Wittig Rearrangements of Boron-Based Oxazolidinone Enolates

Zirong Zhang and David B. Collum* Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853-1301, United States E-mail: dbc6@cornell.edu

1. IR spectroscopy

Figure S1.	IR spectra of 1a, 13, 15, and 17 in CH_2Cl_2 at 0 °C.	S5
Figure S2.	IR spectrum following 1c complexation at -30 °C.	S6
Figure S3.	IR spectrum following A1 enolization at -30 °C.	S7
Figure S4.	IR spectrum following A2 rearrangement at 25 °C.	S8

2. NMR spectroscopic structural study

Table S1.	¹ H and ¹³ C chemical shift assignments for 13 .	S9
Figure S5.	¹ H NMR spectrum of 13 in CDCl ₃ at -30 °C.	S10
Figure S6.	13 C NMR spectrum of 13 .	S11
Figure S7.	HSQC spectrum of 13 .	S12
Figure S8.	COSY spectrum of 13 .	S13
Figure S9.	HMBC spectrum of 13 .	S14
Figure S10.	ROESY spectrum of 13 .	S15
Table S2.	¹ H and ¹³ C chemical shift assignments for 15 .	S16
Figure S11.	¹ H NMR spectrum of 15 in CDCl ₃ at -50 °C.	S17
Figure S12.	¹³ C NMR spectrum of 15 .	S18
Figure S13.	HSQC spectrum of 15.	S19
Figure S14.	COSY spectrum of 15.	S20
Figure S15.	HMBC spectrum of 15 .	S21
Figure S16.	ROESY spectrum of 15.	S22
3. Kinetics		

Figure S17.	¹ H NMR spectra following rearrangement of 15 in CDCl ₃ at 10 °C.	S23
Figure S18.	Plot following the loss of 15 at 10 °C with 1.1 equiv	S24
	n-Bu ₂ BOTf and 1.2 equiv Et ₃ N.	
Figure S19.	Plot following rearrangement of 15 at 5 °C.	S25
Figure S20.	Plot following 15 rearrangement with 1.0 equiv <i>n</i> -Bu ₂ BOTf and	S26
	10 equiv Et ₃ N.	
Figure S21.	Plot following 15 rearrangement with 10 equiv <i>n</i> -Bu ₂ BOTf and	S27
	10 equiv Et ₃ N.	

4. Syntheses of substrates

Figure S22.	¹ H and ¹³ C NMR spectra of 1d in CDCl ₃ at 25 °C.	S28
Figure S23.	¹ H and ¹³ C NMR spectra of $1a$.	S29
Figure S24.	¹ H and ¹³ C NMR spectra of 1b .	S30
Figure S25.	¹ H and ¹³ C NMR spectra of $1c$.	S31
Figure S26.	¹ H and ¹³ C NMR spectra of 1e .	S32
Figure S27.	¹ H and ¹³ C NMR spectra of 1f .	S33
Figure S28.	1 H and 13 C NMR spectra of 1g .	S34
Figure S29.	¹ H and ¹³ C NMR spectra of 1h .	S35
Figure S30.	¹ H and ¹³ C NMR spectra of 1i .	S36
Figure S31.	¹ H and ¹³ C NMR spectra of 1 j.	S37

5. Wittig Rearrangements

Figure S32.	¹ H and ¹³ C{ ¹ H} NMR spectra of 2d in CDCl ₃ at 25 °C.	S38
Figure S33.	¹ H NMR spectra of 2a and its minor isomer.	S39
Figure S34.	¹ H and ¹³ C $\{^{1}H\}$ NMR spectra of 2a .	S40
Figure S35.	¹ H and ¹³ C{ ¹ H} NMR spectra of 2a minor isomer.	S41
Figure S36.	¹ H and ¹³ C $\{^{1}H\}$ NMR spectra of 2b .	S42
Figure S37.	¹ H and ¹³ C $\{^{1}H\}$ NMR spectra of 2c .	S43
Figure S38.	¹ H and ¹³ C $\{^{1}H\}$ NMR spectra of 2e .	S44
Figure S39.	¹ H and ¹³ C $\{^{1}H\}$ NMR spectra of 1f decomposition product.	S46
Figure S40.	¹ H and ¹³ C $\{^{1}H\}$ NMR spectra of 2f .	S47
Figure S41.	¹ H NMR spectra 1g rearrangement major product.	S48
Figure S42.	¹ H and ¹³ C $\{^{1}H\}$ NMR spectra of 1g major product.	S49
Figure S43.	¹ H and ¹³ C $\{^{1}H\}$ NMR spectra of 1g minor product.	S50
Figure S44.	¹ H and ¹³ C $\{^{1}H\}$ NMR spectra of 1h decomposition product.	S51
Figure S45.	¹ H and ¹³ C $\{^{1}H\}$ NMR spectra of 1i decomposition product.	S52
Figure S46.	¹ H and ¹³ C $\{^{1}H\}$ NMR spectra of 23 .	S53
Figure S47.	¹ H and ¹³ C $\{^{1}H\}$ NMR spectra of 24 major.	S54
Figure S48.	¹ H and ¹³ C $\{^{1}H\}$ NMR spectra of 24 minor.	S55

