### SUPPORTING INFORMATION

### Aryl Carbamates:

# Mechanisms of Orthosodiations and Snieckus-Fries Rearrangements

Yun Ma, Ryan A. Woltornist, Russell F. Algera and David B. Collum\*

Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853–1301 E-mail: <u>dbc6@cornell.edu</u>

### I. Spectroscopic studies

| Figure S1. | <sup>1</sup> H, <sup>13</sup> C{ <sup>1</sup> H}, and <sup>19</sup> F NMR spectra of <b>4e</b> in either CDCl <sub>3</sub> or THF- $d_8$ . | S-5  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure S2. | <sup>1</sup> H and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of <b>4f</b> in either CDCl <sub>3</sub> .                                 | S-7  |
| Figure S3. | IR spectrum of the metalation-rearrangement of $1a-d_5$ by NaDA in                                                                         | S-8  |
|            | THF/hexane at –78 °C.                                                                                                                      |      |
| Figure S4. | Spectra of the metalation-rearrangement of $1a-d_5$ by NaDA in                                                                             | S-9  |
|            | THF/hexane at –78 °C (monitored by in situ IR).                                                                                            |      |
| Figure S5. | IR spectrum of the metalation and rearrangement of <b>1b</b> by NaDA in                                                                    | S-10 |
|            | THF/hexane at –50 °C.                                                                                                                      |      |
| Figure S6. | Plot of absorbance vs. time depicting the rearrangement of <b>2b</b> from an                                                               | S-11 |
|            | equilibrium mixture of 1b and 2b generated with NaDA in THF/hexane                                                                         |      |
|            | at –50 °C.                                                                                                                                 |      |
| Figure S7. | Plot of [ArNa]/[ArH] vs. [THF] in hexane for the metalation of <b>1b</b> by                                                                | S-12 |
|            | NaDA at -50 °C.                                                                                                                            |      |
| Figure S8. | Plot of [ArNa]/[ArH] vs. [THF] in hexane for the metalation of 4-                                                                          | S-13 |
|            | methoxyphenyl diisopropylcarbamate by NaDA at -78 °C.                                                                                      |      |
|            |                                                                                                                                            |      |

# **II. Rate studies**

| Plot of $[1a-d_5]$ vs. time for the metalation of $1a-d_5$ by NaDA in                  | S-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| THF/hexane at -78 °C.                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Plot of $k_{obsd}$ vs. [THF] for the metalation of <b>1a</b> - $d_5$ by NaDA in hexane | S-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| cosolvent at –78 °C.                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Plot of $k_{obsd}$ vs. [THF] for the metalation of <b>1a</b> - $d_5$ by NaDA in 2,5-   | S-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| dimethyltetrahydrofuran cosolvent at -78 °C.                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Plot of $k_{obsd}$ vs. [NaDA] for the metalation of <b>1a</b> - $d_5$ by NaDA in       | S-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| THF/hexane at -78 °C.                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Plot of $k_{obsd}$ vs. [THF] for the Fries rearrangement of <b>2d</b> by NaDA in       | S-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| hexane cosolvent at $-15$ °C.                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Plot of $k_{obsd}$ vs. [THF] for the Fries rearrangement of <b>2d</b> by NaDA in 2,5-  | S-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| dimethyltetrahydrofuran cosolvent at $-15$ °C.                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Plot of $k_{obsd}$ vs. [NaDA] for the Fries rearrangement of <b>2d</b> by NaDA in      | S-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| THF/hexane at $-15$ °C.                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Plot of $k_{obsd}$ vs. [THF] for the Fries rearrangement of <b>2e</b> by NaDA in       | S-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| hexane cosolvent at 0 °C.                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Plot of $k_{obsd}$ vs. [NaDA] for the Fries rearrangement of <b>2e</b> by NaDA in      | S-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| THF/hexane at 0 °C.                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Plot of $k_{obsd}$ vs. [THF] for the Fries rearrangement of <b>2f</b> by NaDA in       | S-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| hexane cosolvent at $-30$ °C.                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Plot of $k_{obsd}$ vs. [NaDA] for the Fries rearrangement of <b>2f</b> by NaDA in      | S-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| THF/hexane at $-30$ °C.                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                        | Plot of [1a- $d_5$ ] vs. time for the metalation of 1a- $d_5$ by NaDA in<br>THF/hexane at -78 °C.<br>Plot of $k_{obsd}$ vs. [THF] for the metalation of 1a- $d_5$ by NaDA in hexane<br>cosolvent at -78 °C.<br>Plot of $k_{obsd}$ vs. [THF] for the metalation of 1a- $d_5$ by NaDA in 2,5-<br>dimethyltetrahydrofuran cosolvent at -78 °C.<br>Plot of $k_{obsd}$ vs. [NaDA] for the metalation of 1a- $d_5$ by NaDA in<br>THF/hexane at -78 °C.<br>Plot of $k_{obsd}$ vs. [NaDA] for the Fries rearrangement of 2d by NaDA in<br>hexane cosolvent at -15 °C.<br>Plot of $k_{obsd}$ vs. [THF] for the Fries rearrangement of 2d by NaDA in 2,5-<br>dimethyltetrahydrofuran cosolvent at -15 °C.<br>Plot of $k_{obsd}$ vs. [THF] for the Fries rearrangement of 2d by NaDA in 2,5-<br>dimethyltetrahydrofuran cosolvent at -15 °C.<br>Plot of $k_{obsd}$ vs. [NaDA] for the Fries rearrangement of 2d by NaDA in<br>THF/hexane at -15 °C.<br>Plot of $k_{obsd}$ vs. [NaDA] for the Fries rearrangement of 2e by NaDA in<br>THF/hexane at -15 °C.<br>Plot of $k_{obsd}$ vs. [THF] for the Fries rearrangement of 2e by NaDA in<br>THF/hexane at 0 °C.<br>Plot of $k_{obsd}$ vs. [NaDA] for the Fries rearrangement of 2e by NaDA in<br>THF/hexane at 0 °C.<br>Plot of $k_{obsd}$ vs. [THF] for the Fries rearrangement of 2f by NaDA in<br>THF/hexane at 0 °C.<br>Plot of $k_{obsd}$ vs. [THF] for the Fries rearrangement of 2f by NaDA in<br>THF/hexane at 0 °C. |

# **III.** Calculations

| Table S-1. | Geometric coordinates and thermally corrected M06-2X energies for THF. | S-25 |
|------------|------------------------------------------------------------------------|------|
| Table S-2. | Geometric coordinates and thermally corrected M06-2X energies for      | S-26 |
|            | diisopropylamine.                                                      |      |
| Table S-3. | Geometric coordinates and thermally corrected M06-2X energies for      | S-27 |
|            | NaDA ground-state $A_2(THF)_4(5)$ .                                    |      |

- Table S-4.Geometric coordinates and thermally corrected M06-2X energies for 3-<br/>fluorophenyl diisopropylcarbamate (1e).S-29
- **Table S-5.**Geometric coordinates and thermally corrected M06-2X energies for (2-<br/>(diisopropylcarbamoyl)oxy)-6-fluorophenyl)sodium (2e).
- **Table S-6.**Geometric coordinates and thermally corrected M06-2X energies for (2-<br/>(diisopropylcarbamoyl)oxy)-6-fluorophenyl)sodium(THF).
- **Table S-7.**Geometric coordinates and thermally corrected M06-2X energies for (2-S-33((diisopropylcarbamoyl)oxy)-6-fluorophenyl)sodium(THF)2 (6a).
- **Table S-8.**Geometric coordinates and thermally corrected M06-2X energies for (2-S-35((diisopropylcarbamoyl)oxy)-6-fluorophenyl)sodium(THF)3 (6b).
- **Table S-9.**Geometric coordinates and thermally corrected M06-2X energies for (2-S-37((diisopropylcarbamoyl)oxy)-6-fluorophenyl)sodium(THF)4 (6c).
- **Table S-10.** Geometric coordinates and thermally corrected M06-2X transition stateS-39energies for the metalation of 3-fluorophenyl diisopropylcarbamate by<br/>NaDA(THF)2 (8).NaDA(THF)2 (8).
- Table S-11. Geometric coordinates and thermally corrected M06-2X energies for IRC S-41 of the metalation of 3-fluorophenyl diisopropylcarbamate by NaDA(THF)<sub>2</sub>
   (9).
- **Table S-12.** Geometric coordinates and thermally corrected M06-2X transition stateS-43energies for the Fries rearrangement of (2-((diisopropylcarbamoyl)oxy)-6-fluorophenyl)sodium(THF)2.
- **Table S-13.** Geometric coordinates and thermally corrected M06-2X transition stateS-45energies for the Fries rearrangement of (2-((diisopropylcarbamoyl)oxy)-6-fluorophenyl)sodium(THF)3 (10a).
- **Table S-14.** Geometric coordinates and thermally corrected M06-2X energies for theS-47mixed dimer of (2-((diisopropylcarbamoyl)oxy)-6-fluorophenyl)sodium(A) and NaDA (B) solvated by THF. Short hand can be written asAB(THF)3.
- **Table S-15.** Geometric coordinates and thermally corrected M06-2X transition stateS-49energies for Fries rearrangement of the mixed dimer of (2-

((diisopropylcarbamoyl)oxy)-6-fluorophenyl)sodium (A) and NaDA (B) solvated by 3 THF (11). Short hand can be written as [AB(THF)<sub>3</sub>]<sup>‡</sup>.

- Table S-16. Geometric coordinates and thermally corrected M06-2X energies for the S-51 mixed trimer of (2-((diisopropylcarbamoyl)oxy)-6-fluorophenyl)sodium
  (A) and NaDA (B) solvated by 4 THF. Short hand can be written as AB<sub>2</sub>(THF)<sub>4</sub>.
- **Table S-17.** Geometric coordinates and thermally corrected M06-2X transition stateS-54energies for the Fries rearrangement of the mixed trimer of (2-<br/>((diisopropylcarbamoyl)oxy)-6-fluorophenyl)sodium (A) and NaDA (B)<br/>solvated by 4 THF (12). Short hand can be written as  $[AB_2(THF)_4]^{\ddagger}$ .
- **Table S-18.** Geometric coordinates and thermally corrected M06-2X energies for THFS-57disolvated ((diisopropylcarbamoyl)oxy)-6-fluorophenyl)sodium dimer (7).
- **Table S-19.** Geometric coordinates and thermally corrected M06-2X energies for THFS-59trisolvated sodium 2-(diisopropylcarbamoyl)-3-fluorophenolate monomer.
- **Table S-20.** Geometric coordinates and thermally corrected M06-2X energies for THFS-61disolvated sodium 2-(diisopropylcarbamoyl)-3-fluorophenolate monomer.







(C)

**Figure S1.** NMR spectra of 2-fluoro-6-hydroxy-*N*,*N*-diisopropylbenzamide (**4e**): (A) <sup>1</sup>H NMR spectrum (THF- $d_8$ , 500 MHz) (B) <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (CDCl<sub>3</sub>,125.8 MHz); (C) <sup>19</sup>F NMR spectrum (CDCl<sub>3</sub>, 470.33 MHz).



**Figure S2.** NMR spectra of 2-hydroxy-*N*,*N*-diisopropyl-6-(trifluoromethyl)benzamide (**4f**): (A) <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 500 Mz) (B) <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (CDCl<sub>3</sub>, 125.8 Mz).



**Figure S3**. IR spectrum of the metalation-rearrangement of 0.010 M phenyl- $d_5$  dimethylcarbamate (**1a**- $d_5$ ) with 0.10 M NaDA in 6.15 M THF in hexane at -78 °C after 10 minutes.



**Figure S4**. The metalation-rearrangement of 0.010 M phenyl- $d_5$  dimethylcarbamate (1a- $d_5$ ) with 0.10 M NaDA in 6.15 M THF in hexane at -78 °C monitored by in situ IR.



**Figure S5**. IR spectrum for the metalation and rearrangement of 0.010 M phenyl diethylcarbamate **1b** with 0.15 M NaDA in 6.80 M THF in hexane at -50 °C.



**Figure S6.** Rearrangement of an equilibrium mixture of phenyl diethylcarbamate **1b** (black) and arylsodium **2b** (red) (0.10 M total concentration) generated with 0.15 M NaDA in 6.80 M THF in hexane at -50 °C to give phenolate **3b** (blue).



**Figure S7.** Plot of [ArNa]/[ArH] versus [THF] in hexane for the sodiation of phenyl diethylcarbamate **1b** (ArH) to give arylsodium **2b** (ArNa) with 0.10 M NaDA at -50 °C. The curve depicts the result of an unweighted least-squares fit to  $y = ax^b$  ( $a = 8.1 \pm 0.7$ ,  $b = -0.85 \pm 0.07$ ). Each point is the average value of the [ArNa]/[ArH] ratio obtained from taking the average value from all points from plots analogous to those in Figure S6.



**Figure S8.** Plot of [ArNa]/[ArH] versus [THF] in hexane for the sodiation of 0.010 M 4methoxyphenyl diisopropylcarbamate with 0.10 M NaDA containing 0.10 M diisopropylamine at -78 °C. The curve depicts the result of an unweighted least-squares fit to  $y = ax^b$  ( $a = 1.5 \pm 0.3$ ,  $b = -0.98 \pm 0.13$ ).

#### **II. Rate Studies**



**Figure S9.** Plot of phenyl- $d_5$ -dimethylcarbamate (**1a**- $d_5$ ) concentration versus time for the metalation of 0.10 M **1a**- $d_5$  with 0.10 M NaDA in 7.50 M THF in hexane at -78 °C. The curve depicts the result of an unweighted least-squares fit to the second-order function, y = a/(1+bx) + c ( $a = 0.1128 \pm 0.0002$ ,  $b = -0.00010 \pm 0.00001$ ,  $c = 0.014 \pm 0.001$ ). Insert: plot of phenyl- $d_5$ -dimethylcarbamate (**1a**- $d_5$ ) concentration versus time for the metalation of 0.010 M **1a**- $d_5$  with 0.10 M NaDA in 7.50 M THF in hexane at -78 °C.  $y = ae^{bx} + c$  ( $a = 0.034 \pm 0.001$ ,  $b = 0.0012 \pm 0.0005$ ,  $c = 00028 \pm 0.0001$ ).



**Figure S10**. Plot of  $k_{obsd}$  versus [THF] in hexane cosolvent for the orthosodiation of phenyl- $d_5$  dimethylcarbamate **1a**- $d_5$  (0.010 M) by NaDA (0.10 M) at -78 °C. The curve depicts the result of an unweighted least-squares fit to  $k_{obsd} = k$ [THF] + k' ( $k = -0.00018 \pm 0.00004$ ,  $k' = 0.0029 \pm 0.0003$ )

| [THF] (M) | $k_{\rm obsd} \ge 10^3  ({\rm s}^{-1})$ |
|-----------|-----------------------------------------|
| 2.40      | 2.50                                    |
| 3.72      | 2.22                                    |
| 5.01      | 2.48                                    |
| 6.20      | 1.60                                    |
| 7.44      | 1.32                                    |
| 8.68      | 1.67                                    |
| 9.94      | 1.13                                    |
|           |                                         |



**Figure S11**. Plot of  $k_{obsd}$  versus [THF] in 2,5-dimethyltetrahydrofuran cosolvent for the orthosodiation of phenyl- $d_5$  dimethylcarbamate **1a**- $d_5$  (0.010 M) by NaDA (0.10 M) at -78 °C. The curve depicts the result of an unweighted least–squares fit to  $k_{obsd} = k$ [THF] + k' ( $k = -0.00017 \pm 0.00003$ ,  $k' = 0.0026 \pm 0.0002$ )

| [THF] (M) | $k_{\rm obsd} \ge 10^3  ({\rm s}^{-1})$ |
|-----------|-----------------------------------------|
| 2.40      | 2.42                                    |
| 5.01      | 1.62                                    |
| 7.44      | 1.60                                    |
| 9.94      | 1.02                                    |
|           |                                         |



**Figure S12.** Plot of  $k_{obsd}$  versus [NaDA] in 6.2 M THF in hexane cosolvent for the orthosodiation of carbamate 1- $d_5$  (0.010 M) by NaDA at -78 °C. The curve depicts the result of an unweighted least-squares fit to  $k_{obsd} = k[NaDA]^n$  ( $k = 0.0044 \pm 0.0004$ ,  $n = 0.55 \pm 0.06$ ).

| [NaDA] (M) | $k_{\rm obsd1} { m x10}^3  ({ m s}^{-1})  k_{\rm obsd2}$ | $x10^{3} (s^{-1}) k_{obsd}(avg)x1$ | $0^{3} (s^{-1})$ |
|------------|----------------------------------------------------------|------------------------------------|------------------|
| 0.05       | 0.77                                                     | 0.56                               | 0.67             |
| 0.10       | 1.37                                                     | 1.30                               | 1.34             |
| 0.15       | 1.76                                                     | 1.6                                | 1.68             |
| 0.20       | 1.80                                                     | 1.89                               | 1.85             |
| 0.25       | 2.04                                                     | 1.84                               | 1.94             |
| 0.30       | 2.56                                                     | 2.01                               | 2.29             |
| 0.35       | 2.60                                                     | 2.30                               | 2.45             |



