Mechanism of Acylation of Lithium Phenylacetylide with a Weinreb Amide

Bo Qu and David B. Collum* Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853-1301

Supporting Information

⁶Li NMR Spectra and IR Kinetics Studies

I.	⁶ Li NMR spectra recorded on 0.05 M [⁶ Li]PhCCLi and 0.06 M 1 at	S2
	various temperatures.	
II.	⁶ Li NMR spectrum of 5 .	S3
III.	$J(^{6}\text{Li},^{13}\text{C})$ -resolved NMR spectrum of 5 .	S3
IV.	6 Li NMR 13 C single frequency decoupled spectra of 5 .	S4
V.	Table of ¹³ C NMR resonances for different aggregates upon warming.	S4
VI.	¹³ C NMR spectrum of 5 .	S5
VII.	^{13}C , ^{13}C -COSY spectrum of 5 .	S5
VIII.	⁶ Li NMR spectra of 7 .	S 6
IX.	$J(^{6}\text{Li},^{13}\text{C})$ -resolved NMR spectrum of 7.	S 6
X.	⁶ Li NMR spectrum of uncharacterized aggregates upon warming to RT.	S7
XI.	Plot of loss of carboxamide 1.	S 7
XII.	Plot of k_{obsd} vs [THF] for acylation of PhCCLi with 1 .	S 8
XIII.	Table of data for plot in Section XII	S 8
XIV.	Plot of k_{obsd} vs [PhCCLi] for acylation of PhCCLi with 1 .	S9
XV.	Table of data for plot in Section XIV.	S 9
XVI.	The Cartesian coordinates and energies for acylation of PhCCLi with 1	
	calculated at the B3LYP/6-31G(d) level.	S10

Experimental Section

I. ⁶Li NMR spectra* of a mixture of 0.05 M [⁶Li]PhCCLi **4** and 0.06 M **1** in 6.0 M THF/pentane at: (a) -90 °C; (b) -75 °C; (c) -55 °C; (d) -40 °C; (e) back to -90 °C after warming to -40 °C, showing resonance of mixed aggregate **5**.

* ⁶Li NMR spectra were recorded at 58.8 MHz. All other spectra in this Supporting Infomation were recorded at 73.7 MHz.

II. ⁶Li NMR spectrum of a mixture of 0.05 M [⁶Li,¹³C]PhCCLi and 0.05 M 1 in 9.60 M THF/pentane at -110 °C, showing resonance of mixed aggregate **5** with unreacted PhCCLi **4**. *J* is in Hz.

III. $J(^{6}\text{Li},^{13}\text{C})$ -resolved spectrum of a mixture of 0.05 M [$^{6}\text{Li},^{13}\text{C}$] PhCCLi and 0.05 M **1** in 9.60 M THF/pentane at -110 °C. ^{6}Li spectrum is ^{13}C broad-band decoupled. *J* is in Hz.

IV. ⁶Li NMR ¹³C single frequency decoupled spectra of **5** recorded on 0.05 M [⁶Li, ¹³C]PhCCLi and 0.05 M **1** in 9.60 M THF/pentane at -110 °C.

		¹³ C spectra				
	R- ¹³ C≡C-Ph	Li- ¹³ C=C-Ph	Li- ¹³ C=C-Ph ¹³ C { ⁶ Li}			
4	na	139.1	139.1 (pentet) J = 8.4 Hz			
5	95.1, 97.2	135.1 (d), 136.0 (d) J = 5.5 Hz	135.1 (sextet) $J = 5.7 \text{ Hz}^*$ 136.0 (m)			
7	93.3, 95.7, 96.5	136.6	136.6 (m)			
uncharacterized aggregate after warming to RT	91.9	na	na			

V. Table of ¹³C NMR resonances for different aggregates upon warming.

* The peak shows incomplete multiple couplings. Theretically it should be triplet of heptet.

VI. ¹³C NMR spectrum of **5** recorded on 0.05 M [⁶Li,¹³C]PhCCLi and 0.05 M **1** in 9.60 M THF/pentane at -110 °C with sine bell resolution enhancement applied to show multiplet couplings.

VII. ¹³C,¹³C-COSY spectrum of **5** recorded on 0.05 M [6 Li,¹³C]PhCCLi and 0.05 M **1** in 9.60 M THF/pentane at -110 °C, showing the coupling of C₁ and C₂. ¹³C spectrum is ⁶Li broad-band decoupled with sine bell resolution enhancement applied to show the couplings.