6. Product characterizations

Figure S49.	¹ H and ¹³ C{ ¹ H} NMR spectra of 6 in CDCl ₃ at 25 °C.	S56
Figure S50.	¹ H and ¹³ C $\{^{1}H\}$ NMR spectra of 7.	S57
Figure S51.	¹ H and ¹³ C $\{^{1}H\}$ NMR spectra of 8 .	S58
Figure S52.	¹ H and ¹³ C{ ¹ H} NMR spectra of 5 in D ₂ O at 25 °C.	S59

7. Sodium- and lithium-based Wittig rearrangement attempts

Figure S53.	¹ H NMR spectra of products of 1c reacting with NaHMDS.	S60
-------------	---	------------

Figure S54 .	¹ H NMR spectra of products of 1a reacting with LDA.			
8. Computati	ions			
Table S3.	DFT-optimized geometry and MP2 energy of 13.	S62		
Table S4.	DFT-optimized geometry and MP2 energy of 12.	S64		
Table S5.	DFT-optimized geometry and MP2 energy of 15.	S65		
Table S6.	DFT-optimized geometry and MP2 energy of 14.	S66		
Table S7.	DFT-optimized geometry and MP2 energy of 17.	S67		
Table S8.	DFT-optimized geometry and MP2 energy of 16.	S68		
Table S9.	DFT-optimized geometry and MP2 energy of 18_A .	S69		
Table S10.	DFT-optimized geometry and MP2 energy of 18_B .	S70		
Table S11.	DFT-optimized geometry and MP2 energy of $18_{\rm C}$.	S71		
Table S12.	DFT-optimized geometry and MP2 energy of 18 _D .	S72		
Table S13.	DFT-optimized geometry and MP2 energy of 21_A .	S73		
Table S14.	DFT-optimized geometry and MP2 energy of 21_B .	S74		
Table S15.	DFT-optimized geometry and MP2 energy of 21_{C} .	S75		
Table S16.	DFT-optimized geometry and MP2 energy of 21 _D .	S76		
Table S17.	DFT-optimized geometry and MP2 energy of 1g favor anti.	S77		
Table S18.	DFT-optimized geometry and MP2 energy of 1g nonfavor anti.	S78		
Table S19.	DFT-optimized geometry and MP2 energy of 1g favor syn.	S79		
Table S20.	DFT-optimized geometry and MP2 energy of 1g nonfavor syn.	S80		

1. IR spectra

Figure S1. IR spectra of 0.030 M **1a** in CH_2Cl_2 recorded at 0 °C with (a) no additive; (b) 0.060 M *n*-Bu₂BOTf affording **13**; (c) 0.060 M *n*-Bu₂BOTf and 0.10 M Et₃N affording **15**; and (d) product **17** after warming to 25 °C.

Figure S2. Loss of oxazolidinone carbonyl (1783 cm⁻¹) at -30 °C of 1c (0.040 M) in CH₂Cl₂. *n*-Bu₂BOTf (1.0 M) in CH₂Cl₂ via syringe pump over 13 min. The requirement of \approx 2.0 equiv of *n*-Bu₂BOTf for full complexation, and the curvature of the decay suggests that the complexation is a soft equilibrium.

Figure S3. IR spectrum recorded at -30 °C following the loss of the oxazolidinone carbonyl (1825 cm⁻¹) of boron complex A1 formed from 0.040 M 1c and 0.10 M *n*-Bu₂BOTf. Addition of Et₃N (0.12 M) causes immediate disappearance of boron complex A1 and formation of boron enolate A2.