**Figure S13.** Plot of  $k_{obsd}$  versus [THF] in hexane cosolvent for the Fries rearrangement of (2-((diisopropylcarbamoyl)oxy)-6-methoxyphenyl)sodium **2d** (0.010 M) by NaDA (0.10 M) at -15 °C. The curve depicts the result of an unweighted least-squares fit to  $k_{obsd} = k[THF]^n + k'$  ( $k = 0.00014 \pm 0.00014$ ,  $k' = 0.00074 \pm 0.00028$ ,  $n = 1.17 \pm 0.39$ )

| [THF] (M) | $k_{\rm obsd1} \ge 10^3  ({\rm s}^{-1})$ | $k_{\rm obsd2} \ge 10^3  ({\rm s}^{-1})$ | $k_{\rm obsd}({\rm avg}) \ge 10^3  ({\rm s}^{-1})$ |
|-----------|------------------------------------------|------------------------------------------|----------------------------------------------------|
| 1.20      | 0.72                                     | 0.95                                     | 0.84                                               |
| 2.40      | 1.07                                     | 1.28                                     | 1.18                                               |
| 3.72      | 1.43                                     | 1.54                                     | 1.49                                               |
| 5.01      | 1.66                                     | 1.81                                     | 1.73                                               |
| 6.20      | 1.76                                     | 1.42                                     | 1.59                                               |
| 7.44      | 1.94                                     | 2.05                                     | 2.00                                               |
| 8.68      | 2.40                                     | 2.63                                     | 2.52                                               |
| 9.94      | 2.94                                     | 2.79                                     | 2.86                                               |



**Figure S14.** Plot of  $k_{obsd}$  versus [THF] in 2,5-dimethyltetrahydrofuran cosolvent for the Fries rearrangement of (2-((diisopropylcarbamoyl)oxy)-6-methoxyphenyl)sodium **2d** (0.010 M) by NaDA (0.10 M) at -15 °C. The curve depicts the result of an unweighted least-squares fit to  $k_{obsd} = k[\text{THF}]^n + k'$  ( $k = 0.00016 \pm 0.0003$ ,  $k' = 0.00022 \pm 0.0007$ ,  $n = 1.19 \pm 0.75$ )

| [THF] (M) | $k_{\rm obsd} \ge 10^3 ({\rm s}^{-1})$ |
|-----------|----------------------------------------|
| 2.46      | 0.65                                   |
| 4.93      | 1.43                                   |
| 7.40      | 1.82                                   |
| 9.86      | 2.74                                   |
|           |                                        |



**Figure S15.** Plot of  $k_{obsd}$  versus [NaDA] in 6.2 M THF in hexane cosolvent for the Fries rearrangement of (2-((diisopropylcarbamoyl)oxy)-6-methoxyphenyl)sodium **2d** (0.010 M) at -15 °C. The curve depicts the result of an unweighted least-squares fit to  $k_{obsd} = k$ [NaDA] + k' ( $k = -0.00087 \pm 0.00014$ ,  $k' = 0.0017 \pm 0.0001$ )

| [NaDA] (M) | $k_{\rm obsd1} x 10^3  ({\rm s}^{-1})  k_{\rm obsd2}$ | $x10^3 (s^{-1})$ | $k_{\rm obsd}({\rm avg}){\rm x}10^3~({\rm s}^{-1}$ |  |
|------------|-------------------------------------------------------|------------------|----------------------------------------------------|--|
| 0.10       | 1.76                                                  | 1.47             | 1.62                                               |  |
| 0.15       | 1.61                                                  | 1.58             | 1.60                                               |  |
| 0.20       | 1.53                                                  | 1.61             | 1.57                                               |  |
| 0.25       | 1.50                                                  | 1.43             | 1.47                                               |  |
| 0.30       | 1.41                                                  | 1.49             | 1.45                                               |  |
| 0.35       | 1.36                                                  | 1.48             | 1.42                                               |  |



**Figure S16.** Plot of  $k_{obsd}$  versus [THF] in hexane cosolvent for the Fries rearrangement of (2-((diisopropylcarbamoyl)oxy)-6-fluorophenyl)sodium **2e** (0.010 M) at 0 °C. The curve depicts the result of an unweighted least-squares fit to  $k_{obsd} = k$ [THF]+ k' ( $k = -0.00022 \pm 0.00004$ ,  $k' = 0.0044 \pm 0.0003$ )

| [THF] (M) | $k_{\rm obsd1} \ge 10^3 ({\rm s}^{-1})$ | $k_{\rm obsd2} \ge 10^3 ({\rm s}^{-1})$ | $k_{\rm obsd}({\rm avg}) \ge 10^3  ({\rm s}^{-1})$ |
|-----------|-----------------------------------------|-----------------------------------------|----------------------------------------------------|
| 2.48      | 4.58                                    | 3.20                                    | 3.89                                               |
| 6.18      | 3.38                                    | 2.95                                    | 3.17                                               |
| 7.44      | 2.66                                    | 2.35                                    | 2.51                                               |
| 9.92      | 2.42                                    | 2.30                                    | 2.36                                               |



**Figure S17.** Plot of  $k_{obsd}$  versus [NaDA] in 4.2 M THF/hexane for the Fries rearrangement of (2-((diisopropylcarbamoyl)oxy)-6-fluorophenyl)sodium **2e** (0.010 M) at 0 °C. The curve depicts the result of an unweighted least-squares fit to  $k_{obsd} = k[NaDA]^n + k'$  ( $k = 0.012 \pm 0.004$ ,  $k' = 0.0012 \pm 0.004$ ,  $n = 1.15 \pm 0.30$ )

| [NaDA] (M) | $k_{\rm obsd1} x 10^3  ({\rm s}^{-1})$ | ) $k_{\rm obsd2} x 10^3  ({\rm s}^{-1})$ | $k_{\rm obsd}({\rm avg}){\rm x}10^3~({\rm s}^{-1})$ |
|------------|----------------------------------------|------------------------------------------|-----------------------------------------------------|
| 0.0        | 1.40                                   | 1.60                                     | 1.50                                                |
| 0.05       | 1.25                                   | 1.29                                     | 1.27                                                |
| 0.10       | 1.86                                   | 1.51                                     | 1.69                                                |
| 0.15       | 3.38                                   | 2.95                                     | 3.17                                                |
| 0.20       | 3.35                                   | 2.76                                     | 3.06                                                |
| 0.25       | 3.69                                   | 3.55                                     | 3.62                                                |
| 0.30       | 3.86                                   | 4.66                                     | 4.26                                                |
| 0.35       | 5.01                                   | 4.25                                     | 4.63                                                |



**Figure S18.** Plot of  $k_{obsd}$  versus [THF] in hexane cosolvent for the Fries rearrangement of (2-((diisopropylcarbamoyl)oxy)-6-(trifluoromethyl)phenyl)sodium **2f** (0.010 M) at -30 °C. The curve depicts the result of an unweighted least-squares fit to  $k_{obsd} = k$ [THF] + k' ( $k = 0.0023 \pm 0.0002$ ,  $k' = 0.0020 \pm 0.0002$ ).

| [THF] (M) | $k_{\rm obsd1} \ge 10^3  ({\rm s}^{-1})$ | $k_{\rm obsd2} \ge 10^3  ({\rm s}^{-1})$ | $k_{\rm obsd}({\rm avg}) \ge 10^3  ({\rm s}^{-1})$ |
|-----------|------------------------------------------|------------------------------------------|----------------------------------------------------|
| 2.48      | 2.35                                     | 2.60                                     | 2.48                                               |
| 4.96      | 3.00                                     | 3.47                                     | 3.24                                               |
| 6.20      | 3.20                                     | 3.68                                     | 3.44                                               |
| 7.44      | 3.60                                     | 4.08                                     | 3.84                                               |
| 9.92      | 4.27                                     | 4.09                                     | 4.18                                               |



**Figure S19.** Plot of  $k_{obsd}$  versus [NaDA] in 6.2 M THF/hexane for the Fries rearrangement of (2-((diisopropylcarbamoyl)oxy)-6-(trifluoromethyl)phenyl)sodium **2f** (0.010 M) at -30°C. The curve depicts the result of an unweighted least-squares fit to  $k_{obsd} = k$ [NaDA] + k' ( $k = -0.0014 \pm 0.0008$ ,  $k' = 0.0038 \pm 0.0002$ ).

| $k_{\rm obsd1} {\rm x10^3}  ({\rm s}^{-1})  k_{\rm obsd2}$ | $k_{10^3} (s^{-1}) \qquad k_{obsd}(s^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $k_{\text{obsd}}(\text{avg}) \times 10^3 (\text{s}^{-1})$                                                                                   |  |  |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 3.60                                                       | 3.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.58                                                                                                                                        |  |  |
| 4.20                                                       | 3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.92                                                                                                                                        |  |  |
| 3.24                                                       | 3.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.38                                                                                                                                        |  |  |
| 3.53                                                       | 3.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.64                                                                                                                                        |  |  |
| 3.43                                                       | 3.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.65                                                                                                                                        |  |  |
| 3.40                                                       | 3.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.41                                                                                                                                        |  |  |
| 3.18                                                       | 3.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.17                                                                                                                                        |  |  |
|                                                            | $k_{obsd1} x 10^{3} (s^{-1}) k_{obsd2} x_{obsd2} x_{obs$ | $k_{obsd1}x10^3$ (s <sup>-1</sup> ) $k_{obsd2}x10^3$ (s <sup>-1</sup> ) $k_{obsd}$ 3.603.554.203.703.243.523.533.743.433.873.403.423.183.16 |  |  |

### **III.** Computations

Geometries are optimized at the B3LYP level of theory using the 6-31G(d) basis set. Energies are defined as follows: G is the sum of electronic and thermal free energies calculated at the B3LYP level of theory.  $G_{M06-2X}$  is derived from a M06-2X SP calculation corresponding to the optimized geometry and includes a thermal correction from the geometry optimization calculation.

**Table S-1.** Geometric coordinates and thermally corrected M06-2X energies for THF.



**G** = -145737.157

 $G_{M06-2X} = -145728.9988$ 

| Atom | Х          | Y          | Z          |
|------|------------|------------|------------|
| С    | -1.1655770 | -0.4304460 | -0.1316510 |
| Н    | -0.7966490 | 1.1557780  | 1.3100440  |
| Н    | -1.3434230 | 1.7616460  | -0.2642560 |
| Н    | -1.5359580 | -0.4831270 | -1.1673560 |
| С    | 0.7339430  | 0.9965910  | -0.2269410 |
| Н    | 0.7973310  | 1.1548800  | -1.3102840 |
| Н    | -1.9488020 | -0.8230080 | 0.5275430  |
| Н    | 1.3443500  | 1.7610810  | 0.2638280  |
| С    | 1.1652710  | -0.4309590 | 0.1320600  |
| С    | -0.7333840 | 0.9970250  | 0.2267570  |
| Н    | 1.9488890  | -0.8240060 | -0.5263660 |
| Н    | 1.5347420  | -0.4835500 | 1.1681130  |
| 0    | -0.0002500 | -1.2516200 | -0.0003270 |

**Table S-2.**Geometric coordinates and thermally corrected M06-2X energies for<br/>disopropylamine.



G = -183263.5852

 $G_{M06-2X} = -183280.0771$ 

| Atom | X          | Y          | Ζ          |   |           |           |           |
|------|------------|------------|------------|---|-----------|-----------|-----------|
| С    | -2.3326560 | -0.9422780 | 0.4466450  | Н | 2.6214450 | 1.2414940 | 1.1802080 |
| Н    | -2.0463390 | -1.6573420 | 1.2287260  |   |           |           |           |
| Н    | -3.2784570 | -0.4797340 | 0.7488170  |   |           |           |           |
| Н    | -2.4984340 | -1.5018680 | -0.4810530 |   |           |           |           |
| С    | -1.2461340 | 0.1181580  | 0.2403730  |   |           |           |           |
| Н    | -1.1181040 | 0.6553470  | 1.1994030  |   |           |           |           |
| С    | -1.6851130 | 1.1418170  | -0.8142190 |   |           |           |           |
| Н    | -0.9439240 | 1.9365860  | -0.9509170 |   |           |           |           |
| Н    | -1.8333940 | 0.6471290  | -1.7808350 |   |           |           |           |
| Н    | -2.6256340 | 1.6188720  | -0.5151540 |   |           |           |           |
| Ν    | -0.0141350 | -0.5639690 | -0.1834440 |   |           |           |           |
| Н    | 0.1153940  | -1.3929040 | 0.3973890  |   |           |           |           |
| С    | 1.2400150  | 0.2049250  | -0.1653040 |   |           |           |           |
| Н    | 1.0711530  | 1.1036560  | -0.7717820 |   |           |           |           |
| С    | 2.3240050  | -0.6280580 | -0.8585730 |   |           |           |           |
| Н    | 2.0037950  | -0.9103990 | -1.8659910 |   |           |           |           |
| Н    | 3.2666320  | -0.0732190 | -0.9283170 |   |           |           |           |
| Н    | 2.5241710  | -1.5507690 | -0.2967610 |   |           |           |           |
| С    | 1.6992260  | 0.6504500  | 1.2361930  |   |           |           |           |
| Н    | 0.9435680  | 1.2638740  | 1.7387130  |   |           |           |           |
| Н    | 1.9010200  | -0.2230170 | 1.8709720  |   |           |           |           |

**Table S-3.**Geometric coordinates and thermally corrected M06-2X energies for NaDA<br/>ground-state  $A_2(THF)_4$ .



G = -1152417.329

 $G_{M06-2X} = -1152415.563$ 

| Atom | Χ          | Y          | Z          | Atom | X          | Y          | Z          |
|------|------------|------------|------------|------|------------|------------|------------|
| Na   | -1.4745010 | -0.0632710 | -0.0235120 | Н    | -1.6880690 | -2.8019560 | -3.0002740 |
| Na   | 1.5318880  | -0.0837150 | -0.0153470 | Н    | -1.2901530 | -4.3272000 | -2.1901370 |
| Ν    | 0.0480430  | -1.1761660 | -1.6084690 | Н    | -2.0883350 | -3.0173860 | -1.2853010 |
| С    | 0.1694240  | -0.6602420 | -2.9692230 | Ν    | 0.0436240  | 0.9620520  | 1.6283840  |
| Н    | -0.4391800 | -1.2515570 | -3.6856630 | С    | 0.1629600  | 0.3853700  | 2.9640200  |
| С    | 1.6173190  | -0.7046300 | -3.5272920 | Н    | -0.6048770 | 0.7831280  | 3.6620500  |
| Н    | 1.6660960  | -0.4095990 | -4.5863350 | С    | 1.5227050  | 0.6404950  | 3.6656670  |
| Н    | 2.2667120  | -0.0262920 | -2.9563270 | Н    | 1.5496610  | 0.1956660  | 4.6704000  |
| Н    | 2.0364470  | -1.7149110 | -3.4483130 | Н    | 2.3433580  | 0.2066400  | 3.0763150  |
| С    | -0.3591310 | 0.7771420  | -3.0699780 | Н    | 1.7276340  | 1.7111730  | 3.7780880  |
| Н    | 0.1590080  | 1.4365080  | -2.3605390 | С    | -0.0808510 | -1.1279190 | 2.9182160  |
| Н    | -0.2204570 | 1.1961090  | -4.0758830 | Н    | -0.0389550 | -1.5743730 | 3.9205700  |
| Н    | -1.4296400 | 0.8116060  | -2.8348000 | Н    | -1.0667210 | -1.3524080 | 2.4933100  |
| С    | 0.0271220  | -2.6365720 | -1.6314440 | Н    | 0.6699010  | -1.6337420 | 2.2966250  |
| Н    | 0.7700500  | -3.0423870 | -2.3523090 | С    | 0.1180760  | 2.4186890  | 1.6539680  |
| С    | 0.4062580  | -3.2286650 | -0.2668280 | Н    | 1.0966840  | 2.7865630  | 2.0449150  |
| Н    | 0.3735860  | -4.3267510 | -0.2805270 | С    | -0.9440190 | 3.1314560  | 2.5304000  |
| Н    | 1.4159540  | -2.9220130 | 0.0308580  | Н    | -0.8438370 | 4.2238800  | 2.4653710  |
| Н    | -0.2902890 | -2.8883490 | 0.5107590  | Н    | -1.9551740 | 2.8575990  | 2.2008830  |
| С    | -1.3387470 | -3.2360300 | -2.0563500 | Н    | -0.8583860 | 2.8609410  | 3.5879860  |

| С | 0.0185850  | 2.9789940  | 0.2279000  | Η | -5.2225710 | -0.8558490 | -0.4101070 |
|---|------------|------------|------------|---|------------|------------|------------|
| Н | -0.9483170 | 2.7203850  | -0.2233340 | Н | -3.9887420 | -1.6012620 | -1.4539740 |
| Н | 0.1102680  | 4.0736640  | 0.2192520  | С | -5.0889850 | -3.0243470 | -0.1740300 |
| Н | 0.8112090  | 2.5716710  | -0.4093050 | С | -4.9638820 | -3.0982440 | 1.3553370  |
| 0 | 3.2577980  | 1.5416510  | -0.6638420 | С | -3.6126820 | -2.4178520 | 1.5911700  |
| С | 3.9857410  | 2.0219660  | 0.4919400  | Н | -3.5447420 | -1.9016160 | 2.5538340  |
| Н | 3.2579640  | 2.3311640  | 1.2515300  | Н | -2.7854400 | -3.1364570 | 1.5218640  |
| Н | 4.5765230  | 1.1930680  | 0.8925230  | Н | -5.7700750 | -2.5292250 | 1.8340020  |
| С | 4.8326480  | 3.2018480  | 0.0024160  | Н | -4.9913180 | -4.1199540 | 1.7458670  |
| С | 3.9941480  | 3.7343840  | -1.1697470 | Н | -4.4982270 | -3.8189740 | -0.6439690 |
| С | 3.4510790  | 2.4390760  | -1.7742680 | Н | -6.1200620 | -3.1081090 | -0.5312060 |
| Н | 2.4928980  | 2.5597860  | -2.2872250 | 0 | -3.3798430 | 1.4669330  | -0.5936400 |
| Н | 4.1689420  | 1.9945590  | -2.4785430 | С | -4.2223680 | 1.8421640  | 0.5128200  |
| Н | 3.1698500  | 4.3540500  | -0.7984710 | Н | -5.1178640 | 1.2037760  | 0.5261900  |
| Н | 4.5722940  | 4.3244270  | -1.8874770 | Н | -3.6599370 | 1.6727060  | 1.4339750  |
| Н | 5.8100450  | 2.8557700  | -0.3553700 | С | -4.5910330 | 3.3033560  | 0.2651240  |
| Н | 5.0034250  | 3.9449820  | 0.7871290  | С | -4.7116000 | 3.3327290  | -1.2666450 |
| 0 | 3.5270160  | -1.3789260 | 0.5680030  | С | -3.5995450 | 2.3670140  | -1.7022990 |
| С | 4.4239670  | -1.7202000 | -0.4966710 | Н | -3.8647470 | 1.7802710  | -2.5886700 |
| Н | 3.9520080  | -1.4221720 | -1.4344730 | Н | -2.6598550 | 2.8935520  | -1.9058840 |
| Н | 5.3660330  | -1.1612940 | -0.3774660 | Н | -5.6935320 | 2.9562590  | -1.5771100 |
| С | 4.6503900  | -3.2324120 | -0.3525370 | Н | -4.5843960 | 4.3318020  | -1.6940450 |
| С | 4.4582220  | -3.4859690 | 1.1678370  | Н | -3.7808030 | 3.9593460  | 0.6029010  |
| С | 3.9634930  | -2.1266860 | 1.7108940  | Н | -5.5108880 | 3.5999960  | 0.7785850  |
| Н | 3.1175580  | -2.1988930 | 2.3971970  | С | -4.4738530 | -1.6560670 | -0.4757560 |
| Н | 4.7769180  | -1.5813150 | 2.2134040  |   |            |            |            |
| Н | 3.7189100  | -4.2727580 | 1.3412860  |   |            |            |            |
| Н | 5.3871050  | -3.7911540 | 1.6592860  |   |            |            |            |

