A. <u>Given</u>:

nA
$$\xrightarrow{k}$$
 P

B. <u>Rate Equation</u>:

 $-d[A]/dt = k[A]^n = nd[P]/dt$

• k = nk if you wish to keep track of stoichiometry.

• If n < 1 or n > 2, a complex, multi-step mechanism is implicated.

Integrate... (CRC #7, $n \neq 1$)

 $1/[A]^{(n-1)} - 1/[A_0]^{(n-1)} = (n-1)kt$

IV. Irreversible "nth"-Order Reaction:

C. Graphics:

• Cross-check: If n = 2, the rate equation reduces to the second-order expression.

• As an illustration, n = 1/4 affords linearity in a plot of $[A]^{0.75}$ vs. t (or $[A]^{0.75}$ - $[A_0]^{0.75}$ vs. t).

• There are ways other than looking for linearities to determine the order in the limiting reagent (see Section VI below).