Figure S4. Loss of the oxazolidinone carbonyl of **A2** (1781 cm⁻¹) in a solution of 0.040 M **1c**, 0.10 M *n*-Bu₂BOTf, and 0.12 M Et₃N in CH₂Cl₂. The decay correlates with the enolate rearranging to the product alkoxide **A3**. The lower net absorbance loss compared to enolate is due to peak overlap between enolate and alkoxide. The curve depicts a least-squares fit to $y = a^{-bx} + c$, such that $a = 0.00829 \pm 0.00006$, $b = 0.0147 \pm 0.0002$, $c = 0.00936 \pm 0.00003$.

2. NMR structural study

Atom #	δ ¹³ C, ppm	δ ¹ H, ppm	COSY	HMBC	ROESY
2	69.8	4.42 (2')	2", 3	10, 3, 5	2", 10"
		4.64 (2")	2', 3	-	3, 2'
3	56.4	4.88	2', 2", 10', 10"	10, 5	2', 10'
10	36.4	3.35 (10')	10", 3	3, 2	10", 3
		3.00 (10")	10', 3		10', 2'
7	70.7	5.51		12, 6	12, 13
12	78.2	4.70	13, 22	7, 13, 14	30 , 7, 13, 14
13	119.5	5.59	14, 12, 22	22, 6	7, 12, 22
14	142.2	6.21	13, 22	22, 12	12, 22
22	18.3	1.81	12, 13, 14	13, 14	13, 14
30	18.5	0.66	29	29	12
29, 28	25.7	1.25	30, 27	27, 30	
27	14.2	0.85	28	28	
5	150.8				
6	175.3				

Table S1. ¹H and ¹³C chemical shift assignments for 13.^{*a,b*}

^{*a*} Important correlations that allowed determination of subunit arrangement are marked in red. ^{*b*} n-butyl groups time average.

Figure S5. ¹H NMR spectrum of 0.20 M 13 in CDCl₃ recorded at -30 °C.

Figure S6. ${}^{13}C{}^{1}H$ NMR spectrum of 0.20 M 13 in CDCl₃ recorded at -30 °C.

Figure S7. HSQC spectrum of 0.20 M 13 in CDCl₃ recorded at -30 °C.

Figure S8. COSY spectrum of 0.20 M 13 in CDCl₃ recorded at -30 °C.

Figure S9. HMBC spectrum of 0.20 M 13 in CDCl₃ recorded at -30 °C.

Figure S10. ROESY spectrum of 0.20 M 13 in CDCl₃ recorded at -30 °C.

Atom #	δ^{13} C, ppm	δ ¹ H, ppm	COSY	HMBC	ROESY
2	70.0	4.39 (2')	2"		
		4.30 (2")	2', 3		
3	58.5	4.39	2", 10', 10"	5	10', 10'', 7
10	37.9	3.05 (10')	10", 3	3, 2	3
		2.98 (10")	10', 3		3
7	124.8	5.78		12	12, 3
12	75.5	4.30	15, 16', 16"	7, 15, 16	13 , 7, 15, 16'
15	135.9	5.95	12, 16', 16"	12	13 , 12, 16', 16"
16	120.1	5.35 (16')	12, 15, 16"	15, 12	12, 15
		5.25 (16")	12, 15, 16'		15
13	22.6	0.50	23	23	12, 15, 23
23, 24	28.5	1.24	13, 25	25, 13	13, 25
25	16.4	0.86	24	24	24
5	159.8				
6	172.0				

Table S2. ¹H and ¹³C chemical shift assignments for **15**.^{*a, b*}

^{*a*} Important correlations that allowed determination of subunit arrangement are marked in red. ^{*b*} *n*-butyl groups time average.

Figure S11. ¹H NMR spectrum of 0.20 M 15 in CDCl₃ recorded at -50 °C.

Figure S12. ¹³C{¹H} NMR spectrum of 0.20 M **15** in CDCl₃ recorded at -50 °C. Extra peaks are rearranged product alkoxide.

Figure S13. HSQC spectrum of 0.20 M 15 in CDCl₃ recorded at -50 °C.