-0.7121630

-0.9305790

0.5393580

Н

Н

0

5.6388130

3.9006430

-3.4695290

-3.5342260

-3.7803170

-1.4404060

**Table S-4.**Geometric coordinates and thermally corrected M06-2X energies for 3-<br/>fluorophenyl diisopropylcarbamate.



**G** = -508746.7771

 $G_{M06-2X} = -508700.2475$ 

| Atom | X          | Y          | Z          | Atom | X          | Y          | Z          |
|------|------------|------------|------------|------|------------|------------|------------|
| С    | -2.9524340 | -0.9709310 | -0.2504140 | Н    | -4.1214990 | 1.6351330  | -0.6509490 |
| Ν    | -1.8856020 | 0.0307630  | 0.0142560  | Н    | -3.3530630 | 3.1367540  | -0.1267450 |
| С    | -0.5933780 | -0.3297560 | -0.2211350 | С    | -2.9321600 | 1.2804520  | 1.9053350  |
| 0    | 0.2812190  | 0.7094580  | 0.0632640  | Н    | -2.2685390 | 0.7775560  | 2.6162160  |
| С    | 1.6508650  | 0.5293680  | -0.0629300 | Н    | -3.1381160 | 2.2879590  | 2.2840150  |
| С    | 2.3132630  | -0.5903840 | 0.4418090  | Н    | -3.8839740 | 0.7376560  | 1.8813100  |
| С    | 3.6985540  | -0.6187020 | 0.3392580  | Н    | -3.8806410 | -0.4553860 | 0.0126320  |
| С    | 4.4371000  | 0.4140060  | -0.2272670 | С    | -3.0437160 | -1.3492670 | -1.7359620 |
| С    | 3.7461210  | 1.5232730  | -0.7161220 | Н    | -2.1409340 | -1.8704890 | -2.0605450 |
| С    | 2.3549980  | 1.5873630  | -0.6400900 | Н    | -3.9047730 | -2.0083190 | -1.8967300 |
| Н    | 1.8064000  | 2.4438670  | -1.0171750 | Н    | -3.1774350 | -0.4581560 | -2.3587830 |
| Н    | 4.2973240  | 2.3455120  | -1.1629970 | С    | -2.8400280 | -2.2010480 | 0.6619080  |
| Н    | 5.5177490  | 0.3383470  | -0.2787730 | Н    | -3.7062300 | -2.8546320 | 0.5071090  |
| F    | 4.3517820  | -1.6977390 | 0.8206930  | Н    | -1.9332050 | -2.7678240 | 0.4417940  |
| Н    | 1.7795130  | -1.4227760 | 0.8785760  | Н    | -2.8221320 | -1.9051930 | 1.7165020  |
| 0    | -0.2179210 | -1.4122670 | -0.6336090 |      |            |            |            |
| С    | -2.2772800 | 1.3687060  | 0.5188180  |      |            |            |            |
| Н    | -1.3489250 | 1.9255680  | 0.6288610  |      |            |            |            |
| С    | -3.1531780 | 2.1233230  | -0.4927490 |      |            |            |            |

# Н -2.6470920 2.2028000 -1.4603350

**Table S-5.**Geometric coordinates and thermally corrected M06-2X energies for (2-<br/>((diisopropylcarbamoyl)oxy)-6-fluorophenyl)sodium.



G = -610230.6687

 $G_{M06-2X} = -610155.4525$ 

| Atom | X          | Y          | Z          | Atom | Χ          | Y          | Z          |
|------|------------|------------|------------|------|------------|------------|------------|
| С    | -3.1052200 | -0.8348830 | -0.1790620 | Н    | -3.3242800 | 3.2740170  | -0.4461120 |
| Ν    | -2.0013440 | 0.1347620  | 0.0295560  | С    | -3.0778620 | 1.5893940  | 1.7530240  |
| С    | -0.7076250 | -0.2636270 | -0.1658570 | Н    | -2.4736350 | 1.1202150  | 2.5363280  |
| 0    | 0.1618970  | 0.7405570  | 0.0056760  | Н    | -3.2458280 | 2.6353210  | 2.0333530  |
| С    | 1.5965330  | 0.6765640  | -0.0592310 | Н    | -4.0567100 | 1.0960570  | 1.7308310  |
| С    | 2.3261430  | -0.4502240 | 0.2874450  | Н    | -4.0116830 | -0.2561480 | 0.0187140  |
| С    | 3.6929520  | -0.2453170 | 0.2029680  | С    | -3.1988930 | -1.3311400 | -1.6299320 |
| С    | 4.3343690  | 0.9409930  | -0.1423430 | Н    | -2.3272350 | -1.9320990 | -1.8960450 |
| С    | 3.5279780  | 2.0373690  | -0.4614310 | Н    | -4.0988210 | -1.9451170 | -1.7530200 |
| С    | 2.1396450  | 1.9138130  | -0.4263580 | Н    | -3.2657090 | -0.4884980 | -2.3260870 |
| Н    | 1.4930170  | 2.7510820  | -0.6736550 | С    | -3.0861670 | -1.9878780 | 0.8362430  |
| Н    | 3.9814600  | 2.9853370  | -0.7386380 | Н    | -3.9962850 | -2.5896860 | 0.7301590  |
| Н    | 5.4184910  | 1.0027390  | -0.1687430 | Н    | -2.2225310 | -2.6361220 | 0.6741440  |
| F    | 4.5124720  | -1.3234460 | 0.4737920  | Н    | -3.0491210 | -1.6048800 | 1.8615520  |
| Na   | 1.3765630  | -2.5220000 | 0.1443670  | Н    | -2.5883780 | 2.2082290  | -1.6581250 |
| 0    | -0.4208220 | -1.4304290 | -0.4788260 | Н    | -4.1258920 | 1.7630820  | -0.8885610 |
| С    | -2.3564210 | 1.5273500  | 0.3984550  |      |            |            |            |
| Н    | -1.4083000 | 2.0487360  | 0.5083960  |      |            |            |            |
| С    | -3.1474650 | 2.2269860  | -0.7169790 |      |            |            |            |

**Table S-6.**Geometric coordinates and thermally corrected M06-2X energies for (2-<br/>((diisopropylcarbamoyl)oxy)-6-fluorophenyl)sodium(THF).



**G** = -755968.1463

 $G_{M06-2X} = -755895.2321$ 

| Atom | X          | Y          | Z          | Atom | X          | Y          | Z          |
|------|------------|------------|------------|------|------------|------------|------------|
| С    | -3.5453420 | -1.8025800 | -0.2281390 | С    | 5.1170860  | -0.8312510 | -0.7638610 |
| Ν    | -3.0692770 | -0.4214090 | 0.0311110  | С    | 3.9658240  | -1.7432610 | -1.1832370 |
| С    | -1.7680310 | -0.0956340 | -0.2380900 | Н    | 3.2844000  | -1.2823630 | -1.9068810 |
| 0    | -1.5188620 | 1.2069790  | -0.0387620 | Н    | 4.3243110  | -2.6955010 | -1.5971720 |
| С    | -0.2237170 | 1.8290630  | -0.0893900 | Н    | 4.7699460  | 0.2044540  | -0.7037630 |
| С    | 0.9170110  | 1.2098410  | 0.4020070  | Н    | 5.9671570  | -0.8870680 | -1.4503510 |
| С    | 2.0233700  | 2.0349740  | 0.3154220  | Н    | 6.0326680  | -2.2723550 | 0.5932190  |
| С    | 2.0652030  | 3.3458700  | -0.1515760 | Н    | 5.9633050  | -0.6301060 | 1.2645940  |
| С    | 0.8664590  | 3.8976400  | -0.6120310 | С    | -4.0474700 | 0.5755220  | 0.5299800  |
| С    | -0.3006230 | 3.1339690  | -0.5884220 | Н    | -3.4802930 | 1.4934180  | 0.6679740  |
| Н    | -1.2455940 | 3.5375050  | -0.9417410 | С    | -5.1495010 | 0.8576940  | -0.5023510 |
| Н    | 0.8427640  | 4.9172210  | -0.9876740 | Н    | -4.7139930 | 1.1833860  | -1.4526160 |
| Н    | 2.9939610  | 3.9095260  | -0.1609460 | Н    | -5.7753410 | -0.0218710 | -0.6940420 |
| F    | 3.2502880  | 1.5113250  | 0.7269910  | Н    | -5.8072670 | 1.6547050  | -0.1372740 |
| Na   | 1.1252470  | -1.0975520 | 0.1326480  | С    | -4.6190470 | 0.1757600  | 1.8984600  |
| 0    | -0.9475780 | -0.9329050 | -0.6420280 | Н    | -3.8144270 | 0.0203880  | 2.6245180  |
| 0    | 3.2223790  | -2.0141630 | 0.0308040  | Н    | -5.2673240 | 0.9751260  | 2.2748210  |
| С    | 4.0319890  | -1.6560960 | 1.1884220  | Н    | -5.2218320 | -0.7385650 | 1.8505970  |
| Н    | 3.5920710  | -0.7649790 | 1.6483950  | Н    | -4.6075350 | -1.7753590 | 0.0313340  |
| Н    | 4.0021260  | -2.4929230 | 1.8931940  | С    | -3.4582160 | -2.1955220 | -1.7106570 |
| С    | 5.4306710  | -1.3571610 | 0.6452290  | Н    | -2.4191520 | -2.2514220 | -2.0408120 |

| Η | -3.9274340 | -3.1748400 | -1.8618490 |
|---|------------|------------|------------|
| Н | -3.9839530 | -1.4672170 | -2.3371540 |
| С | -2.8898050 | -2.8420470 | 0.6939540  |
| Η | -3.3840110 | -3.8127140 | 0.5692690  |
| Η | -1.8307330 | -2.9618160 | 0.4559060  |
| Н | -2.9818730 | -2.5456100 | 1.7442030  |

**Table S-7.**Geometric coordinates and thermally corrected M06-2X energies for (2-<br/>((diisopropylcarbamoyl)oxy)-6-fluorophenyl)sodium(THF)2.



**G** = -901701.5728

 $G_{M06-2X} = -901632.5294$ 

| Atom | X          | Y          | Z          | Atom | X          | Y          | Ζ          |
|------|------------|------------|------------|------|------------|------------|------------|
| С    | 3.6939400  | -0.1773490 | 1.4520910  | Н    | -4.7223380 | 2.1548270  | 2.7704940  |
| Ν    | 3.1278980  | 0.3643230  | 0.1929430  | Н    | -4.9464170 | 2.3085230  | 1.0187220  |
| С    | 1.7904000  | 0.6468820  | 0.1210370  | Н    | -2.5709800 | 2.8314200  | 0.6883530  |
| 0    | 1.4580170  | 1.2511670  | -1.0308300 | Н    | -2.9130680 | 3.7071110  | 2.1984220  |
| С    | 0.1013640  | 1.4755090  | -1.4528440 | 0    | -1.4701840 | -2.9597700 | 0.4371970  |
| С    | -0.8697660 | 0.4935140  | -1.3199000 | С    | -2.2909510 | -3.1478190 | -0.7410760 |
| С    | -2.0742660 | 0.9033290  | -1.8582280 | Н    | -3.1831040 | -3.7317070 | -0.4699920 |
| С    | -2.3534980 | 2.1063760  | -2.5034530 | Н    | -2.5928750 | -2.1603550 | -1.0967380 |
| С    | -1.3082550 | 3.0292940  | -2.6084800 | С    | -1.3952150 | -3.9086290 | -1.7122370 |
| С    | -0.0572210 | 2.7197300  | -2.0720300 | С    | -0.6451560 | -4.8611300 | -0.7659240 |
| Н    | 0.7723790  | 3.4187690  | -2.1359160 | С    | -0.4958300 | -4.0240930 | 0.5184060  |
| Н    | -1.4684620 | 3.9828170  | -3.1049750 | Н    | -0.6781000 | -4.6096770 | 1.4272820  |
| Н    | -3.3417050 | 2.3150540  | -2.9043590 | Н    | 0.4967290  | -3.5637150 | 0.5972540  |
| F    | -3.1657180 | 0.0333140  | -1.7309500 | Н    | -1.2472500 | -5.7560640 | -0.5714570 |
| Na   | -0.9640300 | -0.7129520 | 0.7336420  | Н    | 0.3215370  | -5.1886720 | -1.1599100 |
| 0    | 1.0066070  | 0.3896810  | 1.0447960  | Н    | -0.7043710 | -3.2091630 | -2.1961870 |
| 0    | -2.4626520 | 0.4249420  | 2.0940070  | Н    | -1.9604580 | -4.4319980 | -2.4892870 |
| С    | -1.9795850 | 1.7384290  | 2.4588060  | С    | 4.0556270  | 0.6465990  | -0.9285050 |
| Н    | -2.0506090 | 1.8560650  | 3.5502170  | Н    | 3.4267810  | 1.0094570  | -1.7388050 |
| Н    | -0.9299370 | 1.8000050  | 2.1592900  | С    | 5.0543360  | 1.7598230  | -0.5776630 |

| С | -2.8947140 | 2.7186790  | 1.7287370  |
|---|------------|------------|------------|
| С | -4.2463600 | 1.9896920  | 1.7964060  |
| С | -3.8368850 | 0.5190300  | 1.6340070  |
| Н | -4.4494990 | -0.1663520 | 2.2301630  |
| Η | -3.8657600 | 0.2078620  | 0.5844080  |
| Н | 5.3614460  | -0.4002460 | -2.3043970 |
| Η | 5.4223600  | -1.0614280 | -0.6679580 |
| Η | 4.7663330  | -0.2593080 | 1.2530950  |
| С | 3.5318240  | 0.7826380  | 2.6404240  |
| Н | 2.4795320  | 0.9029820  | 2.9047950  |
| Η | 4.0689900  | 0.3884670  | 3.5111090  |
| Н | 3.9472120  | 1.7677280  | 2.4027050  |
| С | 3.1907050  | -1.5932880 | 1.7730340  |
| Η | 3.7500550  | -2.0028750 | 2.6225300  |
| Η | 2.1301180  | -1.5786420 | 2.0331620  |
| Η | 3.3349180  | -2.2616030 | 0.9170750  |
| Η | 5.6684380  | 2.0002620  | -1.4530680 |
| С | 4.7537170  | -0.6295220 | -1.4217780 |
| Н | 4.0168960  | -1.3888100 | -1.7038870 |

4.5265050 2.6687910 -0.2712960

Η

Η

5.7356290 1.4685160 0.2306930

**Table S-8.**Geometric coordinates and thermally corrected M06-2X energies for (2-<br/>((diisopropylcarbamoyl)oxy)-6-fluorophenyl)sodium(THF)3.



