A. <u>Given</u>:

$$A + A \xrightarrow{k} P$$

B. <u>Rate Equation</u>:

 $-d[A]/dt = 2d[P]/dt = k[A]^2$

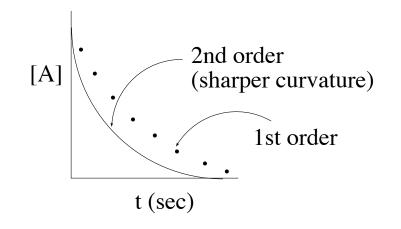
Integrate... (CRC #7)

$$1/[A] = 1/[A_0] + kt$$
 (1)

• Some treatments that include stoichiometric coefficients will show the rate constant as "2kt" rather than "kt".

C. Graphics:

1. Zeroth-Order Plot:



For a 2nd-order reaction, rearranging eq (1) provides...

 $[A] = [A_0]/(1 + [A_0]kt)$

with the fitting function written as...

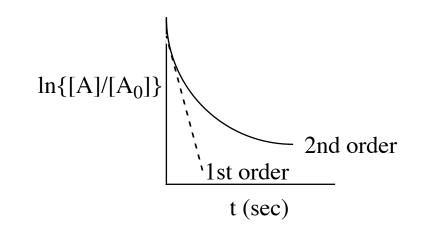
 $f(\mathbf{x}) = a/(1+b\mathbf{x})$

such that...

$$a = [\mathbf{A}_0] \qquad b = [\mathbf{A}_0]k$$

• The sharper curvature of a second-order reaction compared to a 1st-order reaction is <u>not</u> readily detected by the naked eye.

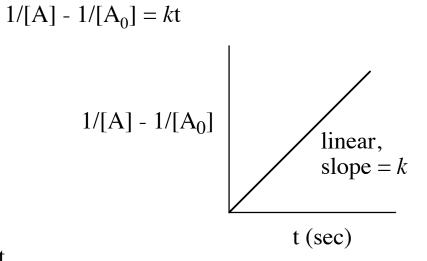
2. <u>1st-Order Plot</u>:



- Upward curvature (i.e., anomalous slowing) relative to 1st order.
- Curvature will not be obvious in 1st half-life.

3. 2nd-Order Plot:

Since



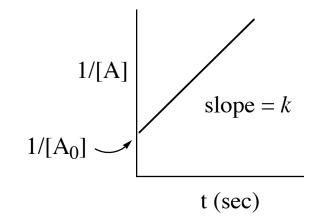
Let...

f(x) = ax

such that...

 $f(x) = 1/[A] - 1/[A_0]$ $a = k (M^{-1}sec^{-1})$

Alternatively...



Let...

$$\mathbf{f}(\mathbf{x}) = b + a\mathbf{x}$$

such that...

$$f(x) = 1/[A]$$
 $a = k (M^{-1}sec^{-1})$ $b = 1/[A_0]$

The latter treatment is important if $[A_0]$ (i.e., the monitored property of <u>A</u> at t = 0) is not known.