Parameter	Value
1 Solvent	cdcl3
2 Temperature	-50.0
3 Pulse Sequence	gCOSY
4 Number of Scans	1
5 Receiver Gain	10
6 Relaxation Delay	1.0000
7 Pulse Width	8.5000
8 Acquisition Time	0.5000

Figure S14. COSY spectrum of 0.20 M 15 in CDCl₃ recorded at -50 °C.

Figure S15. HMBC spectrum of 0.20 M 15 in CDCl₃ recorded at -50 °C.

Parameter	Value
1 Solvent	cdcl3
2 Temperature	-50.0
3 Pulse Sequence	ROESYAD
4 Number of Scans	4
5 Receiver Gain	10
6 Relaxation Delay	1.0000
7 Pulse Width	8.5000
8 Acquisition Time	0.4000

Figure S16. ROESY spectrum of 0.20 M 15 in CDCl₃ recorded at -50 °C.

3. Kinetics

70 5.65 5.60 5.55 5.50 5.45 5.40 5.35 5.30 5.25 5.20 5.15 5.10 5.05 5.00 4.95 4.90 4.85 4.80 4.75 f1 (ppm)

Figure S17. ¹H NMR spectra recorded at 10 °C following the rearrangement of **15** generated in a solution of 0.10 M **1a**, 0.11 M *n*-Bu₂BOTf, and 0.12 M Et₃N in CDCl₃. The decay and growth correspond to with the allyl protons of **15** and product alkoxide **17**, respectively.

Figure S18. Plot following the loss of **15** at 10 °C in a solution generated from 0.10 M **1a**, 0.11 M *n*-Bu₂BOTf, and 0.12 M Et₃N in CDCl₃. The curve depicts a least-squares fit to $y = ae^{-bx}+c$, such that $a = 0.788 \pm 0.003$, $b = 0.0427 \pm 0.0004$, $c = 0.092 \pm 0.002$. The curvature fits a first-order decay.

Figure S19. Plot following the rearrangement of **15** at 5 °C generated from 0.10 M **1a**, 0.10 M *n*-Bu₂BOTf, and 0.10 M Et₃N in CDCl₃. The curve depicts a least-squares fit to $y = ae^{-bx}+c$, such that $a = 0.242 \pm 0.001$, $b = 0.0255 \pm 0.0003$, $c = 0.042 \pm 0.001$. The curvature fits a first order growth.

Figure S20. Plot following the rearrangement of **15** at 5 °C generated from 0.10 M **1a**, 0.10 M *n*-Bu₂BOTf, and 1.0 M Et₃N in CDCl₃. The curve depicts a least-squares fit to $y = ae^{-bx}+c$, such that $a = 0.200 \pm 0.001$, $b = 0.0249 \pm 0.0005$, $c = 0.015 \pm 0.001$. k_{obsd} is the same (within 10%) as using 1.0 equiv of Et₃N, confirming no dependence on amine concentration.

Figure S21. Plot following the rearrangement of **15** at 5 °C generated from 0.10 M **1a**, 1.0 M *n*-Bu₂BOTf, and 1.0 M Et₃N in CDCl₃. The curve depicts a least-squares fit to $y = ae^{-bx}+c$, such that $a = 0.263 \pm 0.001$, $b = 0.0229 \pm 0.0003$, $c = 0.015 \pm 0.001$. k_{obsd} is the same (within 10%) as using 1.0 equiv of *n*-Bu₂BOTf, confirming no dependence on the *n*-Bu₂BOTf concentration.

Figure S22. ¹H and ¹³C $\{^{1}H\}$ NMR spectra of 1d in CDCl₃.

Figure S23. ¹H and ¹³C{¹H} NMR spectra of 1a in CDCl₃.

Figure S24. ¹H and ¹³C $\{^{1}H\}$ NMR spectra of 1b in CDCl₃.

Figure S25. ¹H and ¹³C{¹H} NMR spectra of 1c in CDCl₃.

Figure S26. ¹H and ¹³C $\{^{1}H\}$ NMR spectra of 1e in CDCl₃.

Figure S27. ¹H and ¹³C $\{^{1}H\}$ NMR spectra of 1f in CDCl₃.

Figure S28. ¹H and ¹³C $\{^{1}H\}$ NMR spectrum of 1g in CDCl₃.

Figure S29. ¹H and ¹³C $\{^{1}H\}$ NMR spectra of 1h in CDCl₃.

