X. 1st-Order/2nd-Order Pre-Equilibrium, 1st-Order Reaction:
A. Given

$$
\begin{aligned}
& \mathrm{A} \xlongequal[k_{-1}]{\stackrel{k_{1}}{ }} \mathrm{C}+\mathrm{D} \\
& \mathrm{C} \xrightarrow{k_{2}} \mathrm{P}
\end{aligned}
$$

B. Rate Equation:

If we simplify by assuming [C] stays low...

$$
d[\mathrm{P}] / d \mathrm{t}=k_{2}[\mathrm{C}]
$$

Since...

$$
d[\mathrm{C}] / d \mathrm{t}=k_{1}[\mathrm{~A}]-k_{-1}[\mathrm{C}][\mathrm{D}]-k_{2}[\mathrm{C}] \cong 0
$$

Solving for [C]...

$$
[\mathrm{C}]=\frac{k_{1}[\mathrm{~A}]}{k_{2}+k_{-1}[\mathrm{D}]}
$$

X. 1st-Order/2nd-Order Pre-Equilibrium, 1st-Order Reaction:

Therefore...

$$
d[\mathrm{P}] / d \mathrm{t}=\frac{k_{1} k_{2}[\mathrm{~A}]}{k_{2}+k_{-1}[\mathrm{D}]}
$$

Or, dividing through by $k_{2} \ldots$

$$
\begin{array}{|l|}
\mathrm{A} \xlongequal[k_{-1}]{\stackrel{k_{1}}{\longrightarrow}} \mathrm{C}+\mathrm{D} \\
\mathrm{C} \xrightarrow{k_{2}} \mathrm{P}
\end{array}
$$

$$
d[\mathrm{P}] / d \mathrm{t}=\frac{k_{1}[\mathrm{~A}]}{1+\left(k_{-1}[\mathrm{D}]\right) / k_{2}}
$$

- This alternative mathematical representation includes the branching ratio...

$$
\left(k_{-1}[\mathrm{D}]\right) / k_{2}
$$

The branching ratio reflects the partitioning of intermediate \underline{C} to starting material ($\left.k_{-1}[\mathrm{D}]\right)$ and to product $\left(k_{2}\right)$. The transition from one limiting case to the other (i.e., non-limiting case) is observed when the branching ratio is near unity.

X. 1st-Order/2nd-Order Pre-Equilibrium, 1st-Order Reaction:

C. Limiting Cases:

1. Case 1: $k_{2} \gg k_{-1}[\mathrm{D}]$

$$
d[\mathrm{P}] / d \mathrm{t}=k_{1}[\mathrm{~A}]
$$

$$
\begin{aligned}
& \mathrm{A} \underset{k_{-1}}{\stackrel{k_{1}}{=}} \mathrm{C}+\mathrm{D} \\
& \mathrm{C} \xrightarrow[2]{k_{2}} \mathrm{P}
\end{aligned}
$$

- The rate of product formation from $\underline{\mathrm{C}}$ is much greater than the rate that $\underline{\mathrm{C}}$ returns to starting material. Therefore, the formation of $\underline{\mathrm{C}}$ is rate limiting.
- This limiting behavior is most likely to be observed at low [D] (i.e., low conversion).

X. 1st-Order/2nd-Order Pre-Equilibrium, 1st-Order Reaction:

2. Case 2: $k_{2} \ll k_{-1}[\mathrm{D}]$

$$
d[\mathrm{P}] / d \mathrm{t}=\frac{k_{1} k_{2}}{k_{-1}} \cdot \frac{[\mathrm{~A}]}{[\mathrm{D}]}
$$

- As [D] builds up, "autoinhibition" by $\underline{\mathrm{D}}$

$$
\begin{array}{|l|}
\mathrm{A} \underset{k_{-1}}{\stackrel{k_{1}}{ }} \mathrm{C}+\mathrm{D} \\
\mathrm{C} \xrightarrow{k_{2}} \mathrm{P}
\end{array}
$$ due to the back reaction becomes more likely.

- Determination of the "reaction order over time" -- the order in $\underline{\text { A derived }}$ from plots of \underline{A} vs. t -- affords a quantitatively irrational order that acts like a high order.
- Determination of the "true reaction order" -- the order in \underline{A} obtained by monitoring initial rates at variable $\left[\mathrm{A}_{0}\right]$'s -- affords a clean 1st order in \underline{A}.
- The problem is that the math gets nasty due to changing [D].

X. 1st-Order/2nd-Order Pre-Equilibrium, 1st-Order Reaction:

D. Flooding Technique:

1. Given: excess [D] added at the outset

$$
[\mathrm{D}] \cong\left[\mathrm{D}_{0}\right]
$$

2. Rate Equation:

$$
d[\mathrm{P}] / d \mathrm{t}=k_{\mathrm{obsd}}[\mathrm{~A}]
$$

such that...

$$
\begin{array}{|l|}
\mathrm{A} \stackrel{k_{-1}}{\stackrel{k_{1}}{2}} \mathrm{C}+\mathrm{D} \\
\mathrm{C} \xrightarrow{k_{2}} \mathrm{P}
\end{array}
$$

$$
k_{\mathrm{obsd}}=\frac{k_{1} k_{2}}{k_{2}+k_{-1}\left[\mathrm{D}_{0}\right]}
$$

In the limit that $k_{-1}[\mathrm{D}] \gg k_{2}$ (as expected with excess $\underline{\mathrm{D}}$)...

$$
d[\mathrm{P}] / d \mathrm{t}=\frac{k_{1} k_{2}}{k_{-1}} \frac{[\mathrm{~A}]}{[\mathrm{D}]}=k_{\mathrm{obsd}}[\mathrm{~A}]
$$

X. 1st-Order/2nd-Order Pre-Equilibrium, 1st-Order Reaction:

3. Graphics:

$$
\begin{array}{|l|}
\mathrm{A} \underset{k_{-1}}{\stackrel{k_{1}}{ }} \mathrm{C}+\mathrm{D} \\
\mathrm{C} \xrightarrow{k_{2}} \mathrm{P}
\end{array}
$$

- A plot of $k_{\text {obsd }}$ vs. [$\left.\mathrm{D}_{0}\right]$ is non-linear for all inverse orders in $\underline{\mathrm{D}}$.

Let...

$$
\mathrm{f}(\mathrm{x})=a \mathrm{x}^{b}
$$

such that...

$$
\mathrm{f}(\mathrm{x})=k_{\text {obsd }} \quad \mathrm{x}=\left[\mathrm{D}_{0}\right] \quad a=k_{1} k_{2} / k_{-1} \quad b=\operatorname{order} \text { in } \underline{\mathrm{D}}
$$

- \underline{b} will be negative for an inverse order.

X. 1st-Order/2nd-Order Pre-Equilibrium, 1st-Order Reaction:

For a more visually retrievable plot, we can turn to the graphical method. Thus...

$$
\begin{aligned}
& \mathrm{A} \underset{k_{-1}}{\stackrel{k_{1}}{2}} \mathrm{C}+\mathrm{D} \\
& \mathrm{C} \xrightarrow{k_{2}} \mathrm{P}
\end{aligned}
$$

- For $\underline{b}=-1$, a plot of $k_{\text {obsd }}$ vs. $1 /\left[\mathrm{D}_{0}\right]$ will be linear.
- In the event that the reaction is inverse "nth" order, plots of $k_{\mathrm{obsd}} \mathrm{vs}$. $1 /\left[\mathrm{D}_{0}\right]^{\mathrm{n}}$ will be linear.

