IX. 2nd-Order /1st-Order Pre-equilibrium, 1st-Order Reaction:

A. Given:

$$
\mathrm{A}+\mathrm{B} \underset{k_{-1}}{\stackrel{k_{1}}{\longrightarrow}} \mathrm{C} \xrightarrow{k_{2}} \mathrm{P}
$$

B. Rate Equation:

- It is often easier to derive rate expressions by focusing upon the rate of product formation rather than starting material disappearance.

IX. 2nd-Order /1st-Order Pre-equilibrium, 1st-Order Reaction:

1. Steady State Approximation:

If [C] stays low...

$$
\mathrm{A}+\mathrm{B} \underset{k_{-1}}{\stackrel{k_{1}}{ }} \mathrm{C} \xrightarrow{k_{2}} \mathrm{P}
$$

$$
d[\mathrm{P}] / d \mathrm{t}=-d[\mathrm{~A}] / d \mathrm{t}=k_{2}[\mathrm{C}]
$$

$$
d[\mathrm{C}] / d \mathrm{t}=k_{1}[\mathrm{~A}][\mathrm{B}]-k_{-1}[\mathrm{C}]-k_{2}[\mathrm{C}] \cong 0
$$

Solving for [C]...

$$
[\mathrm{C}]=\frac{k_{1}}{k_{-1}+k_{2}}[\mathrm{~A}][\mathrm{B}]
$$

Therefore...

$$
d[\mathrm{P}] / d \mathrm{t}=\frac{k_{1} k_{2}}{k_{-1}+k_{2}}[\mathrm{~A}][\mathrm{B}]
$$

This is indistinguishable from...

$$
\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{P}
$$

IX. 2nd-Order /1st-Order Pre-equilibrium, 1st-Order Reaction:

2. Simple Equilibrium Approximation:

$$
\begin{aligned}
& \text { If } k_{-1} \gg k_{2} \ldots \\
& \quad \mathrm{~K}_{\mathrm{eq}}=[\mathrm{C}] /\{[\mathrm{A}][\mathrm{B}]\}
\end{aligned}
$$

$$
\mathrm{A}+\mathrm{B} \underset{k_{-1}}{\stackrel{k_{1}}{ }} \mathrm{C} \xrightarrow{k_{2}} \mathrm{P}
$$

Therefore...

$$
d[\mathrm{P}] / d \mathrm{t}=k_{2}[\mathrm{C}]=k_{2} \mathrm{~K}_{\mathrm{eq}}[\mathrm{~A}][\mathrm{B}]
$$

Apparent predictions...

$$
d[\mathrm{P}] / d \mathrm{t} \propto[\mathrm{~A}]
$$

and...

$$
d[\mathrm{P}] / d \mathrm{t} \propto[\mathrm{~B}]
$$

IX. 2nd-Order /1st-Order Pre-equilibrium, 1st-Order Reaction:

However, [C] does not necessarily stay low (i.e., $k_{1}[\mathrm{~B}] \gg k_{-1}$). If so...

$$
\begin{aligned}
& -d[\mathrm{~A}] / d \mathrm{t} \neq d[\mathrm{P}] / d \mathrm{t} \\
& d[\mathrm{P}] / d \mathrm{t}=k_{2}[\mathrm{C}]
\end{aligned}
$$

- $d[\mathrm{P}] / d \mathrm{t}$ will be independent of $[\mathrm{B}]$ (i.e., the excess reagent) if $\underline{\mathrm{C}}$ is the observable reactant; increasing [B] cannot appreciably increase [C].
- Why does the so-called "simple equilibrium approximation" fail to clearly predict this?

IX. 2nd-Order /1st-Order Pre-equilibrium, 1st-Order Reaction:

3. Alternative Equilibrium Approximation:

Let $\left[\mathrm{A}_{\mathrm{T}}\right]=$ total concentration of $\underline{\mathrm{A}}$ in all forms. Therefore,,\ldots

$$
\left[\mathrm{A}_{\mathrm{T}}\right]=[\mathrm{A}]+[\mathrm{C}]
$$

Similarly...