Figure S30. ¹H and ¹³C $\{^{1}H\}$ NMR spectra of 1i in CDCl₃.

Figure S31. ¹H and ¹³C $\{^{1}H\}$ NMR spectra of 1j in CDCl₃.

Figure S32. ¹H and ¹³C $\{^{1}H\}$ NMR spectra of 2d in CDCl₃.

Figure S33. ¹H NMR spectra of 2a and its minor isomer in CDCl₃.

Figure S34. ¹H and ¹³C{¹H} NMR spectra of 2a in CDCl₃.

Figure S35. ¹H and ¹³C{¹H} NMR spectra of 2a minor isomer in CDCl₃.

Figure S36. ¹H and ¹³C $\{^{1}H\}$ NMR spectra of 2b in CDCl₃.

Figure S37. ¹H and ¹³C $\{^{1}H\}$ NMR spectra of 2c in CDCl₃.

Figure S38. ¹H and ¹³C $\{^{1}H\}$ NMR spectra of 2e in CDCl₃.

Decomposition of 1f. Following the procedure for **1d** except using **1f** afforded a decomposition product. ¹H NMR (500 MHz, CDCl₃) δ 4.71 (dt, *J* = 5.3, 1.8 Hz, 2H), 4.46 (dt, *J* = 8.5, 3.5 Hz, 1H), 4.38 (td, *J* = 8.8, 1.3 Hz, 1H), 4.30 (ddd, *J* = 9.2, 3.1, 1.3 Hz, 1H), 3.06 (td, *J* = 5.4, 1.3 Hz, 1H), 2.43 (dqd, *J* = 8.3, 7.1, 5.0 Hz, 1H), 0.95 (dd, *J* = 7.0, 1.4 Hz, 3H), 0.90 (dd, *J* = 6.9, 1.3 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 173.52, 153.81, 64.73, 63.25, 58.53, 28.43, 18.01, 14.76. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₈H₁₃NO₄ 188.09173, found 188.09181.

Figure S39. ¹H and ¹³C $\{^{1}H\}$ NMR spectra of 1f decomposition in CDCl₃.

Figure S40. ¹H and ¹³C $\{^{1}H\}$ NMR spectra of 2f in CDCl₃.

Figure S41. ¹H NMR spectra in CDCl₃ recorded at 25 °C of (a) **1g** rearrangement major product; (b) **1g** minor product; (c) **2d**; (d) **1g**.

Figure S42. ¹H and ¹³C{¹H} NMR spectra of 1g major product in CDCl₃.

Figure S43. ¹H and ¹³C $\{^{1}H\}$ NMR spectra of 1g minor product in CDCl₃.

Rearrangement of 1h. Following the procedure for **1d** except using **1h** showed no reactivity even with heating to 60 °C. Using NaHMDS in place of Et₃N afforded the deacylated product.

Figure S44. ¹H NMR spectrum of 1h decomposition product in CDCl₃.

Decomposition of 1i. Following the procedure for **1d** except using **1i** afforded a decomposition product.

Figure S45. ¹H NMR spectrum of 1i decomposition product in CDCl₃.

Figure S46. ¹H and ¹³C $\{^{1}H\}$ NMR spectra of 23 in CDCl₃.

Figure S47. ¹H and ¹³C $\{^{1}H\}$ NMR spectra of 24 major in CDCl₃.

Figure S48. ¹H and ¹³C $\{^{1}H\}$ NMR spectra of 24 minor in CDCl₃.

Figure S50. ¹H and $\{^{1}H\}^{13}$ C NMR spectra of 7 in CDCl₃.

Figure S51. ¹H and ${}^{1}H{}^{13}C$ NMR spectra of 8 in CDCl₃.

335155223252345222322222

Figure S52. ¹H and ${}^{1}H{}^{13}C$ NMR spectra of 5 in D₂O.

7. Using sodium and lithium

5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2. fl(ppm)

Figure S53. ¹H NMR spectra in CDCl₃ recorded at 25 °C of (a) products of 1c reacting with NaHMDS; (b) (*S*)-4-benzyl-2-oxazolidinone; (c) 4c; (d) 1c. Using NaHMDS resulted in deacylation prior to rearrangement.

5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2. Il(ppm)

Figure S54. ¹H NMR spectra in CDCl₃ recorded at 25 °C of (a) products of **1a** reacting with NaHMDS; (b) **1a**; (c) (S)-4-benzyl-2-oxazolidinone; (d) **4a**. Using LDA resulted in deacylation prior to rearrangement.