G = -1047429.616

 $G_{M06-2X} = -1047365.692$ 

| Atom | X          | Y          | Z          | Atom | X          | Y          | Z          |
|------|------------|------------|------------|------|------------|------------|------------|
| Na   | -0.8435660 | 0.3738920  | -0.0203080 | Н    | 5.3205420  | 1.6745040  | 1.7365030  |
| С    | -0.0912770 | -1.8696960 | 0.6372180  | 0    | 1.3307510  | 0.2811050  | -0.8945670 |
| С    | 1.1470050  | -2.3309380 | 0.2089050  | С    | 1.4629610  | -3.6408310 | -0.1661150 |
| 0    | 2.3010780  | -1.4746440 | 0.2084760  | С    | 0.4504690  | -4.6005520 | -0.1148840 |
| С    | 2.2719140  | -0.2174470 | -0.2685210 | С    | -0.8328370 | -4.2259700 | 0.2942070  |
| Ν    | 3.4311930  | 0.4649390  | -0.0097520 | С    | -1.0254200 | -2.8878870 | 0.6337150  |
| С    | 3.6198050  | 1.8191890  | -0.5846770 | F    | -2.3419430 | -2.5608790 | 0.9945820  |
| Н    | 4.6272770  | 2.1077360  | -0.2708780 | Н    | -1.6478950 | -4.9430760 | 0.3454820  |
| С    | 3.6127090  | 1.8204690  | -2.1210750 | Н    | 0.6592620  | -5.6313450 | -0.3894500 |
| Н    | 2.6269950  | 1.5514920  | -2.5055440 | Н    | 2.4705990  | -3.9007280 | -0.4797100 |
| Н    | 3.8730170  | 2.8191290  | -2.4916120 | 0    | -2.0159050 | -0.2520870 | -2.0516800 |
| Н    | 4.3480570  | 1.1104100  | -2.5147900 | С    | -1.1096210 | -0.8117390 | -3.0340430 |
| С    | 2.6527270  | 2.8589020  | 0.0034620  | Н    | -1.2014560 | -0.2363820 | -3.9676000 |
| Н    | 2.9404120  | 3.8614950  | -0.3364380 | Н    | -0.0949300 | -0.7080050 | -2.6442240 |
| Н    | 1.6247790  | 2.6662460  | -0.3118460 | С    | -1.5596760 | -2.2584300 | -3.2257640 |
| Н    | 2.6932410  | 2.8490390  | 1.0984430  | С    | -3.0823770 | -2.1377080 | -3.0567570 |
| С    | 4.5487560  | -0.1392100 | 0.7524330  | С    | -3.2012380 | -1.0808430 | -1.9517660 |
| Н    | 4.1746660  | -1.1001860 | 1.0997530  | Н    | -4.0835420 | -0.4396700 | -2.0631570 |
| С    | 5.7703270  | -0.4078290 | -0.1400330 | Н    | -3.2129690 | -1.5428350 | -0.9592810 |
| Н    | 5.4952880  | -1.0422120 | -0.9889810 | Н    | -3.5453230 | -1.7824470 | -3.9856530 |

| Н | 6.2103640  | 0.5176420  | -0.5302710 | Η | -3.5619070 | -3.0804 |
|---|------------|------------|------------|---|------------|---------|
| Н | 6.5477850  | -0.9243130 | 0.4347450  | 0 | -1.9031160 | 0.90922 |
| С | 4.9082930  | 0.6916540  | 1.9933330  | С | -3.2014540 | 0.32118 |
| Н | 4.0283690  | 0.8427860  | 2.6272000  |   |            |         |
| Н | 5.6666840  | 0.1639000  | 2.5827730  |   |            |         |
| Н | -3.9131190 | 1.1286110  | 2.6110670  |   |            |         |
| Н | -3.5228710 | -0.1946920 | 1.4772960  |   |            |         |
| С | -3.0283510 | -0.6361120 | 3.5685760  |   |            |         |
| С | -1.8834380 | 0.0210360  | 4.3537590  |   |            |         |
| С | -0.9992520 | 0.5543960  | 3.2252630  |   |            |         |
| Н | -0.4346800 | 1.4529140  | 3.4983080  |   |            |         |
| Н | -0.3131060 | -0.2150370 | 2.8506940  |   |            |         |
| Н | -2.2600500 | 0.8422860  | 4.9762900  |   |            |         |
| Н | -1.3486300 | -0.6807710 | 5.0010500  |   |            |         |
| Н | -2.7234690 | -1.6168190 | 3.1944900  |   |            |         |
| Н | -3.9473420 | -0.7494000 | 4.1524340  |   |            |         |
| 0 | -1.1905090 | 2.6920180  | -0.5264460 |   |            |         |
| С | -1.4335610 | 3.7408100  | 0.4342960  |   |            |         |
| Н | -1.7302360 | 3.2482450  | 1.3627090  |   |            |         |
| Н | -0.5021750 | 4.2963190  | 0.6068170  |   |            |         |
| С | -2.5336840 | 4.6500390  | -0.1671070 |   |            |         |
| С | -2.9678800 | 3.9005770  | -1.4435030 |   |            |         |
| С | -1.7077160 | 3.1119280  | -1.7964430 |   |            |         |
| Н | -1.8880310 | 2.2091520  | -2.3826340 |   |            |         |
| Н | -0.9711090 | 3.7466190  | -2.3142040 |   |            |         |
| Н | -3.7873280 | 3.2064110  | -1.2253670 |   |            |         |
| Н | -3.2919610 | 4.5715880  | -2.2450960 |   |            |         |
| Н | -2.1244070 | 5.6342080  | -0.4195040 |   |            |         |
| Н | -3.3640520 | 4.8081900  | 0.5273120  |   |            |         |
| Н | -1.1357960 | -2.8913530 | -2.4393140 |   |            |         |
| Н | -1.2640790 | -2.6634980 | -4.1987950 |   |            |         |
|   |            |            |            |   |            |         |

220 2.1479390

840 2.3869650 **Table S-9.**Geometric coordinates and thermally corrected M06-2X energies for  $(2-((diisopropylcarbamoyl)oxy)-6-fluorophenyl)sodium(THF)_4.$ 



**G** = -1193154.211

 $G_{M06-2X} = -1193095.198$ 

| Atom | Χ          | Y          | Z          | Atom | X          | Y          | Z          |
|------|------------|------------|------------|------|------------|------------|------------|
| Na   | 1.3415090  | -0.0741230 | -0.1271510 | Н    | -6.0814010 | -0.6270290 | 2.8082420  |
| С    | -0.2547780 | 1.6941250  | 0.5405250  | С    | -4.0373360 | -2.2244970 | 1.8110160  |
| С    | -1.5676610 | 2.1220910  | 0.7080940  | Н    | -2.9740000 | -2.4189000 | 1.6338460  |
| 0    | -2.6036670 | 1.1455910  | 0.8686560  | Н    | -4.2490760 | -2.4133500 | 2.8700470  |
| С    | -3.0977360 | 0.5400280  | -0.2413320 | Н    | -4.6195420 | -2.9470730 | 1.2270200  |
| Ν    | -4.0140300 | -0.4393210 | 0.0647880  | 0    | -2.7809760 | 0.8410890  | -1.3847230 |
| С    | -4.6829910 | -1.1598760 | -1.0430470 | С    | -1.9889410 | 3.4476320  | 0.8389170  |
| Н    | -5.3625860 | -1.8603990 | -0.5477100 | С    | -1.0266250 | 4.4596290  | 0.8004710  |
| С    | -5.5432700 | -0.2339180 | -1.9175390 | С    | 0.3205590  | 4.1223290  | 0.6383310  |
| Η    | -4.9167040 | 0.4945210  | -2.4353700 | С    | 0.6112360  | 2.7665870  | 0.5202060  |
| Η    | -6.0895680 | -0.8244970 | -2.6628500 | F    | 1.9938130  | 2.4635180  | 0.3669160  |
| Н    | -6.2764910 | 0.3057950  | -1.3082530 | Н    | 1.1012430  | 4.8779400  | 0.6112880  |
| С    | -3.6983390 | -1.9944950 | -1.8774010 | Н    | -1.3214300 | 5.5010260  | 0.8999850  |
| Н    | -4.2433800 | -2.5787470 | -2.6287930 | Н    | -3.0421730 | 3.6807340  | 0.9711900  |
| Η    | -2.9849220 | -1.3426460 | -2.3855040 | 0    | 3.7515280  | -0.4235610 | -0.1118220 |
| Н    | -3.1443310 | -2.6919340 | -1.2388120 | С    | 4.7448590  | 0.6114150  | 0.0113120  |
| С    | -4.3873540 | -0.7706320 | 1.4551760  | Н    | 5.2898570  | 0.7123840  | -0.9392300 |
| Н    | -3.7763720 | -0.1224430 | 2.0807550  | Н    | 4.2230170  | 1.5474930  | 0.2199400  |
| С    | -5.8604950 | -0.4451130 | 1.7498650  | С    | 5.6763280  | 0.1467520  | 1.1303720  |
| Н    | -6.0729450 | 0.6066720  | 1.5324890  | С    | 5.6918570  | -1.3736680 | 0.9055100  |

| Н | -6.5481630 | -1.0629480 | 1.1602910  | С | 4.2504280  | -1.6552740 | 0.4543180  |
|---|------------|------------|------------|---|------------|------------|------------|
| С | 0.1213630  | -0.5050300 | 4.2343800  | Н | 4.1887550  | -2.4433470 | -0.3047440 |
| С | 0.1702590  | -1.1197140 | 2.8356230  | Н | 3.5992660  | -1.9233070 | 1.2938190  |
| Н | 0.0524690  | -2.2085900 | 2.8303820  | Н | 6.4029580  | -1.6312200 | 0.1116190  |
| Н | -0.5793520 | -0.6633160 | 2.1777010  | Н | 5.9666680  | -1.9418720 | 1.7994180  |
| Н | 0.5834120  | -1.1753150 | 4.9701360  | Н | 5.2426260  | 0.3868180  | 2.1080920  |
| Н | -0.9013730 | -0.2910130 | 4.5597160  | Н | 6.6685940  | 0.6047050  | 1.0734060  |
| Н | 0.3730920  | 1.5403500  | 3.5569970  | 0 | 1.4852500  | -0.8132280 | 2.3174620  |
| Н | 1.3815480  | 1.1578450  | 4.9718270  | С | 2.0608440  | 0.2766880  | 3.0774100  |
| 0 | 0.8626760  | -2.3094190 | -0.8148320 | Н | 2.9378780  | -0.1086990 | 3.6171670  |
| С | 0.6862870  | -3.5047000 | -0.0391520 | Н | 2.3803280  | 1.0571310  | 2.3820080  |
| Н | 1.2983990  | -3.3960270 | 0.8600130  | С | 0.9698300  | 0.7599380  | 4.0389170  |
| Н | -0.3655080 | -3.5939700 | 0.2661950  | Н | 1.9012460  | 2.0800860  | -4.9109630 |
| С | 1.1108830  | -4.6902310 | -0.9445690 | Н | 2.2721750  | 3.4789650  | -3.8853410 |
| С | 1.5513050  | -4.0085130 | -2.2595970 | Н | 0.1939890  | 3.1589900  | -2.5948180 |
| С | 0.8047290  | -2.6756220 | -2.2010760 | Н | -0.3551860 | 2.8080050  | -4.2466840 |
| Н | 1.2585400  | -1.8597430 | -2.7657430 |   |            |            |            |
| Н | -0.2444810 | -2.7917480 | -2.5152470 |   |            |            |            |
| Н | 2.6320140  | -3.8271560 | -2.2600540 |   |            |            |            |
| Н | 1.3048440  | -4.5974240 | -3.1484070 |   |            |            |            |
| Н | 0.2638250  | -5.3616420 | -1.1188330 |   |            |            |            |
| Н | 1.9132590  | -5.2849780 | -0.4982060 |   |            |            |            |
| 0 | 1.3984220  | 0.6063870  | -2.4946090 |   |            |            |            |
| С | 2.4346710  | 1.5399030  | -2.8710380 |   |            |            |            |
| Н | 2.7512110  | 2.0835070  | -1.9735170 |   |            |            |            |
| Н | 3.2873050  | 0.9747910  | -3.2646000 |   |            |            |            |
| С | 1.8062390  | 2.4884320  | -3.8970220 |   |            |            |            |
| С | 0.3348990  | 2.4972030  | -3.4563490 |   |            |            |            |
| С | 0.1221920  | 1.0449440  | -3.0345420 |   |            |            |            |
| Н | -0.6429240 | 0.9263130  | -2.2655560 |   |            |            |            |
| Н | -0.1246590 | 0.4108530  | -3.8991840 |   |            |            |            |
|   |            |            |            |   |            |            |            |

**Table S-10.**Geometric coordinates and thermally corrected M06-2X transition state energies<br/>for the metalation of 3-fluorophenyl diisopropylcarbamate by NaDA(THF)2.



**G** = -1084939.711

 $G_{M06-2X} = -1084904.799$ 

| Atom | X          | Y          | Z          | Atom | Χ          | Y          | Z          |
|------|------------|------------|------------|------|------------|------------|------------|
| Na   | -0.9917930 | 0.4305190  | -0.0720100 | Н    | 4.7421790  | -1.2383840 | -0.2177940 |
| С    | 0.3452710  | -1.8858850 | 0.8563100  | 0    | 1.0457530  | 0.4814930  | -1.1593700 |
| С    | 1.5663100  | -1.8592540 | 0.1846970  | С    | 2.1185800  | -2.9372740 | -0.5123170 |
| 0    | 2.4049250  | -0.7039520 | 0.2304160  | С    | 1.4166300  | -4.1417430 | -0.5537080 |
| С    | 2.1380050  | 0.3329300  | -0.6017190 | С    | 0.1787160  | -4.2389250 | 0.0837960  |
| Ν    | 3.1865790  | 1.1858770  | -0.7452220 | С    | -0.2989390 | -3.1130130 | 0.7476580  |
| С    | 3.0053610  | 2.3961150  | -1.6011400 | F    | -1.5419300 | -3.2468110 | 1.3240060  |
| Н    | 3.9547910  | 2.9310730  | -1.5068390 | Н    | -0.4011250 | -5.1571710 | 0.0761880  |
| С    | 2.8281580  | 2.0357810  | -3.0834010 | Н    | 1.8313800  | -4.9983660 | -1.0778060 |
| Н    | 1.8911730  | 1.4975850  | -3.2416720 | Н    | 3.0806580  | -2.8342470 | -1.0052340 |
| Н    | 2.8112130  | 2.9498750  | -3.6882270 | Ν    | -0.7689570 | 0.2132600  | 2.3028130  |
| Н    | 3.6564800  | 1.4111870  | -3.4361870 | С    | -2.0501980 | -0.0660340 | 2.9600230  |
| С    | 1.9135120  | 3.3486300  | -1.0935920 | Н    | -2.3856000 | 0.8458070  | 3.4972580  |
| Н    | 1.9623510  | 4.2829040  | -1.6658010 | С    | -2.0168580 | -1.1968090 | 4.0160560  |
| Н    | 0.9151340  | 2.9235560  | -1.2124280 | Н    | -2.9985300 | -1.3272790 | 4.4934980  |
| Н    | 2.0669140  | 3.5898140  | -0.0368280 | Н    | -1.7326230 | -2.1466600 | 3.5512750  |
| С    | 4.5391880  | 0.9407380  | -0.1610820 | Н    | -1.2951060 | -0.9736310 | 4.8091250  |
| Н    | 5.1393840  | 1.7660610  | -0.5549500 | С    | -3.1370520 | -0.3779340 | 1.9184120  |
| С    | 4.5647800  | 1.0591230  | 1.3687470  | Н    | -2.8739280 | -1.2718510 | 1.3442380  |
| Н    | 4.1219300  | 2.0056140  | 1.6950440  | Н    | -4.1054540 | -0.5704460 | 2.3976090  |

| Н | 4.0180290  | 0.2422350  | 1.8433730  | Η | -3.2743330 | 0.4642120  | 1.2259030  |
|---|------------|------------|------------|---|------------|------------|------------|
| Н | 5.6031690  | 1.0285940  | 1.7193290  | С | 0.1824560  | 0.8554000  | 3.2221440  |
| С | 5.2013770  | -0.3526850 | -0.6599650 | Н | -3.1383930 | -3.8325660 | -2.6656220 |
| Н | 5.1396010  | -0.4294970 | -1.7511770 | Н | -0.7781720 | -3.1383540 | -2.7068690 |
| Н | 6.2615140  | -0.3445540 | -0.3814460 | Н | -1.2834340 | -2.7766740 | -4.3725180 |
| Н | 1.3531110  | 1.8645050  | 1.6824680  | Н | 1.5041450  | 2.6151850  | 3.2812690  |
| 0 | -2.0623800 | 2.4417170  | -0.6885300 | Η | 0.8984680  | -0.9741470 | 4.1973750  |
| С | -2.3919160 | 3.4212610  | 0.3238550  | Н | 1.9357350  | -0.4102610 | 2.8847100  |
| Н | -2.2663600 | 2.9294500  | 1.2924810  | Н | 1.9575660  | 0.4289040  | 4.4471710  |
| Н | -1.6828290 | 4.2556360  | 0.2614800  | С | 0.8024760  | 2.1184750  | 2.5959450  |
| С | -3.8443480 | 3.8740600  | 0.0480200  | Η | 0.0206340  | 2.8377150  | 2.3255140  |
| С | -4.3410560 | 2.8721340  | -1.0129780 | С | 1.3088650  | -0.0789170 | 3.7197910  |
| С | -3.0448270 | 2.5069170  | -1.7334930 |   |            |            |            |
| Н | -3.0558930 | 1.5303180  | -2.2224040 |   |            |            |            |
| Н | -2.7643310 | 3.2791350  | -2.4668020 |   |            |            |            |
| Н | -4.7636900 | 1.9808260  | -0.5356990 |   |            |            |            |
| Н | -5.0971890 | 3.2957030  | -1.6812330 |   |            |            |            |
| Н | -3.8593540 | 4.8934590  | -0.3528020 |   |            |            |            |
| Н | -4.4576030 | 3.8659330  | 0.9535250  |   |            |            |            |
| 0 | -2.0950860 | -0.8069530 | -1.8328320 |   |            |            |            |
| С | -1.2901540 | -1.0566340 | -3.0106850 |   |            |            |            |
| Н | -1.6661220 | -0.4323180 | -3.8348130 |   |            |            |            |
| Н | -0.2638600 | -0.7647240 | -2.7801650 |   |            |            |            |
| С | -1.4646140 | -2.5429290 | -3.3187410 |   |            |            |            |
| С | -2.9179620 | -2.7831130 | -2.8825030 |   |            |            |            |
| С | -3.0263980 | -1.9008250 | -1.6347690 |   |            |            |            |
| Н | -4.0263600 | -1.4799720 | -1.4853210 |   |            |            |            |
| Н | -2.7349910 | -2.4457630 | -0.7312760 |   |            |            |            |
| Н | -3.6124040 | -2.4435240 | -3.6605330 |   |            |            |            |
| Н | -0.1816680 | -0.9071600 | 1.6347830  |   |            |            |            |
| Н | -0.3603530 | 1.1979330  | 4.1221120  |   |            |            |            |

**Table S-11.** Geometric coordinates and thermally corrected M06-2X energies for IRC of the<br/>metalation of 3-fluorophenyl diisopropylcarbamate by NaDA(THF)2.