$$
\mathrm{A}+\mathrm{B} \underset{k_{-1}}{\stackrel{k_{1}}{ }} \mathrm{C} \xrightarrow{k_{2}} \mathrm{P}
$$

$$
\left[\mathrm{B}_{\mathrm{T}}\right]=[\mathrm{B}]+[\mathrm{C}]
$$

If $\left[\mathrm{B}_{\mathrm{T}}\right] \gg\left[\mathrm{A}_{\mathrm{T}}\right]$ (pseudo-1st-order conditions), then...

$$
[\mathrm{B}] \cong\left[\mathrm{B}_{\mathrm{T}}\right] \cong \text { constant }
$$

Since...

$$
[\mathrm{C}]=\mathrm{K}_{\mathrm{eq}}[\mathrm{~A}][\mathrm{B}]=\mathrm{K}_{\mathrm{eq}}\left\{\left[\mathrm{~A}_{\mathrm{T}}\right]-[\mathrm{C}]\right\}[\mathrm{B}]
$$

Solving for [C]...

$$
[\mathrm{C}]=\frac{\mathrm{K}_{\mathrm{eq}}\left[\mathrm{~B}\left[\mathrm{~A}_{\mathrm{T}}\right]\right.}{1+\mathrm{K}_{\mathrm{eq}}[\mathrm{~B}]}
$$

$$
\mathrm{A}+\mathrm{B} \underset{k_{-1}}{\stackrel{k_{1}}{ }} \mathrm{C} \xrightarrow{k_{2}} \mathrm{P}
$$

Therefore...

$$
d[\mathrm{P}] / d \mathrm{t}=k_{2}[\mathrm{C}]=\frac{k_{2} \mathrm{~K}_{\mathrm{eq}}[\mathrm{~B}]\left[\mathrm{A}_{\mathrm{T}}\right]}{1+\mathrm{K}_{\mathrm{eq}}[\mathrm{~B}]}
$$

Let...

$$
d[\mathrm{P}] / d \mathrm{t}=k_{\mathrm{obsd}}\left[\mathrm{~A}_{\mathrm{T}}\right]
$$

such that...

$$
\begin{equation*}
k_{\mathrm{obsd}}=\frac{k_{2} \mathrm{~K}_{\mathrm{eq}}[\mathrm{~B}]}{1+\mathrm{K}_{\mathrm{eq}}[\mathrm{~B}]} \tag{1}
\end{equation*}
$$

IX. 2nd-Order /1st-Order Pre-equilibrium, 1st-Order Reaction:

a. $\underline{\text { Limiting Case 1: }} \mathrm{K}_{\mathrm{eq}}[\mathrm{B}] \gg 1$ (i.e., $[\mathrm{C}] /[\mathrm{A}] \gg 1$)

- This is most likely at high [B].
- C becomes the observable form, the mechanism reduces to...

$$
\begin{aligned}
& \mathrm{C} \xrightarrow{k_{2}} \mathrm{P} \\
& d[\mathrm{P}] / d \mathrm{t}=k_{2}[\mathrm{C}]=k_{2}\left[\mathrm{~A}_{\mathrm{T}}\right]
\end{aligned}
$$

$$
\mathrm{A}+\mathrm{B} \underset{k_{-1}}{\stackrel{k_{1}}{ }} \mathrm{C} \xrightarrow{k_{2}} \mathrm{P}
$$

$$
k_{\text {obsd }}=\frac{k_{2} \mathrm{~K}_{\mathrm{eq}}[\mathrm{~B}]}{1+\mathrm{K}_{\mathrm{eq}}[\mathrm{~B}]}
$$

[B]

IX. 2nd-Order /1st-Order Pre-equilibrium, 1st-Order Reaction:

b. Limiting Case 2: $\mathrm{K}_{\mathrm{eq}}[\mathrm{B}] \ll 1$ (i.e., $[\mathrm{C}] /[\mathrm{A}] \ll 1$)

- This is most likely at low [B].
- A remains the observable form. The mechanism reduces to...

$$
\begin{aligned}
& \mathrm{A}+\mathrm{B} \xrightarrow{k_{2} \mathrm{~K}_{\mathrm{eq}}} \mathrm{P} \\
& d[\mathrm{P}] / d \mathrm{t}=k_{2} \mathrm{~K}_{\mathrm{eq}}\left[\mathrm{~A}_{\mathrm{T}}\right][\mathrm{B}]
\end{aligned}
$$

$$
\mathrm{A}+\mathrm{B} \underset{k_{-1}}{\stackrel{k_{1}}{ }} \mathrm{C} \xrightarrow{k_{2}} \mathrm{P}
$$

$$
k_{\text {obsd }}=\frac{k_{2} \mathrm{~K}_{\mathrm{eq}}[\mathrm{~B}]}{1+\mathrm{K}_{\mathrm{eq}}[\mathrm{~B}]}
$$