8. Computation

Geometries are optimized at the B3LYP level of theory using the 6-31G(d) basis set. Energies are defined as follows: G is the sum of electronic and thermal free energies calculated at the B3LYP level of theory (T = 273 K). G_{MP2} is derived from an MP2 SP calculation corresponding to the DFT-optimized geometry and includes a thermal correction from the DFT calculation.

Table S3. Geometric coordinates and thermally corrected MP2 energies for boroncomplex 13 (5 member ring chelation).

G = -1041.643803 Hartree $G_{MP2} = -651581.3129$ kcal/mol

С	0.0000000 0.0000000 0.0000000
Н	-0.08745200 0.09270400 -1.08511500
Н	0.59396200 -2.08155100 -0.34896800
Н	0.71614500 -2.74409800 2.06743600
С	-1.35482900 -2.34740100 1.60542600
С	-2.98158200 -3.93320700 0.74557800
С	-3.73135700 -1.98014300 1.95363200
Η	-2.18612300 -0.67002400 2.68189900
Η	-5.05259800 -3.47183700 1.13210700
Н	-0.85353600 -4.15231400 0.52608500
С	3.11697100 -1.66861900 0.66414600
В	4.34245600 -3.73510000 0.53680100
Н	5.71201700 -4.58227300 -1.02224200
Н	4.72528900 -3.25299800 -1.65254800
Н	3.65875900 - 5.61735900 1.47654000
Н	4.09165100 -4.39281900 2.67860700
С	6.72366100 -2.34927800 0.86437600
Η	6.89296500 -2.08565600 -0.18485300
Η	7.30549500 -0.33753500 1.58708800

H -0.96758800 0.17667100 0.46728000 C 0.64542400 -1.33013900 0.44145200 C 0.08494500 -1.90151600 1.76354100 H 0.16436500 -1.13401600 2.54285100 C -1.65754100 -3.53126500 0.91707400 C -4.02164800 -3.15638600 1.26188200 C -2.40486700 -1.57809000 2.12358000 H -4.53437300 -1.37782900 2.36815700 H -3.20150300 -4.85595900 0.21662000 N 2.05249000 -0.87747400 0.58735300 O 3.00121500 -2.92336400 0.54964600 C 4.72733000 -4.10375500 -0.95745500 H 4.00997300 -4.83527800 -1.35078600 C 4.36233300 - 4.80503300 1.69931900 Н 5.34743900 - 5.27800300 1.79878500 O 5.24446800 - 2.39896600 1.05171400 H 7.02936700 - 3.38016000 1.03956900 C 7.36844700 -1.39938400 1.81950500 C 8.04930500 -1.81101600 2.89116300

- Н 8.54110200 -1.10684800 3.55557100
- Н 4.62248200 -0.53423900 1.75482200
- C 2.12461000 0.56209300 0.68338700
- O 3.12390900 1.18054300 0.92566000
- Н 8.15378700 2.86542600 3.13709900
- C 4.52882000 -1.16859900 0.87222200
- Н 4.88467800 -0.61136600 -0.00327900
- O 0.90901300 1.04047400 0.45633900

Table S4. Geometric coordinates and thermally corrected MP2 energies for boron complex **12** (6 member ring chelation).

G = -1041.631708 Hartree $G_{MP2} = -651569.4126$ kcal/mol

С	0.00000000	0.00000000	0.00000000
Η	-0.06364400	0.13859100	-1.08090800
Н	-0.61168300	2.08581100	0.20300200
Η	-0.38913800	2.18000800	2.72451800
С	1.58691700	1.92387500	1.89161700
С	3.12093100	3.67278700	1.19471600
С	3.97918200	1.50608800	1.83400100
Н	2.51463200	0.05668100	2.45746800
Н	5.21359600	3.15298400	1.19473400
Н	0.98951900	3.92204100	1.31471000
С	-3.10737900	1.33797800	1.38148300
В	-4.32936100	-0.89576900	1.78812800
С	-1.99196100	-0.70506200	0.82733100
С	-4.22380200	-1.25248500	3.32526100
Н	-5.07845300	-0.84153000	3.87571100
С	-5.54400500	-1.33003200	0.88099300
Н	-5.45938500	-0.99782200	-0.16126400
С	-3.10637500	2.86270800	1.41522500
С	-5.31777900	3.58398600	0.86503800
Н	-5.53103400	2.61921600	0.38259600
Η	-6.96671100	3.49971900	2.31687900
Η	-6.69680800	5.92302500	0.42393800
Η	-2.82827200	3.21721700	0.40539500