VIII. ⁶Li NMR spectrum of **7** recorded on 0.05 M [⁶Li, ¹³C]PhCCLi and 0.05 M **1** in 9.60 M THF/pentane at -110 °C. *J* is in Hz.

IX. $J(^{6}\text{Li}, ^{13}\text{C})$ -resolved spectrum of **7** recorded on 0.05 M [$^{6}\text{Li}, ^{13}\text{C}$] PhCCLi and 0.05 M **1** in 9.60 M THF/pentane at -110 °C. ^{6}Li spectrum is ^{13}C broad-band decoupled. *J* is in Hz.

X. ⁶Li NMR spectrum recorded on a mixture 0.05 M [⁶Li,¹³C]PhCCLi and 0.05 M **1** in 9.60 M THF/pentane at -110 °C, showing resonance of the uncharacterized aggregates upon further warming to RT.

XI. ReactIR plot showing loss of carboxamide **1** (1673 cm⁻¹) upon reaction with 0.10 M PhCCLi in 4.0 M THF/pentane at -50 °C.

XII. Plot of k_{obsd} vs [THF] for acylation of PhCCLi (0.10 M) with **1** (0.005 M) in pentane cosolvent at -50 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = a$ [THF]^{*n*} ($a = 8.5 \pm 0.9 \ge 10^{-3}$, $n = -1.22 \pm 0.06$).

XIII. Table of data for plot in Section XII.

[THF] (M)	$k_{\rm obsd} \ 1 \ ({\rm s}^{-1})$	$k_{\rm obsd} \ 2 \ ({\rm s}^{-1})$	$k_{\rm obsd} \ 3 \ ({\rm s}^{-1})$	$k_{\text{obsd}}(av)(s^{-1})$
4.0	$0.00150 \pm 4E-5$	$0.00157 \pm 1E-5$	$0.00147 \pm 1E-5$	$0.00151 \pm 5E-5$
5.0	$0.00133 \pm 3E-5$	$0.00110 \pm 1E-5$	$0.00121 \pm 1E-5$	$0.0012 \pm 1E-4$
6.0	$0.00103 \pm 5\text{E-5}$	$0.00101 \pm 2E-5$		$0.00102 \pm 1E-5$
7.0	$0.000850 \pm 7E-6$	$0.000838 \pm 4E-6$		$0.00084 \pm 1E-5$
8.0	$0.00073 \pm 3\text{E-5}$	$0.000692 \pm 4E-6$		$0.00071 \pm 3E-5$
9.0	$0.000533 \pm 4E-6$	$0.000612 \pm 4E-6$		$0.00057\pm5\text{E-}5$
10.0	$0.00050 \pm 1E-5$	$0.000448 \pm 3E-6$		$0.00047\pm4\text{E-}5$
11.0	$0.000400 \pm 2E-6$	$0.000411 \pm 2E-6$		$0.000406 \pm 8E-6$
12.27	$0.000340 \pm 5E-6$	$0.000349 \pm 2E-6$		$0.000345 \pm 6E-6$

XIV. Plot of k_{obsd} vs [PhCCLi] for acylation of PhCCLi with 1 (0.005 M) in 6.0 M THF and pentane cosolvent at -50 °C. The curve depicts an unweighted least-squares fit to k_{obsd} = a[PhCCLi]^b ($a = 3.5 \pm 0.2 \times 10^{-3}$, $b = 0.53 \pm 0.04$).

XV. Table of data for plot in Section XIV.

[PhCCLi] (M)	$k_{\text{obsd}} \ 1 \ (\text{s}^{-1})$	$k_{\text{obsd}} 2 (\text{s}^{-1})$	$k_{\text{obsd}}(\text{av})(\text{s}^{-1})$
0.05	$0.000542 \pm 4E-6$	$0.000563 \pm 5E-6$	0.00055 ± 1E-5
0.10	$0.00103 \pm 5\text{E-5}$	$0.00101 \pm 2E-5$	$0.00102 \pm 1E-5$
0.20	$0.00147 \pm 2E-5$	$0.00160 \pm 2\text{E-5}$	$0.00154 \pm 9E-5$
0.30	$0.00191 \pm 3E-5$	$0.00206 \pm 3E-5$	$0.0020 \pm 1\text{E-4}$
0.40	$0.00211 \pm 4E-5$	$0.00228 \pm 5E-5$	$0.0022 \pm 1E-4$
0.50	$0.00230 \pm 3E-5$	$0.00248\pm4\text{E-5}$	$0.0024 \pm 1\text{E-4}$
0.60	$0.00251 \pm 4E-5$	$0.00266 \pm 6E-5$	$0.0026 \pm 1E-4$

XVI. The Cartesian coordinates and energies for the reaction of Weinreb Amide **1** with Lithium Phenylacetylide calculated at the B3LYP/6-31G(d) level (Energy values and coordinates are in Hartrees and Angstroms, respectively).

