A. <u>Given</u>:

 $A \xrightarrow{k} P$

We will routinely let...

 \underline{A} and \underline{B} = starting materials

 $\underline{\mathbf{C}}$ and $\underline{\mathbf{D}}$ = intermediates

 $\underline{\mathbf{P}} = \text{product}$

B. Rate Equation:

-d[A]/dt = d[P]/dt = k[A]

- "Differential form" of the rate equation.
- It is not necessary to know mathematics, only mathematicians.
- References to integral numbers in the *CRC Handbook of Chemistry and Physics* (CRC) will serve as a reminder that all the requisite math has been done previously. Therefore...

rearrange and integrate... (CRC #1,9)

$$\ln\{[A]/[A_0]\} = -kt$$
(1)

Taking the inverse natural log...

$$[\mathbf{A}] = [\mathbf{A}_0]\mathbf{e}^{-k\mathbf{t}} \tag{2}$$

or...

$$[A]/[A_0] = e^{-kt}$$
(3)

"Integral forms" of the rate equation.

C. <u>Graphics</u>:

1. Zeroth-Order Plot:

• Derives the name from the fact that a zeroth-order dependence on [A] affords linearity (*vide infra*).

t (sec) The fitting function is written as...

 $\mathbf{f}(\mathbf{x}) = a\mathbf{e}^{b\mathbf{x}}$

$$f(x) = [A]$$
 $x = t$ $a = [A_0]$ $b = -k$

Alternatively...

The fitting function is written as...

$$\mathbf{f}(\mathbf{x}) = \mathbf{e}^{b\mathbf{x}}$$

$$f(x) = [A]/[A_0]$$
 $x = t$ $b = -k$

We can also follow formation of product. Thus,...

 $[P] = [A_0] - [A] = [A_0] - [A_0]e^{-kt}$ $[P] = [P_\infty](1 - e^{-kt}) \text{ (such that } [P_\infty] = [A_0])$

The fitting function is written as...

$$\mathbf{f}(\mathbf{x}) = a(1 - \mathbf{e}^{b\mathbf{x}})$$

2. First-Order Plot:

The fitting function is written as...

f(x) = ax

$$f(x) = \ln\{[A]/[A_0]\}$$
 $x = time$ $a = -k$

Alternatively...

The fitting function is written as...

$$\mathbf{f}(\mathbf{x}) = a\mathbf{x} + b$$

$$f(x) = \ln[A]$$
 $x = t$ $a = -k$ $b = \ln\{[A_0]\}$

3. <u>Summary</u>

- a. First-Order Plot:
 - i. Visually retrievable order (i.e., linearity indicates first order)
 - ii. Easily plotted and visualized
 - iii. Inadvertent non-linear weighting due to the natural log
- b. Zeroth-Order Plot:
 - i. All orders (except zeroth) show curvature
 - ii. Easy to plot with computers
 - iii. No inadvertent weighting
- c. <u>Compromise</u>:
 - i. Present the linear 1st-order plot
 - ii. Determine the rate constant via the non-linear, zeroth-order fit.

4. Concentrations vs. Physical Properties:

• The treatments employing a normalized dependent variable $([A]/[A_0])$ appear to be advantageous. However this is not necessarily so.

• While we typically describe rate behaviors in terms of concentrations, you never actually measure a concentration, but rather a property related to concentration. This might be a GC peak intensity or an IR absorbance intensity that (hopefully) correlates with concentration. This poses technical problems that, while relatively minor in most cases, require further consideration.

a. Gas Chromatography:

- i. Monitoring the Disappearance of Starting Material:
 - At t = 0, the absorbance (abs_0) provides a direct measure of the absorbance at a known molarity.
 - However, as the absorbance (abs) decreases as a function of time, it must be monitored relative to the absorbance of an internal GC standard (abs_{st}) that remains constant throughout the course of the reaction.

Since...

 $[A] \propto abs/abs_{st}$

then...

 $[A]/[A_0] = (abs/abs_{st})/(abs_0/abs_{st})$

Substituting into eq (3)...

 $(abs/abs_{st})/(abs_0/abs_{st}) = e^{-kt}$

and rearranging gives...

 $(abs/abs_{st}) = (abs_0/abs_{st})e^{-kt}$

A plot of abs/abs_{st} vs. time will afford the first-order rate constant from the function...

 $f(x) = ae^{bx}$

such that...

 $f(x) = abs/abs_{st}$, x = time (sec), $a = abs_0/abs_{st}$, b = -k

This particular mathematical form has notable latent features. The value of abs_0/abs_{st} frequently is not known since the time required for mixing and thermal equilibration distorts the data at early reaction times. By this method, abs_0/abs_{st} is an *extrapolation* to t = 0, calculated as an adjustable parameter.

• To exclude autocatalysis, autoinhibition, non-first-order behavior, and reactions that afford balanced equilibria, fit the data to...

$$\mathbf{f}(\mathbf{x}) = a\mathbf{e}^{b\mathbf{x}} + c$$

• Clean first-order kinetics will afford a value for \underline{c} (corresponding to unaccounted for absorbance of starting material at $t = \infty$) that is very small relative to \underline{a} .

ii. Monitoring Appearance of Product:

• This is a more challenging problem, placing a greater reliance on adjustable parameters. We previously showed that...

$$[P] = [P_{\infty}](1 - e^{-kt})$$
(4)

such that...

$$[P_{\infty}] = [P]$$
 at $t = \infty$

and...

 $[A_0] = [P_\infty]$

• We probably can assume and, if necessary, experimentally confirm that the peak area of \underline{P} is proportional to [P]. That is...

 $[P]/[P_{\infty}] = abs/abs_{\infty}$

or more practically written as...

 $[P]/[P_{\infty}] = (abs/abs_{st})/abs_{\infty}/abs_{st})$

such that...

 $abs_{\infty} = the absorbance of \underline{P} at t = \infty$

 $abs_{st} = the absorbance of the GC standard.$

Dividing through eq (4) by $[P_{\infty}]$ and substituting gives...

 $(abs/abs_{st})/(abs_{\infty}/abs_{st}) = 1 - e^{-kt}$

or...

$$abs/abs_{st} = abs_{\infty}/abs_{st}(1 - e^{-kt})$$

• We may not be able to estimate abs_{∞} accurately. Once again, substantial advantage of the latter mathematical form allows abs_{∞} / abs_{st} to be determined in each kinetic run as an adjustable parameter. Thus...

$$\mathbf{f}(\mathbf{x}) = a(1 - \mathbf{e}^{-b\mathbf{x}})$$

such that...

 $f(x) = abs/abs_{st}$

x = t $a = abs_{\infty}/abs_{st}$ b = k

b. <u>IR Spectroscopy</u>:

• The problems associated with using an IR absorbance as a measure of concentration are similar to the corresponding problems associated with the GC analysis.

• From Beer's Law...

 $[A]/[A_0] = (abs - abs_{\infty})/(abs_0 - abs_{\infty})$

While deviations from Beer's law are a concern, it is easy to show an adherence to it.

• The problem is simplified by the absolute absorbance scale, eliminating the need for an internal standard.

• The problem is complicated when abs_{∞} is not readily measured, placing a greater demand on adjustable parameters rather than standardized absorbance measurements.