42(1)
C(15)	1984(2)	3000(2)	3079(1)	35(1)
C(13')	1987(8)	2814(8)	1445(8)	43(2)
C(14')	583(9)	5465(9)	1535(10)	51(2)
C(15')	1373(7)	4150(8)	3460(5)	43(2)
C(16)	2543(2)	3395(2)	4121(1)	59(1)

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Li(1)-N(1)#1 2.0821(17) Li(1)-N(1) 2.0850(17) Li(1)-N(2) 2.1306(18) Li(1)-C(7) 2.3452(18) Li(1)-C(12) 2.4285(19) Li(1)-Li(1)#1 2.441(3) N(1)-C(7) 1.3883(11) N(1)-C(1) 1.4672(11) N(1)-Li(1)#1 2.0821(17) N(2)-C(13') 1.357(6) N(2)-C(14) 1.4346(18) 1.4867(15) N(2)-C(15) N(2)-C(13) 1.4898(18) N(2)-C(15') 1.537(5) N(2)-C(14') 1.551(7) C(1)-C(2)1.5281(13) C(1)-C(6) 1.5329(13) C(2)-C(3)1.5338(12) C(3)-C(4)1.5239(15) C(4)-C(5)1.5223(15) 1.5312(13) C(5)-C(6)C(7)-C(12) 1.3674(12) C(7)-C(8)1.5268(14) C(8)-C(9') 1.514(2) C(8)-C(9) 1.584(3) C(9)-C(10) 1.524(5) C(10)-C(11) 1.499(3) 1.518(4) C(9')-C(10') C(10')-C(11) 1.555(3) C(11)-C(12) 1.5076(13) C(15)-C(16) 1.474(2) C(15')-C(16) 1.396(6) N(1)#1-Li(1)-N(1) 108.30(7) N(1)#1-Li(1)-N(2) 121.65(8)

Table 3. Bond lengths [Å] and angles [°].

N(1)-Li(1)-N(2)	119.85(8)
N(1)#1-Li(1)-C(7)	124.12(8)
N(1)-Li(1)-C(7)	35.92(4)
N(2)-Li(1)-C(7)	114.21(7)
N(1)#1-Li(1)-C(12)	104.74(7)
N(1)-Li(1)-C(12)	63.24(5)
N(2)-Li(1)-C(12)	124.78(8)
C(7)-Li(1)-C(12)	33.23(4)
N(1)#1-Li(1)-Li(1)#1	54.20(6)
N(1)-Li(1)-Li(1)#1	54.09(6)
N(2)-Li(1)-Li(1)#1	150.79(12)
C(7)-Li(1)-Li(1)#1	77.69(8)
C(12)-Li(1)-Li(1)#1	80.35(8)
C(7)-N(1)-C(1)	115.59(7)
C(7)-N(1)-Li(1)#1	118.44(7)
C(1)-N(1)-Li(1)#1	120.51(7)
C(7)-N(1)-Li(1)	82.31(7)
C(1)-N(1)-Li(1)	139.30(7)
Li(1)#1-N(1)-Li(1)	71.70(7)
C(13')-N(2)-C(14)	129.2(3)
C(13')-N(2)-C(15)	75.8(4)
C(14)-N(2)-C(15)	111.48(12)
C(13')-N(2)-C(13)	32.1(4)
C(14)-N(2)-C(13)	109.48(13)
C(15)-N(2)-C(13)	107.15(11)
C(13')-N(2)-C(15')	113.9(4)
C(14)-N(2)-C(15')	72.9(3)
C(15)-N(2)-C(15')	42.6(3)
C(13)-N(2)-C(15')	138.9(3)
C(13')-N(2)-C(14')	109.6(5)
C(14)-N(2)-C(14')	30.2(3)
C(15)-N(2)-C(14')	134.8(3)
C(13)-N(2)-C(14')	82.4(4)
C(15')-N(2)-C(14')	102.0(4)
C(13')-N(2)-Li(1)	109.9(3)
C(14)-N(2)-Li(1)	110.53(10)

C(15)-N(2)-Li(1)	115.78(9)
C(13)-N(2)-Li(1)	101.79(9)
C(15')-N(2)-Li(1)	116.0(2)
C(14')-N(2)-Li(1)	104.6(3)
N(1)-C(1)-C(2)	111.64(7)
N(1)-C(1)-C(6)	112.86(8)
C(2)-C(1)-C(6)	108.56(7)
C(1)-C(2)-C(3)	112.03(8)
C(4)-C(3)-C(2)	112.00(8)
C(5)-C(4)-C(3)	110.36(8)
C(4)-C(5)-C(6)	110.27(8)
C(5)-C(6)-C(1)	112.55(8)
C(12)-C(7)-N(1)	119.81(8)
C(12)-C(7)-C(8)	118.27(8)
N(1)-C(7)-C(8)	121.71(8)
C(12)-C(7)-Li(1)	76.73(7)
N(1)-C(7)-Li(1)	61.77(6)
C(8)-C(7)-Li(1)	130.18(8)
C(9')-C(8)-C(7)	115.04(11)
C(9')-C(8)-C(9)	30.58(11)
C(7)-C(8)-C(9)	111.83(13)
C(10)-C(9)-C(8)	110.2(3)
C(11)-C(10)-C(9)	107.3(3)
C(8)-C(9')-C(10')	108.8(2)
C(9')-C(10')-C(11)	110.2(2)
C(10)-C(11)-C(12)	113.31(13)
C(10)-C(11)-C(10')	30.05(12)
C(12)-C(11)-C(10')	110.44(11)
C(7)-C(12)-C(11)	125.81(9)
C(7)-C(12)-Li(1)	70.04(7)
C(11)-C(12)-Li(1)	132.72(8)
C(16)-C(15)-N(2)	114.53(12)
C(16)-C(15')-N(2)	116.1(4)
C(15')-C(16)-C(15)	44.9(3)