Dir	Dimethyl ether				
SCF Done: $E(RB+HF-LYP) =$	-155.025044225				
Zero-point correction=	0.080306 (Hartree/Particle)				
Thermal correction to Energy=	0.084599				
Thermal correction to Enthalpy=	0.085544				
Thermal correction to Gibbs Free Energy=	0.054941				
Sum of electronic and zero-point Energies=	-154.944738				
Sum of electronic and thermal Energies=	-154.940445				
Sum of electronic and thermal Enthalpies=	-154.939501				
Sum of electronic and thermal Free Energies	-154.970103				

Center	Atomic	Atomic		Coordinates	
Number	Number	Туре	Х	Y	Ζ
1	6	0	-1.170929	0.195252	-0.000006
2	8	0	-0.000014	-0.589896	0.000002
3	6	0	1.170935	0.195242	0.000003
4	1	0	-1.232061	0.839934	-0.892752
5	1	0	-2.021904	-0.491258	-0.000344
6	1	0	-1.232447	0.839444	0.893087
7	1	0	1.232215	0.839800	0.892842
8	1	0	2.021897	-0.491289	0.000160
9	1	0	1.232371	0.839569	-0.892992
		1	2		3
Frequence	cies 22	23.7415	250	.0383	415.2796

Weinreb amide 1

SCF Done: $E(RB+HF-LYP) =$	-362.985543527
Zero-point correction=	0.134747 (Hartree/Particle)
Thermal correction to Energy=	0.143392
Thermal correction to Enthalpy=	0.144337
Thermal correction to Gibbs Free Energy=	0.101792
Sum of electronic and zero-point Energies=	-362.850797
Sum of electronic and thermal Energies=	-362.842151
Sum of electronic and thermal Enthalpies=	-362.841207
Sum of electronic and thermal Free Energies=	-362.883752

Center	Atomic	Atomic		Coordinate	es
Number	Number	Туре	Х	Y	Z
1	6	0	2.269916	-0.099961	0.283493
2	6	0	0.845791	-0.525003	-0.052876
3	8	0	0.558622	-1.677713	-0.328811
4	7	0	-0.122940	0.465609	0.060615
5	6	0	0.113906	1.892456	-0.086016
6	8	0	-1.367898	0.133757	-0.510453
7	6	0	-2.195480	-0.531670	0.446628
8	1	0	2.874543	-1.006180	0.338166
9	1	0	2.684284	0.554174	-0.492731
10	1	0	2.329036	0.431183	1.239522
11	1	0	0.133687	2.193272	-1.142381
12	1	0	-0.689849	2.435834	0.417893
13	1	0	1.061403	2.160334	0.383545
14	1	0	-3.152692	-0.673902	-0.062009
15	1	0	-1.770412	-1.502081	0.717299
16	1	0	-2.340011	0.084820	1.343120

	1	2	3
Frequencies	96.3286	110.9917	142.1267

Lithium phenylacetylide dimer (PhCCLi)2^{(Me2O)4}

SCF Done: $E(RB+HF-LYP) =$	-1250.93775564
Zero-point correction=	0.530908 (Hartree/Particle)
Thermal correction to Energy=	0.571599
Thermal correction to Enthalpy=	0.572544
Thermal correction to Gibbs Free Energy=	0.442905
Sum of electronic and zero-point Energies=	-1250.406847
Sum of electronic and thermal Energies=	-1250.366156
Sum of electronic and thermal Enthalpies=	-1250.365212
Sum of electronic and thermal Free Energies=	-1250.494851

Center	Atomic	Atomic		Coordinates	5
Number	Number	Туре	Х	Y	Ζ
1	6	0	-3.010047	0.028976	0.005445
2	6	0	-1.771641	0.061733	0.008779
3	3	0	0.000052	1.316565	-0.000008
4	3	0	-0.000329	-1.148892	0.000049
5	6	0	1.771416	0.061093	-0.007811
6	6	0	3.009831	0.028585	-0.005433
7	6	0	4.441514	-0.004349	-0.006372
8	6	0	5.169247	0.009676	-1.215494
9	6	0	6.561670	-0.025251	-1.214130
10	6	0	7.266575	-0.074551	-0.008857
11	6	0	6.562339	-0.088359	1.197693
12	6	0	5.169936	-0.053903	1.201335
13	8	0	-0.000674	-2.313389	-1.625844
14	6	0	-1.186465	-2.890680	-2.153073