G = -1084952.837

 $G_{M06-2X} = -1084918.7$ 

| Atom | X          | Y          | Z          | Atom | Χ          | Y          | Z          |
|------|------------|------------|------------|------|------------|------------|------------|
| Na   | 0.7798150  | -0.1537630 | -0.1081950 | Н    | -5.2097420 | 1.0082350  | 0.1068350  |
| С    | -0.4810880 | 1.8675080  | 0.4647900  | 0    | -1.4547160 | -0.6651030 | -0.7639290 |
| С    | -1.8066930 | 2.0544060  | 0.0977340  | С    | -2.4035410 | 3.2685880  | -0.2603600 |
| 0    | -2.7582960 | 0.9802560  | 0.1518680  | С    | -1.6109650 | 4.4184700  | -0.2511840 |
| С    | -2.4450190 | -0.2984280 | -0.1233770 | С    | -0.2610540 | 4.3246780  | 0.1017360  |
| Ν    | -3.3883560 | -1.1698280 | 0.3524470  | С    | 0.2155760  | 3.0575120  | 0.4281280  |
| С    | -3.3052820 | -2.5979900 | -0.0534630 | F    | 1.5911390  | 3.0081750  | 0.7357400  |
| Н    | -4.2028980 | -3.0532140 | 0.3763550  | Н    | 0.3867350  | 5.1969930  | 0.1202800  |
| С    | -3.3944530 | -2.7954660 | -1.5744140 | Н    | -2.0422570 | 5.3806680  | -0.5148330 |
| Н    | -2.5147000 | -2.3881730 | -2.0763140 | Н    | -3.4554960 | 3.3139850  | -0.5302730 |
| Н    | -3.4659510 | -3.8653230 | -1.8040310 | Ν    | 2.4734900  | 0.2068360  | 1.9277040  |
| Н    | -4.2858850 | -2.3022870 | -1.9773350 | С    | 3.9195550  | -0.0421160 | 1.7377970  |
| С    | -2.0952370 | -3.3191210 | 0.5605850  | Н    | 4.1236360  | -1.0263830 | 2.1816580  |
| Н    | -2.1599410 | -4.3942690 | 0.3521080  | С    | 4.8149360  | 0.9993990  | 2.4332030  |
| Н    | -1.1607340 | -2.9360160 | 0.1446830  | Н    | 5.8755280  | 0.7373560  | 2.3357750  |
| Н    | -2.0775090 | -3.1862180 | 1.6482750  | Н    | 4.6704370  | 1.9888440  | 1.9807120  |
| С    | -4.5347460 | -0.7512100 | 1.2068400  | Н    | 4.5907690  | 1.0823000  | 3.5022200  |
| Н    | -4.9956510 | -1.6984430 | 1.5050650  | С    | 4.2447150  | -0.1210700 | 0.2426030  |
| С    | -4.1091830 | -0.0541080 | 2.5081560  | Н    | 4.0302890  | 0.8358650  | -0.2486610 |
| Н    | -3.3491940 | -0.6443930 | 3.0315890  | Н    | 5.3066590  | -0.3441110 | 0.0829010  |

| Н | -3.7078440 | 0.9436970  | 2.3260300  | Н | 3.6464780  | -0.8964590 | -0.2468980 |
|---|------------|------------|------------|---|------------|------------|------------|
| Н | -4.9802440 | 0.0382370  | 3.1677820  | С | 1.9770160  | -0.1162070 | 3.2891350  |
| С | -5.5987290 | 0.0410760  | 0.4315620  | Н | 2.8031810  | -0.0359930 | 4.0155260  |
| Н | -5.9317470 | -0.5154360 | -0.4517470 | С | 0.8894050  | 0.8747790  | 3.7124420  |
| Н | -6.4724690 | 0.2158130  | 1.0705270  | Н | 1.2963080  | 1.8891200  | 3.8006030  |
| Н | 0.0837820  | 0.9099030  | 2.9711530  | Н | 2.2777090  | 1.1897330  | 1.7263670  |
| Н | 0.4710400  | 0.5915480  | 4.6852740  | Н | 2.0671190  | 2.6455020  | -4.4536330 |
| С | 1.4673750  | -1.5622930 | 3.3349660  | Н | 1.7702170  | 3.8575220  | -3.1943960 |
| Н | 2.2324000  | -2.2659220 | 2.9863730  | Η | -0.3631070 | 2.8173160  | -2.5893050 |
| Н | 1.1915530  | -1.8466330 | 4.3579310  | Н | -0.3754000 | 2.6120490  | -4.3560650 |
| Н | 0.5832900  | -1.6777310 | 2.6959010  | Н | 3.2902570  | 1.5504840  | -2.7170670 |
| 0 | 1.4599470  | -2.3967610 | -0.7171660 | Н | 2.3181450  | 2.3210720  | -1.4345610 |
| С | 1.9672790  | -3.5366660 | 0.0077940  |   |            |            |            |
| Н | 2.9295970  | -3.2595950 | 0.4567280  |   |            |            |            |
| Н | 1.2682270  | -3.7829140 | 0.8133660  |   |            |            |            |
| С | 2.1243570  | -4.6659290 | -1.0193790 |   |            |            |            |
| С | 2.3293560  | -3.8898160 | -2.3297970 |   |            |            |            |
| С | 1.3956000  | -2.6973490 | -2.1288830 |   |            |            |            |
| Н | 1.6903840  | -1.7943340 | -2.6676300 |   |            |            |            |
| Н | 0.3600100  | -2.9501280 | -2.3949830 |   |            |            |            |
| Н | 3.3686230  | -3.5511260 | -2.4180970 |   |            |            |            |
| Н | 2.0829020  | -4.4732910 | -3.2221410 |   |            |            |            |
| Н | 1.2075960  | -5.2646490 | -1.0741980 |   |            |            |            |
| Н | 2.9523970  | -5.3382760 | -0.7756420 |   |            |            |            |
| 0 | 1.4334590  | 0.6919240  | -2.3481780 |   |            |            |            |
| С | 0.2931460  | 0.8579070  | -3.2222150 |   |            |            |            |
| Н | 0.4895180  | 0.3356790  | -4.1718410 |   |            |            |            |
| Н | -0.5667280 | 0.4027340  | -2.7271040 |   |            |            |            |
| С | 0.1622580  | 2.3635450  | -3.4352810 |   |            |            |            |
| С | 1.6342490  | 2.8047040  | -3.4585020 |   |            |            |            |
| С | 2.2804010  | 1.8656810  | -2.4287160 |   |            |            |            |

S-42

**Table S-12.** Geometric coordinates and thermally corrected M06-2X transition state energies<br/>for the Fries rearrangement of (2-((diisopropylcarbamoyl)oxy)-6-<br/>fluorophenyl)sodium(THF)2.



G = -901674.2413

 $G_{M06-2X} = -901611.0134$ 

| Atom | X          | Y          | Z          | Atom | X          | Y          | Z          |
|------|------------|------------|------------|------|------------|------------|------------|
| С    | -1.2049540 | -0.7066010 | -0.5101800 | С    | -0.8420810 | 4.7138580  | -0.9852720 |
| С    | -0.5130510 | -0.2292820 | 1.2046220  | С    | 0.3285090  | 3.9813370  | -0.3154450 |
| С    | 0.2599860  | -0.1586140 | 2.3407360  | Н    | 1.2120710  | 4.6150000  | -0.1796500 |
| С    | 0.0335320  | 0.7913550  | 3.3507960  | Н    | 0.0368220  | 3.5625720  | 0.6551970  |
| С    | -1.0230370 | 1.6912470  | 3.1923990  | Н    | -0.4745760 | 5.5317860  | -1.6164140 |
| С    | -1.8458970 | 1.6734270  | 2.0508920  | Н    | -1.5341600 | 5.1385810  | -0.2519730 |
| С    | -1.5462950 | 0.7001980  | 1.1007950  | Н    | -2.1127690 | 2.9555650  | -1.2497810 |
| 0    | -2.1619130 | 0.4324390  | -0.0838740 | Н    | -2.0611570 | 4.0031970  | -2.6854280 |
| Н    | -2.6743190 | 2.3665130  | 1.9379070  | 0    | 3.3707640  | 0.1235010  | -0.3816640 |
| Н    | -1.2146770 | 2.4219840  | 3.9744210  | С    | 4.0899380  | -0.0625280 | 0.8687870  |
| Н    | 0.6607980  | 0.8055000  | 4.2372520  | Н    | 4.5825760  | 0.8800670  | 1.1319340  |
| F    | 1.3166400  | -1.0242510 | 2.5151900  | Н    | 3.3518490  | -0.3106910 | 1.6361520  |
| 0    | -0.3876900 | -0.4129140 | -1.4279350 | С    | 5.0878420  | -1.2066980 | 0.6271510  |
| Na   | 1.1858360  | 0.7710860  | -0.4661690 | С    | 4.4811550  | -1.9430110 | -0.5788310 |
| 0    | 0.6780060  | 2.8828790  | -1.1936710 | С    | 3.8845050  | -0.7866240 | -1.3762360 |
| С    | -0.2457040 | 2.8332000  | -2.3138440 | Н    | 4.6479570  | -0.2758980 | -1.9807440 |
| Н    | 0.2321660  | 3.3035200  | -3.1850320 | Н    | 3.0533660  | -1.0744440 | -2.0271500 |
| Н    | -0.4513980 | 1.7802570  | -2.5219860 | Н    | 5.2184560  | -2.5143760 | -1.1506370 |
| С    | -1.4731410 | 3.6108630  | -1.8499910 | Н    | 3.6866390  | -2.6258270 | -0.2577970 |

| Ν | -1.8933080 | -1.9207730 | -0.5704860 |
|---|------------|------------|------------|
| С | -1.1727260 | -3.0711430 | -1.1729500 |
| Н | -1.7270860 | -3.9541930 | -0.8369670 |
| С | 0.2642040  | -3.2557470 | -0.6550960 |
| Н | 0.6438470  | -4.2324630 | -0.9796600 |
| Н | 0.9264240  | -2.4808380 | -1.0485580 |
| Н | 0.2986860  | -3.2166690 | 0.4384200  |
| С | -1.2268020 | -3.0536280 | -2.7088530 |
| Н | -0.6939980 | -2.1809220 | -3.0921210 |
| Н | -0.7705320 | -3.9638760 | -3.1202460 |
| Н | -2.2646250 | -3.0050030 | -3.0569900 |
| С | -3.1892060 | -2.2097810 | 0.0888470  |
| Н | -3.3613860 | -3.2659480 | -0.1442510 |
| С | -3.1894800 | -2.1155710 | 1.6250340  |
| Н | -2.3354830 | -2.6502740 | 2.0535330  |
| Н | -3.1566140 | -1.0835110 | 1.9796190  |
| Н | -4.1087680 | -2.5722100 | 2.0126670  |
| С | -4.3739220 | -1.4496530 | -0.5329060 |
| Н | -4.3757990 | -1.5713530 | -1.6214910 |
| Н | -5.3170380 | -1.8519600 | -0.1410610 |
| Н | -4.3278750 | -0.3832080 | -0.3084110 |
| Н | 6.0768590  | -0.8100010 | 0.3709210  |

Н 5.1993600

-1.8460410

1.5072980

**Table S-13.** Geometric coordinates and thermally corrected M06-2X transition state energies<br/>for the Fries rearrangement of (2-((diisopropylcarbamoyl)oxy)-6-<br/>fluorophenyl)sodium(THF)3.



G = -1047403.025

 $G_{M06-2X} = -1047340.918$ 

| Atom | Χ          | Y          | Z          | Atom | Χ          | Y          | Z          |
|------|------------|------------|------------|------|------------|------------|------------|
| Na   | -0.9255160 | -0.4291210 | 0.1832280  | Н    | 4.1313580  | -2.8025380 | 1.3549160  |
| С    | 1.1378210  | 1.2152750  | -0.6097510 | С    | 4.4419490  | 0.3220820  | 0.2119210  |
| С    | 0.5432930  | 1.8141530  | -1.6932330 | Н    | 5.2060090  | -0.3793250 | -0.1404700 |
| С    | 0.2911490  | 3.1948460  | -1.7539450 | С    | 4.4621920  | 1.4964430  | -0.7834240 |
| С    | 0.6460950  | 3.9846590  | -0.6569380 | Н    | 4.1351560  | 1.1750410  | -1.7780390 |
| С    | 1.2314030  | 3.4278910  | 0.4950930  | Н    | 3.8221250  | 2.3224890  | -0.4668720 |
| С    | 1.4564300  | 2.0540070  | 0.4569990  | Н    | 5.4864330  | 1.8811060  | -0.8680540 |
| 0    | 2.0457400  | 1.2529440  | 1.3850270  | С    | 4.8998930  | 0.7519780  | 1.6168010  |
| С    | 1.9262960  | -0.0464070 | 0.5751310  | Н    | 4.2467240  | 1.5169160  | 2.0378900  |
| 0    | 1.0776910  | -0.8819520 | 0.9921730  | Н    | 4.9021710  | -0.1073320 | 2.2962070  |
| Ν    | 3.2046000  | -0.4939280 | 0.2086840  | Н    | 5.9217110  | 1.1497600  | 1.5636920  |
| С    | 3.2986950  | -1.8366190 | -0.4130860 | Н    | 1.5129920  | 4.0430520  | 1.3444430  |
| Н    | 4.2693370  | -1.8439320 | -0.9211800 | Н    | 0.4655730  | 5.0563860  | -0.6973750 |
| С    | 2.2535780  | -2.1022570 | -1.5090550 | Н    | -0.1576100 | 3.6297550  | -2.6425070 |
| Н    | 2.5278090  | -3.0134160 | -2.0559200 | F    | 0.1346090  | 1.0562080  | -2.7731830 |
| Н    | 1.2594310  | -2.2430790 | -1.0797560 | 0    | -1.9516640 | -1.4972640 | 2.0393390  |
| Н    | 2.2094220  | -1.2715970 | -2.2210080 | С    | -3.1464680 | -1.0107190 | 2.6681770  |
| С    | 3.3223460  | -2.9628420 | 0.6333470  | Н    | -3.6298720 | -0.3369610 | 1.9571470  |
| Н    | 2.3760130  | -2.9854270 | 1.1781660  | Н    | -3.8198720 | -1.8565090 | 2.8729530  |
| Н    | 3.4833650  | -3.9364140 | 0.1509330  | С    | -2.6962010 | -0.3301910 | 3.9830500  |

| 0 | -2.6550820 | 1.1469930  | -0.0565390 |
|---|------------|------------|------------|
| С | -3.2358660 | 1.2580380  | -1.3740010 |
| Н | -2.4351920 | 1.3937920  | -2.1131770 |
| Н | -3.7539390 | 0.3187790  | -1.5837920 |
| С | -4.1472510 | 2.4804870  | -1.3011160 |
| С | -3.3366230 | 3.4167760  | -0.3900200 |
| С | -2.6663780 | 2.4440020  | 0.5927250  |
| Н | -1.6380570 | 2.7306230  | 0.8323290  |
| Н | -3.2365220 | 2.3416590  | 1.5247290  |
| Н | -2.5726690 | 3.9430770  | -0.9707160 |
| Н | -3.9531650 | 4.1631730  | 0.1198130  |
| Н | -5.1035900 | 2.2147630  | -0.8346980 |
| Н | -4.3540870 | 2.9110160  | -2.2856880 |
| 0 | -1.8099270 | -1.8583270 | -1.4468110 |
| С | -2.3451850 | -3.1371030 | -1.0774330 |
| Н | -2.3639300 | -3.1767590 | 0.0136830  |
| Н | -3.3739420 | -3.2325930 | -1.4607470 |
| С | -1.4073220 | -4.1442150 | -1.7475570 |
| С | -1.0170660 | -3.4306230 | -3.0675820 |
| С | -1.4228370 | -1.9549140 | -2.8316360 |
| Н | -0.6212370 | -1.2327080 | -2.9891650 |
| Н | -2.2793820 | -1.6741420 | -3.4611540 |
| Н | 0.0524610  | -3.5267130 | -3.2708990 |
| Н | -1.5559730 | -3.8471200 | -3.9243720 |
| Н | -1.8828410 | -5.1158370 | -1.9122550 |
| Н | -0.5237720 | -4.2996390 | -1.1204890 |
| С | -1.2248080 | -0.7937490 | 4.1587060  |
| С | -1.0641550 | -1.8931430 | 3.1032160  |
| Н | -0.0623130 | -1.9547860 | 2.6777900  |
| Н | -1.3800090 | -2.8748730 | 3.4898480  |
| Н | -0.5307310 | 0.0234140  | 3.9400820  |

-3.3292860 -0.6422590 4.8196170

Н

Η

Н

-2.7606840 0.7598590 3.9131700

# -1.0123660 -1.1550120 5.1694280

**Table S-14.** Geometric coordinates and thermally corrected M06-2X energies for the mixed dimer of (2-((diisopropylcarbamoyl)oxy)-6-fluorophenyl)sodium (A) and NaDA (B) solvated by THF. Short hand can be written as AB(THF)<sub>3</sub>.



