A. Given:

$$
\mathrm{A} \stackrel{k_{\mathrm{f}}}{k_{\mathrm{r}}} \mathrm{P}
$$

- If $k_{\mathrm{f}} \gg k_{\mathrm{r}}$, then the scheme reduces to an irreversible 1 st-order reaction. However, if $k_{\mathrm{f}}<10 k_{\mathrm{r}}$, then $\underline{\mathrm{A}}$ and $\underline{\mathrm{P}}$ are both observable at equilibrium and the scheme is treated differently.
B. Graphics:

1. Zeroth-Order Plot:


- The failure to approach full conversion in the limit is easily missed by inspection, yet easily detected by floating an additional constant corresponding to $\left[\mathrm{A}_{\infty}\right] /\left[\mathrm{A}_{0}\right]$ (described in Section II.C.4.a.i).

2. First-Order Plot:


- This is easily confused with a 2nd-order dependence at high conversion or with a simple 1st-order dependence if the reaction is not followed to nearly full conversion.
C. Rate Equation:

$$
\begin{equation*}
-d[\mathrm{~A}] / d \mathrm{t}=k_{\mathrm{f}}[\mathrm{~A}]-k_{\mathrm{r}}[\mathrm{P}] \tag{1}
\end{equation*}
$$

Since at $\mathrm{t}=0 \ldots$

$$
\left[\mathrm{A}_{0}\right]=[\mathrm{A}] \text { and }[\mathrm{P}]=0 .
$$

Then...

$$
\left[\mathrm{A}_{0}\right]=[\mathrm{A}]+[\mathrm{P}]
$$

Substituting for $[\mathrm{P}]$ into eq (1)...

$$
-d[\mathrm{~A}] / d \mathrm{t}=k_{\mathrm{f}}[\mathrm{~A}]-k_{\mathrm{r}}\left(\left[\mathrm{~A}_{0}\right]-[\mathrm{A}]\right)
$$

Integrate... (CRC \#27)

$$
\begin{equation*}
\ln \left\{\frac{k_{\mathrm{f}}\left[\mathrm{~A}_{\mathrm{o}}\right]}{\left(k_{\mathrm{f}}+k_{\mathrm{r}}\right)[\mathrm{A}]-k_{\mathrm{r}}\left[\mathrm{~A}_{\mathrm{o}}\right]}\right\}=\left(k_{\mathrm{f}}+k_{\mathrm{r}}\right) \mathrm{t} \tag{2}
\end{equation*}
$$

adjustable parameters embedded in $f(x)$

Cross-check: as $k_{\mathrm{f}} \gg k_{\mathrm{r}}$, the expression reduces to 1 st order.
We need another (simultaneous) equation to solve for $k_{\mathrm{f}}$ and $k_{\mathrm{r}}$. Thus,...

$$
k_{\mathrm{f}} / k_{\mathrm{r}}=\left[\mathrm{P}_{\mathrm{eq}}\right] /\left[\mathrm{A}_{\mathrm{eq}}\right]
$$

or...

$$
k_{\mathrm{f}}\left[\mathrm{~A}_{\mathrm{eq}}\right]=k_{\mathrm{r}}\left[\mathrm{P}_{\mathrm{eq}}\right]
$$

Substituting for $\left[\mathrm{P}_{\mathrm{eq}}\right] \ldots$

$$
\begin{align*}
& k_{\mathrm{f}}\left[\mathrm{~A}_{\mathrm{eq}}\right]=k_{\mathrm{r}}\left(\left[\mathrm{~A}_{0}\right]-\left[\mathrm{A}_{\mathrm{eq}}\right]\right)  \tag{3}\\
& {\left[\mathrm{A}_{\mathrm{eq}}\right]=\frac{k_{\mathrm{r}}}{k_{\mathrm{f}}+k_{\mathrm{r}}}\left[\mathrm{~A}_{\mathrm{o}}\right]} \tag{4}
\end{align*}
$$

Going back to eq (2), substituting in [ $\mathrm{A}_{\text {eq }}$ ] from eq (4) with rearrangement gives...

$$
\ln \left\{\frac{\left(k_{\mathrm{f}} / k_{\mathrm{r}}\right)\left[\mathrm{A}_{\mathrm{eq}}\right]}{[\mathrm{A}]-\left[\mathrm{A}_{\mathrm{eq}}\right]}\right\}=\left(k_{\mathrm{f}}+k_{\mathrm{r}}\right) \mathrm{t}
$$

Substituting in from eq (3) and rearranging...

$$
\ln \left\{\frac{[\mathrm{A}]-\left[\mathrm{A}_{\mathrm{eq}}\right]}{\left[\mathrm{A}_{\mathrm{o}}\right]-\left[\mathrm{A}_{\mathrm{eq}}\right]}\right\}=-\left(k_{\mathrm{f}}+k_{\mathrm{r}}\right) \mathrm{t}
$$

$\bullet$ Crosscheck: if $[\mathrm{A}] \gg\left[\mathrm{A}_{\mathrm{eq}}\right]$ (i.e., $k_{\mathrm{f}} \gg k_{\mathrm{r}}$ ), the expression reduces to 1 st order.
VII. Reversible 1st-Order Reaction:

## C. Graphics:

1. Linear Fit:

$$
\left.\ln \left\{\frac{[\mathrm{A}]-\left[\mathrm{A}_{\mathrm{eq}}\right]}{\left[\mathrm{A}_{\mathrm{o}}\right]-\left[\mathrm{A}_{\mathrm{eq}}\right]}\right\}\right\} \underbrace{\text { ( }}_{\mathrm{t}(\mathrm{sec})}
$$

Let...

$$
\mathrm{f}(\mathrm{x})=a \mathrm{x}
$$

such that...

$$
\mathrm{f}(\mathrm{x})=\ln \left\{\frac{[\mathrm{A}]-\left[\mathrm{A}_{\mathrm{eq}}\right]}{\left[\mathrm{A}_{\mathrm{o}}\right]-\left[\mathrm{A}_{\mathrm{eq}}\right]}\right\} \quad \mathrm{x}=\mathrm{t} \quad a=-\left(k_{\mathrm{f}}+k_{\mathrm{r}}\right)
$$

(measured displacements from equilibrium)

## VII. Reversible 1st-Order Reaction:

2. Non-Linear Fit:


$$
\mathrm{f}(\mathrm{x})=\mathrm{e}^{a \mathrm{x}}
$$

such that...

$$
f(x)=\left\{\frac{[\mathrm{A}]-\left[\mathrm{A}_{\mathrm{eq}}\right]}{\left[\mathrm{A}_{\mathrm{o}}\right]-\left[\mathrm{A}_{\mathrm{eq}}\right]}\right\} \quad \mathrm{x}=\mathrm{t} \quad a=-\left(k_{\mathrm{f}}+k_{\mathrm{r}}\right)
$$

Parameter $\underline{a}$ provides $k_{\mathrm{f}}+k_{\mathrm{r}}$. We obtain $k_{\mathrm{r}}$ and, in turn, $k_{\mathrm{f}}$ from eq (4).