15	6	0	1.187289	-2.755444	-2.268157
16	8	0	-0.000343	-2.316204	1.624172
17	6	0	-1.187494	-2.750102	2.273547
18	6	0	1.186334	-2.884482	2.159210
19	8	0	0.107312	2.603466	1.520654
20	6	0	-1.059178	3.367049	1.805885
21	6	0	0.789993	2.169200	2.693291
22	8	0	-0.106571	2.602375	-1.521470
23	6	0	-0.789161	2.167422	-2.693931
24	6	0	1.060124	3.365507	-1.807054
25	6	0	-4.441730	-0.004011	0.005365
26	6	0	-5.169257	-0.054673	-1.202835
27	6	0	-6.561661	-0.089123	-1.200184
28	6	0	-7.266787	-0.074219	0.005834
29	6	0	-6.562773	-0.023826	1.211583
30	6	0	-5.170351	0.011106	1.213939
31	1	0	-1.342820	-3.829809	2.131788
32	1	0	-2.009511	-2.188013	1.826778
33	1	0	-1.138576	-2.536222	3.350971
34	1	0	-2.021890	-2.408467	-1.642278
35	1	0	-1.261195	-2.702534	-3.233817
36	1	0	-1.209186	-3.976500	-1.978541
37	1	0	1.785440	2.771591	-2.378959
38	1	0	0.799749	4.271151	-2.373264
39	1	0	1.499286	3.645156	-0.847944
40	1	0	1.617561	1.543171	2.356041
41	1	0	1.169146	3.032519	3.258641
42	1	0	0.120913	1.581704	3.338022
43	1	0	-7.100088	-0.127440	-2.144166
44	1	0	-4.622598	-0.065451	-2.141539
45	1	0	-4.624168	0.052183	2.152018
46	1	0	-7.102215	-0.010954	2.155682

47	1	0	-8.353278	-0.101021	0.006021
48	1	0	7.100418	-0.013239	-2.158636
49	1	0	4.622376	0.049896	-2.153211
50	1	0	4.623974	-0.063824	2.140454
51	1	0	7.101456	-0.125823	2.141315
52	1	0	8.353065	-0.101358	-0.009828
53	1	0	1.260358	-2.682260	3.237450
54	1	0	1.210978	-3.972411	1.998692
55	1	0	-1.617019	1.541951	-2.356364
56	1	0	-1.167884	3.030448	-3.260014
57	1	0	-0.120165	1.579160	-3.338036
58	1	0	-1.784579	2.773641	2.378213
59	1	0	-0.798536	4.272973	2.371522
60	1	0	-1.498365	3.646220	0.846649
61	1	0	2.021141	-2.407333	1.642715
62	1	0	1.342727	-3.833197	-2.112251
63	1	0	1.139549	-2.555579	-3.348320
64	1	0	2.008639	-2.187588	-1.827470
			 2		3
.		1	2 0.052	E	J
Frequencies		1.1050	8.253	5	12.6860

Transition Structure

SCF Done: $E(RB+HF-LYP) =$	-833.378121098
Zero-point correction=	0.318725 (Hartree/Particle)
Thermal correction to Energy=	0.341000
Thermal correction to Enthalpy=	0.341945
Thermal correction to Gibbs Free Energy=	0.262301
Sum of electronic and zero-point Energies=	-833.059396
Sum of electronic and thermal Energies=	-833.037121
Sum of electronic and thermal Enthalpies=	-833.036176