Symmetry transformations used to generate equivalent atoms: #1 - x + 1, -y + 1, -z

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
Li(1)	24(1)	21(1)	24(1)	0(1)	-4(1)	-4(1)
N(1)	21(1)	16(1)	19(1)	0(1)	-7(1)	0(1)
N(2)	25(1)	28(1)	27(1)	0(1)	-5(1)	-9(1)
C(1)	20(1)	15(1)	21(1)	0(1)	-7(1)	-1(1)
C(2)	24(1)	17(1)	25(1)	0(1)	-10(1)	-2(1)
C(3)	27(1)	25(1)	27(1)	2(1)	-13(1)	-3(1)
C(4)	32(1)	24(1)	26(1)	7(1)	-9(1)	-2(1)
C(5)	32(1)	18(1)	35(1)	5(1)	-11(1)	-5(1)
C(6)	29(1)	20(1)	34(1)	3(1)	-14(1)	-7(1)
C(7)	24(1)	16(1)	20(1)	-1(1)	-6(1)	-3(1)
C(8)	35(1)	25(1)	25(1)	-7(1)	-9(1)	3(1)
C(9)	43(2)	24(1)	25(1)	-7(1)	-11(1)	0(1)
C(10)	52(2)	29(2)	20(1)	-1(1)	-11(1)	-5(1)
C(9')	36(1)	40(1)	24(1)	-11(1)	-2(1)	-5(1)
C(10')	48(1)	38(2)	25(1)	-9(1)	-13(1)	-9(1)
C(11)	42(1)	30(1)	25(1)	0(1)	-17(1)	-7(1)
C(12)	28(1)	20(1)	22(1)	-3(1)	-10(1)	-2(1)
C(13)	40(1)	50(1)	37(1)	-6(1)	-8(1)	-24(1)
C(14)	27(1)	35(1)	54(1)	-4(1)	-5(1)	1(1)
C(15)	35(1)	34(1)	36(1)	8(1)	-7(1)	-15(1)
C(13')	42(4)	42(4)	48(4)	-9(3)	-6(3)	-21(3)
C(14')	39(4)	47(4)	63(5)	6(4)	-25(4)	-1(3)
C(15')	43(4)	63(5)	24(2)	-2(3)	-4(2)	-22(3)
C(16)	57(1)	90(1)	37(1)	19(1)	-18(1)	-36(1)

Table 4. Anisotropic displacement parameters (Å² x 10³). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	у	Z	U(eq)
H(9A)	3877	9174	3252	39
H(9B)	2095	9324	4144	39
H(10A)	3842	7342	5110	43
H(10B)	2890	6578	4491	43
H(9'A)	2013	7278	4124	43
H(9'B)	1699	9066	4218	43
H(10C)	3977	7743	4951	44
H(10D)	4531	8628	3571	44
H(13A)	783	3049	1164	60
H(13B)	2682	2478	573	60
H(13C)	1653	4091	82	60
H(14A)	-384	5195	2710	63
H(14B)	460	6101	1470	63
H(14C)	785	6049	2890	63
H(15A)	904	2902	3485	42
H(15B)	2702	1994	2742	42
H(13D)	998	2563	1880	65
H(13E)	2897	1983	1621	65
H(13F)	2114	2953	483	65
H(14D)	-451	5287	1932	76
H(14E)	793	5547	563	76
H(14F)	561	6413	1859	76
H(16A)	2554	2605	4836	89
H(16B)	1823	4376	4482	89
H(16C)	3624	3469	3737	89
H(2B)	2072(14)	6747(14)	-1307(11)	32(3)
H(12)	5991(14)	5505(13)	1421(11)	26(3)
H(3A)	380(14)	9218(13)	-1597(11)	29(3)
H(6B)	4598(15)	9035(15)	-1662(12)	34(3)
H(1)	1851(14)	8524(13)	191(11)	29(3)
H(4A)	3139(14)	9891(14)	-3474(12)	30(3)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3)

H(2A)	3617(14)	7097(13)	-2307(11)	28(3)
H(5A)	1425(15)	11157(14)	-906(12)	37(3)
H(6A)	3787(14)	9826(14)	-239(13)	38(3)
H(4B)	1409(16)	11043(16)	-3115(13)	47(4)
H(3A)	1262(15)	8471(14)	-3042(13)	36(3)
H(5B)	2879(16)	11620(16)	-1897(13)	46(4)
H(8B)	2593(16)	9382(16)	1837(14)	48(4)
H(11B)	5258(19)	5275(19)	3847(15)	65(4)
H(11A)	6262(17)	6404(15)	3330(13)	45(4)
H(8A)	1566(18)	8239(16)	2297(14)	53(4)

LXVII. Ortep drawing of lithioimine *trans*-**12** (A_2S_2 , $S = Me_2EtN$)

Part 7. References

S-1. Glueck, D. S.; Wu, J; Hollander, F. J; Bergman, R. G. J. Am. Chem. Soc. **1991**, 113, 2041.

S-2. Lazbin, I. M.; Koser, G. F. J. Org. Chem. 1986, 51, 2669.

S-3. G. F. Koser; R. H. Wettach. J. Org. Chem. 1977, 42, 1476.

S-4. Kim, Y.-J.; Bernstein, M. P.; Galiano-Roth, A. S.; Romesberg, F. E.; Fuller, D.

J.; Harrison, A. T.; Collum, D. B.; Williard, P. G. J. Org. Chem. 1991, 56, 4435.

(18) Gaussian 03, Revision B.04, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.;
Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.;
Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.;
Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.;
Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.;
Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.;
Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.;
Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A.
D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford,
S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;
Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez,
C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.