[B]

IX. 2nd-Order /1st-Order Pre-equilibrium, 1st-Order Reaction:

c. Combined Cases 1 and 2: "Saturation Kinetics"

$\mathrm{A}+\mathrm{B} \underset{k_{-1}}{\stackrel{k_{1}}{ }} \mathrm{C} \xrightarrow{k_{2}} \mathrm{P}$

$$
k_{\text {obsd }}=\frac{k_{2} \mathrm{~K}_{\mathrm{eq}}[\mathrm{~B}]}{1+\mathrm{K}_{\mathrm{eq}}[\mathrm{~B}]}
$$

Let...

$$
\mathrm{f}(\mathrm{x})=\frac{a \mathrm{x}}{1+b \mathrm{x}}
$$

such that...

$$
\mathrm{f}(\mathrm{x})=k_{\mathrm{obsd}} \quad \mathrm{x}=[\mathrm{B}] \quad a=k_{2} \mathrm{~K}_{\mathrm{eq}} \quad b=\mathrm{K}_{\mathrm{eq}}
$$

IX. 2nd-Order /1st-Order Pre-equilibrium, 1st-Order Reaction:

Alternatively, rearranging eq (1) gives...
$\frac{1}{k_{\text {obsd }}}=\frac{1}{k_{2} \mathrm{~K}_{\mathrm{eq}}[\mathrm{B}]}+\frac{1}{k_{2}}$

$$
\text { slope }=1 /\left(k_{2} \mathrm{~K}_{\mathrm{eq}}\right)
$$

$$
\mathrm{A}+\mathrm{B} \underset{k_{-1}}{\stackrel{k_{1}}{ }} \mathrm{C} \xrightarrow{k_{2}} \mathrm{P}
$$

$$
k_{\mathrm{obsd}}=\frac{k_{2} \mathrm{~K}_{\mathrm{eq}}[\mathrm{~B}]}{1+\mathrm{K}_{\mathrm{eq}}[\mathrm{~B}]}
$$

Case 1: high $[B]$ (i.e., low 1/[B]) and observable \underline{C}

$$
\frac{1}{k_{\mathrm{obsd}}} \cong \frac{1}{k_{2}}
$$

Case 2: low [B] (i.e., high 1/[B]) and observable \underline{A}

$$
\frac{1}{k_{\text {obsd }}} \cong \frac{1}{k_{2} \mathrm{~K}_{\mathrm{eq}}} \cdot \frac{1}{[\mathrm{~B}]}
$$

IX. 2nd-Order /1st-Order Pre-equilibrium, 1st-Order Reaction:

4. Conflict of Approximations:

The simple equilibrium approximation gives...

$$
\mathrm{A}+\mathrm{B} \underset{k_{-1}}{\stackrel{k_{1}}{ }} \mathrm{C} \xrightarrow{k_{2}} \mathrm{P}
$$

$$
d[\mathrm{P}] / d \mathrm{t}=k_{2} \mathrm{~K}_{\mathrm{eq}}[\mathrm{~A}][\mathrm{B}]
$$

The alternative equilibrium approximation gives...

$$
k_{\mathrm{obsd}}=\frac{k_{2} \mathrm{~K}_{\mathrm{eq}}[\mathrm{~B}]}{1+\mathrm{K}_{\mathrm{eq}}[\mathrm{~B}]}
$$

$$
d[\mathrm{P}] / d \mathrm{t}=\frac{k_{2} \mathrm{~K}_{\mathrm{eq}}[\mathrm{~B}]\left[\mathrm{A}_{\mathrm{T}}\right]}{1+\mathrm{K}_{\mathrm{eq}}[\mathrm{~B}]}
$$

How can this be? Neither approximation includes extraneous assumptions.

- The simple approximation predicts that...

$$
d[\mathrm{P}] / d \mathrm{t} \propto[\mathrm{C}] \propto[\mathrm{A}][\mathrm{B}]
$$

but not $[A]$ or $[B]$ alone. $[\mathrm{A}]$ and $[\mathrm{B}]$ are correlated.