G = -1332160.164

 $G_{M06-2X} = -1332101.49$ 

| Atom | Χ          | Y          | Z          | Atom | Χ          | Y          | Z          |
|------|------------|------------|------------|------|------------|------------|------------|
| Na   | 0.5273120  | -0.9542630 | 0.1111280  | С    | -1.6980680 | 1.4262710  | 1.9179350  |
| Na   | -2.2818820 | 0.2074380  | -0.6532100 | С    | -0.8156970 | 1.5151330  | 0.8594560  |
| Ν    | -1.2742530 | -1.7433790 | -1.4215260 | С    | 0.1689990  | 2.4639680  | 1.1200270  |
| С    | -0.8349650 | -1.7543650 | -2.8115010 | 0    | 1.1285830  | 2.8056250  | 0.1184600  |
| Н    | -0.4177800 | -2.7433920 | -3.1056610 | С    | 2.0744250  | 1.9128310  | -0.2464350 |
| С    | -1.9651740 | -1.4571380 | -3.8328100 | Ν    | 2.9197740  | 2.4167070  | -1.1940150 |
| Н    | -1.6333510 | -1.5918940 | -4.8729340 | С    | 4.1859590  | 1.6893770  | -1.4836910 |
| Н    | -2.8268180 | -2.1161370 | -3.6739770 | Н    | 4.7273530  | 2.3579500  | -2.1602590 |
| Н    | -2.3089470 | -0.4175380 | -3.7219520 | С    | 5.0655150  | 1.5172720  | -0.2360890 |
| С    | 0.2934400  | -0.7351930 | -3.0285450 | Н    | 4.5938140  | 0.8512400  | 0.4894910  |
| Н    | 1.1889930  | -1.0027900 | -2.4562520 | Н    | 6.0337620  | 1.0910420  | -0.5238030 |
| Н    | 0.5819110  | -0.6637100 | -4.0856780 | Н    | 5.2505570  | 2.4834550  | 0.2464250  |
| Н    | -0.0245310 | 0.2666980  | -2.7033210 | С    | 3.9651520  | 0.3678300  | -2.2316180 |
| С    | -2.0177360 | -2.9552720 | -1.0892820 | Н    | 4.9329300  | -0.0367410 | -2.5539020 |
| Н    | -2.6492300 | -3.2907760 | -1.9385110 | Н    | 3.4721870  | -0.3694310 | -1.5944980 |
| С    | -1.1159510 | -4.1663630 | -0.7425950 | Н    | 3.3500670  | 0.5251800  | -3.1239360 |
| Н    | -0.5274400 | -3.9574840 | 0.1620900  | С    | 2.6895210  | 3.7161130  | -1.8857350 |

| Η | -1.6988300 | -5.0832420 | -0.5691250 | Η | 3.4523910  | 3.7285840  | -2.6708900 |
|---|------------|------------|------------|---|------------|------------|------------|
| Н | -0.4138850 | -4.3719170 | -1.5588000 | С | 1.3349990  | 3.7920080  | -2.6063040 |
| С | -2.9893930 | -2.7023180 | 0.0752450  | Н | 1.1852640  | 2.9100760  | -3.2384040 |
| Н | -2.4591810 | -2.2845400 | 0.9412090  | Н | 0.5027710  | 3.8611810  | -1.9040810 |
| Н | -3.7732220 | -1.9877640 | -0.2127340 | Н | 1.3198540  | 4.6792180  | -3.2503440 |
| Н | -3.4876590 | -3.6241740 | 0.4032330  | С | 2.9500330  | 4.9323540  | -0.9837680 |
| F | -2.7611380 | 0.4994830  | 1.7780330  | Н | 3.9449210  | 4.8742770  | -0.5279720 |
| Н | 2.9040110  | 5.8529280  | -1.5776260 | Н | 1.2951370  | -0.4994610 | 5.5492110  |
| Н | 2.2056710  | 4.9992170  | -0.1874710 | Н | 0.5402730  | -2.7668500 | 4.9578130  |
| 0 | 2.1778560  | 0.7857520  | 0.2442470  | Н | -1.0051970 | -1.9704680 | 5.3196620  |
| С | 0.2788810  | 3.2369380  | 2.2806440  | 0 | 2.4425470  | -2.4401490 | -0.3149620 |
| С | -0.6769370 | 3.0733880  | 3.2860260  | С | 2.6251710  | -3.5097440 | -1.2594490 |
| С | -1.7055400 | 2.1436380  | 3.1101880  | Н | 1.9314110  | -4.3293930 | -1.0292850 |
| Н | -2.4771890 | 1.9914860  | 3.8598330  | Н | 2.3856740  | -3.1227520 | -2.2533930 |
| Н | -0.6256680 | 3.6692960  | 4.1932420  | С | 4.0782760  | -3.9493800 | -1.0887500 |
| Н | 1.0844580  | 3.9585340  | 2.3863580  | С | 4.2634900  | -3.7978190 | 0.4296580  |
| 0 | -4.4189290 | 0.9990740  | -1.1635140 | С | 3.4173940  | -2.5541730 | 0.7459830  |
| С | -5.3120820 | 0.4900210  | -2.1627030 | Н | 2.8852480  | -2.6259250 | 1.6990400  |
| Н | -5.6351000 | 1.3083670  | -2.8252620 | Н | 4.0176720  | -1.6371080 | 0.7478020  |
| Н | -4.7616450 | -0.2472880 | -2.7514790 | Н | 3.8642670  | -4.6780190 | 0.9474780  |
| С | -6.4856660 | -0.0796570 | -1.3630480 | Н | 5.3089080  | -3.6776610 | 0.7300780  |
| С | -6.5946540 | 0.8975850  | -0.1658180 | Н | 4.7478610  | -3.2694740 | -1.6288830 |
| С | -5.2317350 | 1.6352760  | -0.1566390 | Н | 4.2581520  | -4.9671280 | -1.4486630 |
| Н | -5.3506360 | 2.6977270  | -0.4090320 | С | -0.1268480 | -1.9460600 | 4.6671520  |
| Н | -4.6880280 | 1.5520860  | 0.7854270  | С | 0.6171660  | -0.6016590 | 4.6960750  |
| Н | -7.4166280 | 1.6073240  | -0.3022040 | С | 1.3652470  | -0.6021990 | 3.3552910  |
| Н | -6.7734260 | 0.3641910  | 0.7719640  | Н | 1.4156230  | 0.3827520  | 2.8862870  |
| Н | -6.2398340 | -1.0884880 | -1.0157690 | Н | 2.3846840  | -0.9962440 | 3.4582870  |
| Н | -7.4063890 | -0.1385450 | -1.9512800 | Н | -0.0977850 | 0.2267120  | 4.7260200  |
| 0 | 0.6340170  | -1.4980010 | 2.4788290  | Н | -1.3921780 | -1.4730510 | 2.9563850  |
| С | -0.4905120 | -2.0554320 | 3.1876590  | Н | -0.6322480 | -3.0815110 | 2.8356100  |

**Table S-15.** Geometric coordinates and thermally corrected M06-2X transition state energies for Fries rearrangement of the mixed dimer of (2-((diisopropylcarbamoyl)oxy)-6-fluorophenyl)sodium (A) and NaDA (B) solvated by 3THF. Short hand can be written as [AB(THF)<sub>3</sub>]<sup>‡</sup>.



G = -1616908.716

 $G_{M06-2X} = -1616853.939$ 

| Atom | Χ          | Y          | Z          | Atom | Χ          | Y          | Z          |
|------|------------|------------|------------|------|------------|------------|------------|
| Na   | -1.2195340 | -1.1815950 | 0.0902800  | С    | 0.6507770  | -3.7304380 | 0.5983710  |
| С    | -2.1129410 | 1.3510210  | 0.3397770  | Н    | 0.0050990  | -4.5132110 | 1.0510850  |
| С    | -1.3218650 | 1.9386620  | 1.3220160  | С    | 0.2726630  | -3.6868120 | -0.8928620 |
| 0    | -0.0854610 | 2.1389680  | 0.7567980  | Н    | 0.5396540  | -4.6172910 | -1.4111110 |
| С    | -0.3664770 | 1.5534340  | -0.5856940 | Н    | -0.8065780 | -3.5347040 | -1.0240120 |
| 0    | 0.1751300  | 0.4271330  | -0.7995360 | Н    | 0.7994450  | -2.8640710 | -1.3999880 |
| Na   | 1.7890970  | -0.6140910 | 0.4696310  | С    | 2.1055460  | -4.2482180 | 0.7348350  |
| Ν    | 0.4358600  | -2.4308440 | 1.2278170  | Н    | 2.4235420  | -4.2464690 | 1.7839910  |
| С    | 0.2650520  | -2.5679980 | 2.6714800  | Н    | 2.2228310  | -5.2732800 | 0.3524430  |
| Н    | 0.9142510  | -3.3693910 | 3.0806080  | Н    | 2.7869770  | -3.5919160 | 0.1763690  |
| С    | 0.6804410  | -1.2787870 | 3.3965380  | 0    | 3.2512480  | 1.0798260  | 1.3175340  |
| Н    | 1.7540840  | -1.0899790 | 3.2609850  | С    | 3.5634250  | 2.0680390  | 0.3045040  |
| Н    | 0.1251560  | -0.4152690 | 3.0015230  | Н    | 4.4290020  | 1.7160730  | -0.2658140 |
| Н    | 0.4836170  | -1.3298470 | 4.4756300  | Н    | 2.7050760  | 2.1513590  | -0.3715570 |
| С    | -1.1799960 | -2.9421150 | 3.0883680  | С    | 3.8198690  | 3.3811000  | 1.0524190  |
| Н    | -1.8677120 | -2.1115620 | 2.8685770  | С    | 2.9461290  | 3.2125070  | 2.3041860  |
| Н    | -1.5265890 | -3.8229440 | 2.5347400  | С    | 3.1207300  | 1.7247490  | 2.6036860  |
| Н    | -1.2629550 | -3.1670530 | 4.1619560  | Н    | 4.0304280  | 1.5349920  | 3.1916770  |

| Η | 5.6660910  | -0.9277610 | -2.8851510 | Η | 2.2688470  | 1.2783100  | 3.1224540  |
|---|------------|------------|------------|---|------------|------------|------------|
| Н | 5.3293050  | -2.5957450 | -3.3881550 | Η | 3.2547200  | 3.8491600  | 3.1392430  |
| Н | 5.5080350  | -3.4025940 | -1.0773490 | Η | 1.8992660  | 3.4209610  | 2.0641730  |
| Н | 6.8184300  | -2.2093910 | -1.1263940 | Η | 3.5525940  | 4.2567120  | 0.4529100  |
| N | -0.3369540 | 2.5159390  | -1.5947830 | Η | 4.8774680  | 3.4700770  | 1.3297490  |
| С | -0.8145900 | 3.9209110  | -1.4734130 | 0 | 3.6885510  | -1.1786970 | -0.8857100 |
| Н | -0.3817720 | 4.3988800  | -2.3606070 | С | 4.9472900  | -1.4773510 | -0.2400710 |
| С | -0.2594240 | 4.7199120  | -0.2857990 | Н | 5.4594900  | -0.5314820 | -0.0239680 |
| Н | -0.4195240 | 5.7858770  | -0.4906530 | Η | 4.7397450  | -1.9847710 | 0.7071850  |
| Н | -0.7559240 | 4.4819600  | 0.6559680  | С | 5.7370990  | -2.3414730 | -1.2288670 |
| Н | 0.8141280  | 4.5507140  | -0.1639290 | С | 5.1882880  | -1.8677130 | -2.5836650 |
| С | -2.3426910 | 4.0780240  | -1.5829330 | С | 3.7132830  | -1.6364420 | -2.2534470 |
| Н | -2.8517760 | 3.6727990  | -0.7059040 | Η | 3.2344300  | -0.8745400 | -2.8752940 |
| Н | -2.5980700 | 5.1414610  | -1.6679140 | Η | 3.1356300  | -2.5673180 | -2.3309950 |
| Н | -2.7342070 | 3.5683290  | -2.4700010 | Н | -4.1428990 | -1.8952450 | 1.1002530  |
| С | -0.3064380 | 2.0171340  | -3.0000390 | С | -5.5198010 | -2.4800820 | -0.5149300 |
| Н | -0.6010930 | 2.8829200  | -3.6019870 | С | -5.0805550 | -2.7340210 | -1.9658350 |
| С | 1.1155250  | 1.6332370  | -3.4347750 | С | -3.7193180 | -2.0403490 | -1.9996190 |
| Н | 1.8074130  | 2.4672270  | -3.2703000 | Η | -3.0268370 | -2.4608560 | -2.7354010 |
| Н | 1.4643950  | 0.7718810  | -2.8613250 | Η | -3.8242040 | -0.9635330 | -2.1749170 |
| Н | 1.1319000  | 1.3805700  | -4.5028620 | Н | -4.9679300 | -3.8084160 | -2.1543190 |
| С | -1.3230510 | 0.9096900  | -3.3251450 | Η | -5.7767950 | -2.3266870 | -2.7052410 |
| Н | -2.3176330 | 1.1634300  | -2.9454450 | Н | -5.9276890 | -1.4696260 | -0.4158160 |
| Н | -1.3903200 | 0.7889210  | -4.4133040 | Η | -6.2673770 | -3.1942170 | -0.1567740 |
| Н | -1.0213600 | -0.0457670 | -2.8917190 | Η | -4.9723460 | 1.2191700  | 2.2052600  |
| С | -1.7340720 | 2.2834520  | 2.6043780  | Η | -3.4617830 | 2.2508750  | 3.8963660  |
| С | -3.0767170 | 2.0045770  | 2.9102220  | Η | -1.0713340 | 2.7474850  | 3.3285850  |
| С | -3.9316710 | 1.4237250  | 1.9709130  | С | -4.1978180 | -2.5868700 | 0.2541170  |
| С | -3.4225290 | 1.1154400  | 0.7002460  | Н | -4.0106410 | -3.6042030 | 0.6177770  |
| F | -4.2968680 | 0.5530780  | -0.2011200 |   |            |            |            |
| 0 | -3.1517680 | -2.2501670 | -0.6897410 |   |            |            |            |

**Table S-16.** Geometric coordinates and thermally corrected M06-2X energies for the mixed trimer of (2-((diisopropylcarbamoyl)oxy)-6-fluorophenyl)sodium (A) and NaDA (B) solvated by 4THF. Short hand can be written as AB<sub>2</sub>(THF)<sub>4</sub>.