Sum of electronic and thermal Free Energies= -833.115820

Center	Atomic	Atomic	Coordinates		
Number	Number	Туре	Х	Y	Ζ
	2		1 (42070	0.022(00	0.061057
1	3	0	1.6439/8	0.833698	-0.06105/
2	8	0	2.271320	-0.253138	1.333890
3	6	0	1.570915	-1.185012	0.827877
4	7	0	1.981381	-1.741733	-0.451160
5	8	0	2.635132	-0.715884	-1.215893
6	6	0	4.053838	-0.578870	-0.986252
7	6	0	2.667139	-3.022335	-0.502212
8	6	0	0.891909	-2.198418	1.734890
9	6	0	-0.125155	-0.253238	0.133776
10	6	0	-1.356054	-0.214549	0.068264
11	6	0	-2.780150	-0.156270	-0.036804
12	6	0	-3.568235	0.294934	1.042587
13	6	0	-4.956084	0.346362	0.938878
14	6	0	-5.590319	-0.048238	-0.241953
15	6	0	-4.823266	-0.497081	-1.320289
16	6	0	-3.435256	-0.552387	-1.221696
17	8	0	1.938266	2.730509	-0.172432
18	6	0	2.291634	3.363193	1.058859
19	6	0	1.154891	3.562914	-1.025594
20	1	0	0.217203	3.850861	-0.533036
21	1	0	0.929741	2.983920	-1.923387
22	1	0	1.717574	4.464527	-1.301414
23	1	0	2.833552	2.624454	1.651961
24	1	0	2.931636	4.234955	0.869445
25	1	0	1.391915	3.680660	1.602156
26	1	0	4.336385	0.313628	-1.551869
27	1	0	4.270156	-0.442206	0.075058

Frequencies		-276.2004	10.26	534 14	4.276
		1	2		3
39	1	0	-6.673540	-0.006892	-0.321000
38	1	0	-5.546213	0.695683	1.782588
37	1	0	-3.072943	0.600825	1.959497
36	1	0	-2.836506	-0.902670	-2.057203
35	1	0	-5.309864	-0.806723	-2.241938
34	1	0	0.195066	-2.842064	1.194665
33	1	0	0.351832	-1.652721	2.508642
32	1	0	1.664813	-2.809897	2.220538
31	1	0	2.847822	-3.272631	-1.551644
30	1	0	1.995325	-3.777860	-0.089180
29	1	0	3.620012	-3.065017	0.050018
28	1	0	4.601849	-1.437711	-1.389115

Experimental Section

Reagents and Solvents. THF and pentane were vacuum-transferred from degassed blue or purple stills containing sodium benzophenone ketyl. The pentane still contained 1% tetraglyme to dissolve the ketyl. Air- and moisture-sensitive materials were manipulated using vacuum line and syringe techniques. Weinreb amide **1** was prepared from cyclohexanecarboxaldehyde and N-methyl-N-methoxylhydroxylamine hydrochloride using literature procedures. [⁶Li]PhCCLi and [⁶Li,¹³C]PhCCLi were prepared and recrystallized in pentane using recrystallized [⁶Li]LiHMDS and commercially available phenylacetylene and [¹³C-1]phenylacetylene. The phenylacetylenes were vacuum-transferred from 4 Å molecular sieves.

NMR Spectroscopic Analyses. All tubes were prepared under helium and stored in a liquid nitrogen bath prior to analysis. Tubes were prepared using stock solutions and sealed under partial vacuum. Standard ⁶Li and ¹³C NMR spectra were recorded on a 500 MHz

spectrometer at 73.7 and 125.0 Hz respectively. The ⁶Li and resonances were referenced to 0.3 M [⁶Li]LiCl/MeOH at -90 °C (0.0 ppm). The spectra were recorded with a threechannel probe designed to accommodate lithium and carbon pulses. The tube was transferred from the liquid nitrogen bath to a -78 °C bath to thaw the solution, then quickly transferred into the spectrometer and shimmed off the proton spectrum.

Rate Studies by In Situ ReactIR Spectroscopy. IR spectra were recorded using an in situ IR spectrometer fitted with a 30-bounce silicon-tipped probe. The IR probe was inserted through a nylon adapter and FETFE O-ring seal into a cylindrical flask fitted with a magnetic stir bar and T-joint. The T-joint was fitted with a nitrogen line and septum for injections. The flask was heated under full-vacuum and flushed twice with nitrogen. PhCCLi was weighted in glove box and dissolved in THF before syringe-transferred to the IR vessel. Pentane was added to the vessel to make the total volume 10 mL. The solution mixture was cooled to -50 °C in a thermostatted bath for 25 minutes. A background spectrum was recorded, followed by addition of 0.05 mL of a 1.0 M stock solution of **1** while stirring. Spectra were recorded every 30 seconds for 5 half-lives. The rates of acylation of lithium penylacetylide with Weinreb amide **1** were monitored by following the loss of **1** (1673 cm⁻¹).

The disappearance of the amide **1** was fit to the equation $[A]/[A_0] = a^*e^{-k_{obsd}t} + c$. Where [A] is the concentration of **1** at time "t" and $[A_0]$ is the concentration of **1** at t = 0. Term "c" is a measure of the amount of amide remaining at $t = \infty$, which is typically a positive number at $\leq 5\%$ of $[A_0]$.