### G = -1762660.62

 $G_{M06-2X} = -1762611.102$ 

| Atom | X          | Y          | Z          | Atom | X          | Y          | Z          |
|------|------------|------------|------------|------|------------|------------|------------|
| Na   | 2.6408840  | 0.1663530  | -0.0566700 | Н    | 4.0458080  | 2.1962410  | 3.0212170  |
| Na   | -0.9042850 | -0.7846730 | -1.5424050 | С    | 2.1556620  | 3.8154170  | 0.5979430  |
| 0    | -2.2289210 | -2.2085100 | -0.2821290 | Н    | 1.0996810  | 4.0715320  | 0.4379480  |
| С    | -2.8436060 | -2.0038180 | 0.7696070  | Н    | 2.7068920  | 4.7604640  | 0.6883520  |
| 0    | -3.6093310 | -0.9131010 | 0.9870630  | Н    | 2.5168880  | 3.3032820  | -0.3034350 |
| С    | -3.6407030 | 0.1506600  | 0.0358160  | С    | 1.4695110  | 0.9497040  | 2.9248070  |
| С    | -4.9225140 | 0.4211980  | -0.4543850 | Н    | 2.3831670  | 0.9667160  | 3.5604180  |
| С    | -5.0957470 | 1.5207210  | -1.2990500 | С    | 0.3457510  | 1.5504170  | 3.8135050  |
| С    | -3.9947180 | 2.3154000  | -1.6313010 | Н    | -0.6422780 | 1.3646530  | 3.3654620  |
| С    | -2.7674730 | 1.9415650  | -1.0883930 | Н    | 0.3364190  | 1.1050130  | 4.8190190  |
| F    | -1.6856620 | 2.7756520  | -1.4259150 | Н    | 0.4637540  | 2.6333800  | 3.9313800  |
| Na   | -0.4658970 | 2.0366430  | 0.7206080  | С    | 1.1486150  | -0.5340320 | 2.6813560  |
| С    | -2.4883060 | 0.8838360  | -0.2430610 | Н    | 0.9008380  | -1.0528840 | 3.6176270  |
| Ν    | 1.6757000  | 1.6387980  | 1.6539650  | Н    | 0.2871720  | -0.6334090 | 2.0051850  |
| С    | 2.3440770  | 2.9274210  | 1.8384310  | Н    | 1.9972320  | -1.0556030 | 2.2236340  |
| Н    | 1.9092300  | 3.4995610  | 2.6863170  | 0    | -1.6650570 | 3.9267270  | 1.5875420  |
| С    | 3.8609890  | 2.8221120  | 2.1406330  | С    | -1.9495690 | 5.1114170  | 0.8133380  |
| Н    | 4.3874610  | 2.3743010  | 1.2876860  | Н    | -1.3117080 | 5.9328090  | 1.1684820  |

| Η | 4.3046890  | 3.8077680  | 2.3438880  | Н | -1.7082030 | 4.8958350  | -0.2298750 |
|---|------------|------------|------------|---|------------|------------|------------|
| С | -2.0721210 | -4.1169980 | 1.6988670  | С | -3.4307870 | 5.4116550  | 1.0477170  |
| Н | -1.6170390 | -4.0571850 | 0.7105140  | С | -3.6214410 | 4.9349870  | 2.4957030  |
| С | -0.9408820 | -4.1940570 | 2.7335810  | С | -2.7234770 | 3.6940420  | 2.5444010  |
| Н | -1.3183210 | -4.2698550 | 3.7604370  | Η | -2.2705140 | 3.5228840  | 3.5257420  |
| Н | -0.3299230 | -5.0839370 | 2.5438240  | Н | -3.2675970 | 2.7897410  | 2.2430940  |
| Н | -0.2934600 | -3.3141010 | 2.6681960  | Н | -3.2646550 | 5.6968530  | 3.1991700  |
| С | -2.9753380 | -5.3582430 | 1.7293900  | Н | -4.6620670 | 4.7047740  | 2.7434140  |
| Н | -2.3764250 | -6.2565540 | 1.5415180  | Η | -4.0487360 | 4.8159540  | 0.3663460  |
| Н | -3.4683790 | -5.4912390 | 2.6997340  | Н | -3.6740760 | 6.4687020  | 0.9019970  |
| Н | -3.7486070 | -5.2971110 | 0.9563450  | Н | -4.0865950 | 3.1812550  | -2.2812560 |
| С | -3.6040870 | -2.6257660 | 3.0870480  | Н | -6.0813210 | 1.7607890  | -1.6887290 |
| Н | -3.3708690 | -3.5028490 | 3.6972990  | Н | -5.7643590 | -0.2035390 | -0.1683330 |
| С | -3.1034140 | -1.4005730 | 3.8666780  | Ν | -2.8539860 | -2.8640580 | 1.8271270  |
| Н | 1.3624080  | -2.6942110 | -3.0328130 | Н | -2.0185260 | -1.4438270 | 4.0053350  |
| С | 1.3682690  | -3.0678660 | -0.9423060 | Н | -3.3472370 | -0.4710910 | 3.3484220  |
| Н | 1.6760060  | -4.1179930 | -1.0367830 | Η | -3.5741060 | -1.3793590 | 4.8567980  |
| Н | 1.7840480  | -2.6745850 | -0.0051440 | С | -5.1280450 | -2.6183420 | 2.8908730  |
| Н | 0.2758270  | -3.0503630 | -0.8457900 | Η | -5.4570730 | -3.5138940 | 2.3531140  |
| С | 3.3636910  | -2.4591640 | -2.3427600 | Н | -5.6235050 | -2.6088380 | 3.8688630  |
| Н | 3.9261010  | -2.1026740 | -1.4689630 | Н | -5.4543980 | -1.7382800 | 2.3332660  |
| Н | 3.5969600  | -3.5233300 | -2.4917630 | Ν | 1.4453830  | -0.8389860 | -1.9607460 |
| Н | 3.7364000  | -1.9165470 | -3.2191860 | С | 1.7683750  | 0.0042570  | -3.1116440 |
| 0 | -2.2509000 | -1.1661170 | -3.4879950 | Н | 2.8685140  | 0.1412030  | -3.2364810 |
| С | -2.8026560 | -0.1926710 | -4.4043080 | С | 1.2008270  | 1.4144340  | -2.8843300 |
| Н | -3.0382660 | 0.7082840  | -3.8289600 | Н | 1.5380120  | 1.8324610  | -1.9270490 |
| Н | -2.0459380 | 0.0557430  | -5.1568430 | Н | 1.5081270  | 2.1077970  | -3.6790050 |
| С | -4.0620040 | -0.8316190 | -5.0155030 | Н | 0.1027710  | 1.4108160  | -2.8606900 |
| С | -4.4222390 | -1.9184110 | -3.9894440 | С | 1.2692610  | -0.5090890 | -4.4859340 |
| С | -3.0388980 | -2.3703690 | -3.5271650 | Н | 0.1881960  | -0.6981010 | -4.4572960 |
| Н | -3.0185670 | -2.8037520 | -2.5252460 | Н | 1.4742590  | 0.2245700  | -5.2777710 |

| Н | -2.5934710 | -3.0806760 | -4.2405860 | Η | 1.7584 |
|---|------------|------------|------------|---|--------|
| Η | -4.9731300 | -1.4842740 | -3.1474090 | С | 1.8428 |
| Η | -5.0167480 | -2.7337200 | -4.4140000 |   |        |
| Η | -3.8325390 | -1.2871660 | -5.9859790 |   |        |
| Η | -4.8617210 | -0.1008310 | -5.1689880 |   |        |
| 0 | 4.7323730  | 1.0763130  | -1.0307690 |   |        |
| С | 4.8869430  | 2.1645320  | -1.9540110 |   |        |
| Η | 3.8913320  | 2.4404360  | -2.3045080 |   |        |
| Η | 5.3298910  | 3.0235630  | -1.4291220 |   |        |
| С | 5.8220890  | 1.6490940  | -3.0733380 |   |        |
| С | 6.4276310  | 0.3476500  | -2.4822750 |   |        |
| С | 5.9914130  | 0.3952740  | -1.0129380 |   |        |
| Н | 5.8262430  | -0.5791910 | -0.5510130 |   |        |
| Н | 6.7112740  | 0.9670970  | -0.4043190 |   |        |
| Н | 5.9954490  | -0.5311170 | -2.9695230 |   |        |
| Н | 7.5155940  | 0.2961160  | -2.5902350 |   |        |
| Н | 6.5913210  | 2.3901560  | -3.3124290 |   |        |
| Н | 5.2646900  | 1.4409850  | -3.9906050 |   |        |
| 0 | 4.3237040  | -1.4910090 | 1.2859670  |   |        |
| С | 4.3417050  | -2.9230140 | 1.4443790  |   |        |
| Н | 3.3895150  | -3.2554220 | 1.8822270  |   |        |
| Н | 4.4407910  | -3.3707870 | 0.4527870  |   |        |
| С | 5.5097590  | -3.2151190 | 2.3843170  |   |        |
| С | 5.4465590  | -2.0076320 | 3.3324320  |   |        |
| С | 5.0268420  | -0.8711380 | 2.3899120  |   |        |
| Н | 4.3639380  | -0.1409940 | 2.8604020  |   |        |
| Н | 5.8957440  | -0.3389400 | 1.9830020  |   |        |
| Н | 4.6824830  | -2.1701770 | 4.1017060  |   |        |
| Н | 6.3943520  | -1.8000860 | 3.8382290  |   |        |
| Н | 6.4552800  | -3.2208130 | 1.8284670  |   |        |
| Н | 5.4087550  | -4.1769130 | 2.8965630  |   |        |

7584460 -1.4454490 -4.7764810

428910 -2.2324010 -2.1419740

**Table S-17.** Geometric coordinates and thermally corrected M06-2X transition state energies<br/>for the Fries rearrangement of the mixed trimer of (2-<br/>((diisopropylcarbamoyl)oxy)-6-fluorophenyl)sodium (A) and NaDA (B) solvated<br/>by 4THF. Short hand can be written as  $[AB_2(THF)_4]^{\ddagger}$ .



G = -1762632.3

 $G_{M06-2X} = -1762585.133$ 

| Atom | X          | Y          | Z          | Atom | X          | Y          | Z          |
|------|------------|------------|------------|------|------------|------------|------------|
| Na   | -2.5145160 | 0.0283270  | -0.0213370 | Н    | -3.9980690 | -2.3076530 | 1.2890120  |
| Na   | 1.0189560  | 1.7736990  | -0.3127390 | Н    | -3.9680020 | -3.7673240 | 0.2902620  |
| С    | 2.7693470  | 0.9706990  | 1.6262820  | С    | -1.3726960 | -2.4645050 | 2.2081880  |
| С    | 2.3872390  | -0.2163750 | 2.2384280  | Н    | -1.7351190 | -1.4396220 | 2.3627700  |
| 0    | 2.4681030  | -1.2065390 | 1.2738650  | Н    | -1.6289170 | -3.0511620 | 3.1002180  |
| С    | 2.9836670  | -0.3789240 | 0.1484280  | Н    | -0.2770600 | -2.4127410 | 2.1541520  |
| 0    | 2.1455070  | -0.1765920 | -0.7826040 | 0    | 1.8615610  | -4.0041310 | -0.6530820 |
| Na   | 0.7040830  | -1.9507560 | -0.3015550 | С    | 1.7027480  | -5.0687890 | 0.3121510  |
| Ν    | -1.6141220 | -2.2740600 | -0.2245430 | Н    | 2.4312690  | -4.9214280 | 1.1202410  |
| С    | -2.0868560 | -2.8308070 | -1.4904930 | Н    | 0.6930930  | -5.0034760 | 0.7285480  |
| Н    | -3.1950720 | -2.7670280 | -1.5924800 | С    | 1.9665980  | -6.3666630 | -0.4539940 |
| С    | -1.7408450 | -4.3196030 | -1.7448720 | С    | 2.9900780  | -5.9114690 | -1.5062790 |
| Н    | -2.0808520 | -4.6390620 | -2.7393960 | С    | 2.4844910  | -4.5084470 | -1.8533700 |
| Н    | -0.6540000 | -4.4712910 | -1.6876870 | Н    | 3.2785360  | -3.8148580 | -2.1447010 |
| Н    | -2.2084670 | -4.9852720 | -1.0111760 | Н    | 1.7330210  | -4.5403680 | -2.6540050 |
| С    | -1.5212240 | -2.0069960 | -2.6590030 | Н    | 3.9933550  | -5.8603000 | -1.0666790 |
| Н    | -1.7134990 | -0.9365810 | -2.5277300 | Н    | 3.0351030  | -6.5674100 | -2.3808660 |

| Η | -0.4308440 | -2.1350210 | -2.7450910 | Η | 1.0485760 | -6.7162030 | -0.9403380 |
|---|------------|------------|------------|---|-----------|------------|------------|
| Н | -1.9580860 | -2.3154870 | -3.6181020 | Η | 2.3363570 | -7.1668420 | 0.1942290  |
| С | -1.9783320 | -3.0798090 | 0.9364680  | Ν | 4.3033580 | -0.6924240 | -0.1572450 |
| Н | -1.5621020 | -4.1124360 | 0.8797420  | С | 5.3011220 | -1.2535430 | 0.7955440  |
| С | -3.5003360 | -3.2760810 | 1.1512790  | Н | 6.1211950 | -1.5490770 | 0.1316200  |
| Н | -3.7041810 | -3.8988180 | 2.0339100  | С | 4.8789280 | -2.5524820 | 1.5019890  |
| С | 4.4250010  | -0.6980410 | -2.6697680 | Н | 5.7857240 | -3.0708110 | 1.8388880  |
| Н | 4.6151600  | -1.7775560 | -2.6485610 | Η | 4.2485540 | -2.3734030 | 2.3739550  |
| Н | 3.3566360  | -0.5357730 | -2.8219190 | Н | 4.3352720 | -3.2079840 | 0.8154250  |
| Н | 4.9760940  | -0.2747360 | -3.5193810 | С | 5.8856450 | -0.2342960 | 1.7901890  |
| С | 4.7453150  | 1.4841030  | -1.3951980 | Η | 5.1459270 | 0.0854940  | 2.5266850  |
| Н | 5.0935970  | 1.9362980  | -0.4615410 | Н | 6.7271340 | -0.6907210 | 2.3259100  |
| Н | 5.3504510  | 1.8857530  | -2.2179560 | Н | 6.2592690 | 0.6569190  | 1.2746100  |
| Н | 3.7100560  | 1.7906720  | -1.5525710 | С | 4.8948940 | -0.0438120 | -1.3619020 |
| Н | 2.5161780  | 2.8056090  | -3.5031720 | Η | 5.9677350 | -0.2441450 | -1.2769500 |
| С | -0.5532570 | 4.1446210  | 1.3531280  | С | 1.9782980 | 3.6719190  | -3.1004970 |
| Н | -0.7797090 | 4.6804980  | 2.2853610  | 0 | 1.9359630 | 3.5287140  | -1.6631950 |
| Н | 0.5057810  | 3.8519960  | 1.3998790  | С | 2.4889150 | 4.7082980  | -1.0441800 |
| Н | -0.6683310 | 4.8598670  | 0.5303970  | Η | 1.6822250 | 5.4247500  | -0.8323230 |
| С | -1.2457280 | 1.9629660  | 2.3679640  | Η | 2.9436650 | 4.3982230  | -0.1025230 |
| Н | -1.3559220 | 2.4873790  | 3.3262410  | С | 3.4655820 | 5.2649800  | -2.0761340 |
| Н | -1.9638240 | 1.1353070  | 2.3555190  | С | 2.7101090 | 4.9960700  | -3.3886880 |
| Н | -0.2367310 | 1.5325600  | 2.3435040  | Η | 1.9886550 | 5.7985300  | -3.5803670 |
| С | -1.6362290 | 2.9866390  | -1.2509360 | Η | 3.3684660 | 4.9239590  | -4.2595690 |
| Н | -0.9568290 | 3.8644140  | -1.3492260 | Η | 4.4061900 | 4.7032040  | -2.0466320 |
| С | -3.0689820 | 3.5755980  | -1.2964800 | Η | 3.6907790 | 6.3241620  | -1.9181750 |
| Н | -3.2357720 | 4.1489830  | -2.2192230 | Η | 0.9560940 | 3.6615250  | -3.4916090 |
| Н | -3.8141540 | 2.7693140  | -1.2515640 | С | 2.0514970 | -0.3838030 | 3.5754530  |
| Н | -4.6910540 | 1.3091140  | -2.9846370 | С | 2.1112520 | 0.7756400  | 4.3667080  |
| С | -4.8092200 | 0.2264140  | -2.8821400 | С | 2.4862050 | 2.0062370  | 3.8232460  |
| 0 | -4.6207580 | -0.0955230 | -1.4863760 | С | 2.8053180 | 2.0674890  | 2.4605860  |

| С | -5.6762790 | -0.9798720 | -1.0740960 |
|---|------------|------------|------------|
| С | -6.8814700 | -0.5472860 | -1.9049050 |
| С | -6.2251790 | -0.2579880 | -3.2667160 |
| Н | -6.1678820 | -1.1764840 | -3.8611210 |
| Н | -6.7712770 | 0.4846400  | -3.8559170 |
| Н | -7.3230200 | 0.3642000  | -1.4844130 |
| Н | -7.6612370 | -1.3135190 | -1.9580660 |
| Н | -5.7905900 | -0.8624840 | 0.0045730  |
| Н | -5.3986690 | -2.0221840 | -1.2899690 |
| Н | -4.0316120 | -0.2656260 | -3.4777540 |
| Н | -3.2589670 | 4.2513500  | -0.4554510 |
| С | -1.4174860 | 2.1540920  | -2.5240290 |
| Н | -1.5675240 | 2.7553980  | -3.4308830 |
| Н | -0.4055530 | 1.7307640  | -2.5666160 |
| Н | -2.1195690 | 1.3120720  | -2.5662600 |
| 0 | -4.3915090 | 0.3437020  | 1.7727850  |
| С | -4.5360390 | -0.0048420 | 3.1551900  |
| Н | -4.2345320 | -1.0477480 | 3.2683700  |
| Н | -3.8744540 | 0.6259920  | 3.7682250  |
| С | -6.0129570 | 0.2672770  | 3.4696170  |
| С | -6.3630120 | 1.4530260  | 2.5308400  |
| С | -5.1324160 | 1.5645820  | 1.6000130  |
| Н | -5.3729640 | 1.6433770  | 0.5384130  |
| Н | -4.4959850 | 2.4143690  | 1.8797920  |
| Н | -7.2790400 | 1.2525300  | 1.9669380  |
| Н | -6.5178120 | 2.3836810  | 3.0853010  |
| Н | -6.1748720 | 0.4982090  | 4.5267940  |
| Н | -6.6176310 | -0.6113750 | 3.2226820  |
| Н | 1.8595980  | 0.7158500  | 5.4223020  |
| Н | 1.7675510  | -1.3449330 | 3.9931630  |
| N | -1.3272320 | 2.1761340  | -0.0748220 |

| 3.1406080  | 3.3038730 | 1.9551130 |
|------------|-----------|-----------|
| 2.5221780  | 2.9050980 | 4.4314360 |
| -1.4778260 | 2.9097530 | 1.1814040 |
| -2.5091670 | 3.3076200 | 1.3080960 |

F

Н

С

Н

**Table S-18.**Geometric coordinates and thermally corrected M06-2X energies for THF<br/>disolvated ((diisopropylcarbamoyl)oxy)-6-fluorophenyl)sodium dimer.



# **G** = -1511953.511

 $G_{M06-2X} = -1511823.242$ 

| Atom | X          | Y          | Z          | Atom | X          | Y          | Z          |
|------|------------|------------|------------|------|------------|------------|------------|
| Na   | -0.9069720 | -1.3265440 | 1.0700400  | Н    | -7.5948480 | 0.3193010  | -0.7278810 |
| С    | -0.8306290 | -0.8821260 | -1.5339540 | Н    | -7.3656990 | 0.5833800  | -2.4599320 |
| С    | -2.0554260 | -1.3186270 | -2.0370560 | С    | -5.5696990 | 2.2651180  | -1.1515420 |
| 0    | -3.2661330 | -0.6577770 | -1.6710970 | Н    | -4.5602900 | 2.6709990  | -1.0254290 |
| С    | -3.6793280 | -0.6453090 | -0.3828110 | Н    | -6.0173310 | 2.7282640  | -2.0382910 |
| Ν    | -4.8222390 | 0.0767150  | -0.2037440 | Н    | -6.1702060 | 2.5657300  | -0.2852800 |
| С    | -5.4030860 | 0.1960520  | 1.1590050  | 0    | -3.1006110 | -1.2406590 | 0.5290020  |
| Н    | -6.3169210 | 0.7788790  | 1.0104220  | С    | -2.2393410 | -2.3281090 | -2.9865270 |
| С    | -5.8271650 | -1.1568780 | 1.7498730  | С    | -1.1116600 | -2.9697140 | -3.5037960 |
| Н    | -4.9582120 | -1.7833970 | 1.9580120  | С    | 0.1584440  | -2.5987260 | -3.0551970 |
| Н    | -6.3738290 | -0.9923950 | 2.6857690  | С    | 0.2165120  | -1.5894240 | -2.0976010 |
| Н    | -6.4882990 | -1.6931230 | 1.0601650  | F    | 1.5106270  | -1.2620110 | -1.6549730 |
| С    | -4.5049790 | 1.0014190  | 2.1095420  | Н    | 1.0607480  | -3.0695200 | -3.4350410 |
| Н    | -5.0193990 | 1.1474170  | 3.0669230  | Н    | -1.2214820 | -3.7499510 | -4.2521140 |
| Н    | -3.5600150 | 0.4903920  | 2.3023920  | Н    | -3.2389460 | -2.5916280 | -3.3207190 |
| Н    | -4.2842140 | 1.9892640  | 1.6904990  | Na   | 0.4593550  | 0.9526160  | -0.4215600 |
| С    | -5.5207480 | 0.7402680  | -1.3294330 | С    | 0.9974490  | 0.1831760  | 1.9828710  |
| Н    | -4.9167110 | 0.5318150  | -2.2101490 | С    | 2.3101350  | 0.5995000  | 2.2005590  |
| С    | -6.9134780 | 0.1369510  | -1.5668680 | 0    | 3.3374870  | 0.2701250  | 1.2562890  |
| Н    | -6.8442140 | -0.9444860 | -1.7234620 | С    | 3.3968900  | 0.9117000  | 0.0690790  |

| Н | 4.9061300  | -0.9966630 | 0.6222470  | Ν | 4.4287060  | 0.4948100  | -0.7138390 |
|---|------------|------------|------------|---|------------|------------|------------|
| С | 5.1079000  | -1.8207170 | -1.3376640 | С | 4.6857820  | 1.1765520  | -2.0080190 |
| Н | 4.0492190  | -2.0729400 | -1.4515400 | Н | 5.5303010  | 0.6278010  | -2.4342860 |
| Н | 5.5123550  | -1.5812240 | -2.3282790 | С | 3.5266420  | 1.0634790  | -3.0111050 |
| Н | 5.6423480  | -2.7051690 | -0.9720030 | Н | 2.7098130  | 1.7371940  | -2.7432500 |
| С | 6.7486780  | -0.2564220 | -0.1591300 | Н | 3.8848570  | 1.3353370  | -4.0113150 |
| Н | 6.8408380  | 0.5419550  | 0.5845850  | Н | 3.1298300  | 0.0456860  | -3.0457030 |
| Н | 7.3298860  | -1.1176140 | 0.1898540  | С | 5.1390190  | 2.6300450  | -1.8085530 |
| Н | 7.2057500  | 0.0897180  | -1.0935010 | Н | 5.4014320  | 3.0750460  | -2.7755920 |
| 0 | 2.6009960  | 1.7990060  | -0.2633370 | Н | 4.3389960  | 3.2240610  | -1.3600330 |
| С | 2.7873640  | 1.2453320  | 3.3443610  | Н | 6.0195580  | 2.6821430  | -1.1591550 |
| С | 1.8928900  | 1.5037420  | 4.3853070  | С | 5.2792210  | -0.6614290 | -0.3436140 |
| С | 0.5590520  | 1.1064810  | 4.2623960  | С | -0.1365250 | -4.4353850 | 0.4277030  |
| С | 0.2017120  | 0.4779430  | 3.0745060  | Н | -0.5766480 | -5.3926860 | 0.7469570  |
| F | -1.1445840 | 0.0622170  | 2.9997680  | Н | -0.7257330 | -4.0297120 | -0.3982350 |
| Н | -0.1656450 | 1.2743700  | 5.0538290  | С | 1.3528740  | -4.5742420 | 0.1243180  |
| Н | 2.2346330  | 1.9994090  | 5.2899010  | С | 1.9664200  | -4.5453710 | 1.5369100  |
| Н | 3.8344560  | 1.5250790  | 3.4209710  | С | 0.9891950  | -3.6531950 | 2.3341330  |
| 0 | -0.4764390 | 3.0875460  | -0.3386780 | Н | 0.6981090  | -4.1085720 | 3.2885650  |
| С | -1.0925330 | 3.8381110  | -1.4055370 | Н | 1.3853700  | -2.6516800 | 2.5252390  |
| Н | -0.6092750 | 3.5548990  | -2.3496590 | Н | 1.9994140  | -5.5553520 | 1.9608660  |
| Н | -2.1516560 | 3.5641680  | -1.4672700 | Н | 2.9851350  | -4.1472040 | 1.5463930  |
| С | -0.8731080 | 5.3223740  | -1.0749500 | Н | 1.6857120  | -3.7124120 | -0.4631200 |
| С | 0.3740040  | 5.2814190  | -0.1767730 | Н | 1.5920050  | -5.4876100 | -0.4294610 |
| С | 0.1513320  | 3.9876230  | 0.6029100  | 0 | -0.1906980 | -3.4891490 | 1.5097010  |
| Н | 1.0692600  | 3.5097430  | 0.9506900  |   |            |            |            |
| Н | -0.5222970 | 4.1434740  | 1.4570820  |   |            |            |            |
| Н | 1.2845160  | 5.2041180  | -0.7825400 |   |            |            |            |
| Н | 0.4666550  | 6.1565430  | 0.4735930  |   |            |            |            |
|   |            |            |            |   |            |            |            |

-1.72820705.7219090-0.5170650-0.74277405.9335150-1.9731150

Η

Η

**Table S-19.**Geometric coordinates and thermally corrected M06-2X energies for THF<br/>trisolvated sodium 2-(diisopropylcarbamoyl)-3-fluorophenolate monomer.



G = -1047464.614

 $G_{M06-2X} = -1047399.605$ 

| Atom | X          | Y          | Z          | Atom | Χ          | Y          | Z          |
|------|------------|------------|------------|------|------------|------------|------------|
| Na   | 1.2425970  | -0.4931810 | -0.0909040 | С    | -1.7076600 | 3.0150760  | 0.9251730  |
| 0    | -0.4759420 | 0.5495220  | 1.0382720  | Н    | -2.4282590 | 3.7930960  | 0.6580940  |
| С    | -1.5804350 | 0.5918340  | 0.4518250  | С    | -0.3496910 | 3.4629130  | 0.3600950  |
| С    | -2.1906310 | -0.6633110 | -0.0888760 | Н    | -0.0916070 | 4.4494640  | 0.7645860  |
| С    | -1.4840040 | -1.4075250 | -1.1073200 | Н    | 0.4369420  | 2.7551110  | 0.6260770  |
| С    | -2.1369880 | -2.5965890 | -1.5731610 | Н    | -0.3899650 | 3.5447270  | -0.7314370 |
| С    | -3.3307760 | -3.0452290 | -1.0316910 | С    | -1.7088810 | 2.9183970  | 2.4579790  |
| С    | -3.9794470 | -2.3469320 | -0.0001200 | Н    | -2.7085690 | 2.6668910  | 2.8269720  |
| С    | -3.3800500 | -1.1752600 | 0.4294300  | Н    | -1.0129850 | 2.1518510  | 2.8036460  |
| F    | -3.9925970 | -0.4732260 | 1.4320090  | Н    | -1.4161090 | 3.8822700  | 2.8913680  |
| Н    | -4.9006990 | -2.6903170 | 0.4561050  | 0    | 1.8613940  | -2.7046040 | 0.5201220  |
| Н    | -3.7786970 | -3.9621240 | -1.4099140 | С    | 1.2396590  | -3.7616630 | -0.2490820 |
| Н    | -1.6481690 | -3.1452670 | -2.3742660 | Н    | 0.7295890  | -3.2777490 | -1.0846470 |
| 0    | -0.3469610 | -1.0239540 | -1.5755330 | Н    | 2.0222600  | -4.4287000 | -0.6354050 |
| Ν    | -2.2341690 | 1.7808950  | 0.2888760  | С    | 0.2769880  | -4.5037830 | 0.7104520  |
| С    | -3.4377710 | 1.9259060  | -0.5661810 | С    | 0.3736750  | -3.6971120 | 2.0237340  |
| Н    | -3.6532330 | 0.9244060  | -0.9362840 | С    | 1.7552260  | -3.0558130 | 1.9054720  |
| С    | -3.1522020 | 2.8084040  | -1.7915700 | Н    | 1.8885330  | -2.1383850 | 2.4837970  |
| Н    | -2.3060850 | 2.4137790  | -2.3635220 | Н    | 2.5526710  | -3.7672630 | 2.1760320  |

| Н | -4.0304930 | 2.8230710  | -2.4470110 |
|---|------------|------------|------------|
| Н | -2.9321010 | 3.8466810  | -1.5162080 |
| С | -4.6637330 | 2.4087920  | 0.2227650  |
| Н | -4.5423240 | 3.4314500  | 0.5994480  |
| Н | -5.5434420 | 2.4059560  | -0.4309860 |
| Н | -4.8593900 | 1.7421980  | 1.0650840  |
| Η | 3.9715000  | 1.6122990  | -4.0094000 |
| Н | 2.5987600  | 2.7349280  | -4.0437730 |
| Н | 0.9925940  | 0.8652170  | -4.0768200 |
| Н | 2.2670790  | 0.2564600  | -5.1514140 |
| 0 | 2.7925580  | 0.3006390  | 1.5131900  |
| С | 4.2135060  | 0.3104940  | 1.3219820  |
| Н | 4.6709630  | -0.4659370 | 1.9525920  |
| Η | 4.3973100  | 0.0669130  | 0.2736620  |
| С | 4.6906300  | 1.7225790  | 1.7441640  |
| С | 3.4634160  | 2.3284990  | 2.4780130  |
| С | 2.5301940  | 1.1239480  | 2.6544800  |
| Н | 2.7696120  | 0.5679250  | 3.5754120  |
| Н | 1.4649000  | 1.3586210  | 2.6444330  |
| Н | 3.7256850  | 2.7951700  | 3.4322670  |
| Η | 2.9785340  | 3.0876680  | 1.8559980  |
| Η | 4.9708360  | 2.3278560  | 0.8769640  |
| Η | 5.5675080  | 1.6601650  | 2.3959100  |
| Η | 3.2444480  | -1.0763100 | -3.3661390 |
| Η | 1.5143210  | -1.1306250 | -2.8756320 |
| С | 2.0520320  | 0.5911020  | -4.1319520 |
| С | 2.9370880  | 1.7610670  | -3.6764800 |
| С | 2.8444720  | 1.6466680  | -2.1525030 |
| Η | 3.7408800  | 2.0053490  | -1.6340190 |
| Н | 1.9755850  | 2.1969810  | -1.7644760 |

| -0.3930650 | -2.9155680 | 2.0495960  |
|------------|------------|------------|
| 0.2654240  | -4.3190230 | 2.9180030  |
| 0.6054410  | -5.5377110 | 0.8635690  |
| -0.7427510 | -4.5247140 | 0.3190910  |
| 2.6802190  | 0.2450550  | -1.8650570 |
| 2.3654530  | -0.4795130 | -3.0858920 |

Η

Н

Н

Н

0

С

**Table S-20.**Geometric coordinates and thermally corrected M06-2X energies for THF<br/>disolvated sodium 2-(diisopropylcarbamoyl)-3-fluorophenolate monomer.



G = -901735.3669

 $G_{M06-2X} = -901666.5004$ 

| Atom | X          | Y          | Z          | Atom | X          | Y          | Z          |
|------|------------|------------|------------|------|------------|------------|------------|
| Na   | 1.7040040  | -0.0802110 | 0.6269930  | С    | -2.0958340 | 2.5023060  | 1.3701790  |
| 0    | -0.3787300 | 0.3545800  | 1.3545250  | Н    | -2.8850330 | 3.1900410  | 1.0541080  |
| С    | -1.2389130 | 0.3809210  | 0.4425120  | С    | -0.7898980 | 3.3124930  | 1.4053770  |
| С    | -1.3169820 | -0.7460640 | -0.5427340 | Н    | -0.9186540 | 4.1840270  | 2.0586150  |
| С    | -0.1910290 | -1.0058120 | -1.4129530 | Н    | 0.0331430  | 2.7066290  | 1.7884340  |
| С    | -0.3354410 | -2.1213540 | -2.3011940 | Н    | -0.5252530 | 3.6724990  | 0.4055880  |
| С    | -1.4551670 | -2.9369760 | -2.2866310 | С    | -2.4934560 | 1.9705140  | 2.7549170  |
| С    | -2.5223580 | -2.7076460 | -1.4021590 | Н    | -3.4535650 | 1.4463720  | 2.7067200  |
| С    | -2.4100520 | -1.6115730 | -0.5629740 | Н    | -1.7398760 | 1.2815290  | 3.1406530  |
| F    | -3.4333430 | -1.3638970 | 0.3105920  | Н    | -2.5952070 | 2.8079230  | 3.4553940  |
| Η    | -3.3993760 | -3.3430470 | -1.3589560 | 0    | 2.1425450  | -2.2193580 | 1.3735530  |
| Η    | -1.5116990 | -3.7804240 | -2.9719110 | С    | 2.5774450  | -3.1297650 | 0.3307100  |
| Η    | 0.4839540  | -2.3098070 | -2.9900150 | Н    | 2.3189950  | -2.6852530 | -0.6379530 |
| 0    | 0.8751850  | -0.2818850 | -1.3914190 | Н    | 3.6658320  | -3.2344880 | 0.3980260  |
| Ν    | -2.0972490 | 1.4325040  | 0.3367380  | С    | 1.8263460  | -4.444480  | 0.5702200  |
| С    | -3.0139810 | 1.6064790  | -0.8169120 | С    | 0.5457020  | -3.9676420 | 1.2734040  |
| Η    | -2.8487440 | 0.7365260  | -1.4516280 | С    | 1.0686300  | -2.8209940 | 2.1371810  |
| С    | -2.6442310 | 2.8467420  | -1.6452680 | Н    | 0.3247410  | -2.0437540 | 2.3328090  |
| Н    | -1.6003470 | 2.7968010  | -1.9715930 | Н    | 1.4751790  | -3.1840610 | 3.0917970  |

| Η | -3.2790840 | 2.8941970  | -2.5372590 |
|---|------------|------------|------------|
| Н | -2.7907770 | 3.7801720  | -1.0893290 |
| С | -4.4900940 | 1.6063200  | -0.3940090 |
| Н | -4.7452770 | 2.4697310  | 0.2316550  |
| Н | -5.1258640 | 1.6515620  | -1.2856120 |
| Н | -4.7289060 | 0.6912030  | 0.1522330  |
| Н | 4.6982970  | 0.9019820  | -1.5245030 |
| Н | 2.9401400  | 0.6256970  | -1.7679260 |
| С | 3.5620240  | 2.7480740  | -1.7678410 |
| С | 4.1891110  | 3.4898880  | -0.5760640 |
| С | 3.7487010  | 2.6336300  | 0.6221170  |
| Н | 4.5216250  | 2.5519590  | 1.3948790  |
| Н | 2.8336180  | 3.0229970  | 1.0867990  |
| Н | 5.2817910  | 3.4929210  | -0.6637190 |
| Н | 3.8572480  | 4.5285710  | -0.4865530 |
| Н | 2.5044690  | 3.0130710  | -1.8804120 |
| Н | 4.0694350  | 2.9502300  | -2.7159460 |
| Н | 0.0635070  | -4.7503960 | 1.8671550  |
| Н | 2.4043120  | -5.1044150 | 1.2283530  |
| Н | 1.6284460  | -4.9803870 | -0.3624520 |
| 0 | 3.4614190  | 1.3168760  | 0.1024010  |
| С | 3.6882440  | 1.2917010  | -1.3311890 |

Η

-0.1762290 -3.5932400 0.5405070