Н	1.01385600 -0.26887800	0.29022900
С	-0.57399600 1.18075300	0.81273600
С	0.17172000 1.44054300	2.14044600
Η	0.18073800 0.51402700	2.72715600
С	1.82207600 3.23285900	1.44665500
С	4.20179900 2.80843600	1.38579700
С	2.67789800 1.06607800	2.08503500
Н	4.81626400 0.83405200	1.99772600
Н	3.29042000 4.69153300	0.85900600
N	-1.96111500 0.66896900	1.03345400
0	-4.14576400 0.70243700	1.64350500
0	-2.96090100 -1.43652900	1.05731800
0	-0.86702900 -1.13945400	0.33119600
Н	-3.31272900 -0.88095800	3.81370100
Η	-4.24876600 -2.33991000	3.46493100
Η	-6.48473300 -0.93184700	1.27976900
Η	-5.64128900 -2.42211600	0.86928300
0	-4.29491000 3.38876500	1.87687300
Η	-4.94084500 4.28160800	0.10403800
С	-6.53942400 4.12520300	1.53535700
С	-7.10876400 5.28229500	1.20068600
Η	-8.01589000 5.63067700	1.68518100
Η	-2.30402700 3.17884400	2.09608000

Table S5. Geometric coordinates and thermally corrected MP2 energies for enolate **15** (5 member ring chelation).

G = -1041.249187 Hartree $G_{MP2} = -651337.4921$ kcal/mol

С	0.0000000 0.0000000 0.0000000
Н	0.01076000 0.15153700 -1.08498600
Н	0.58082000 -2.06584500 -0.42968800
Η	0.61764000 -2.81329900 1.97746900
С	-1.42945700 -2.51017100 1.38324900
С	-2.90122000 -4.15383200 0.35735400
С	-3.84680600 -2.28871200 1.56131800
Н	-2.43311000 -0.91730200 2.43248500
Н	-5.02024700 -3.82176000 0.59934500
Н	-0.75119600 -4.24057000 0.28914700
С	3.06064700 -1.80824200 0.79610400
Н	4.69857600 -0.62536600 1.66189700
С	6.29645000 -2.62021200 0.41757500
Н	5.98579300 -2.27674200 -0.57619600
Н	7.06729900 -0.65586600 1.08642800
Н	8.80513900 -3.18252700 1.38200600
В	3.82491500 -4.01291900 0.92018400
С	4.37306600 -4.99770300 -0.20455600
Н	3.57031100 -5.70632300 -0.45437500
С	3.55324900 -4.55869800 2.39258200
Н	4.42918400 -5.06908000 2.81195500
С	2.07462000 0.44091500 0.86189300
Ο	3.03669400 1.07415100 1.22546000

H -1.01422700 0.14153800 0.37614500 C 0.61152500 -1.35589600 0.39922300 C -0.03226900 -1.99403200 1.65247100 H -0.04686000 -1.24883700 2.45723500 C -1.61867400 -3.68522100 0.63990700 C -4.02060300 -3.45524400 0.81643000 C -2.56057600 -1.82143500 1.84071700 H -4.71099500 -1.74239200 1.92996300 H -3.02740200 -5.06822300 -0.21644800 N 1.99268400 -0.92523800 0.63789800 4.29341300 -1.53681900 1.26129700 С O 5.09554300 -2.71063200 1.25393800 Н 6.66930700 - 3.64291200 0.34861700 7.32309100 -1.71222900 1.02277200 С C 8.51680000 -2.13491300 1.43925500 H 9.25478200 -1.45021700 1.84781000 O 2.80549400 - 3.06635900 0.41090500 Н 5.22393800 - 5.60620200 0.12640800 H 4.64677600 -4.49754900 -1.14191200 Н 2.73733700 - 5.29580700 2.37145200 Η 3.26056000 - 3.77059400 3.09763500 O 0.85251600 0.99028900 0.60843100

Table S6. Geometric coordinates and thermally corrected MP2 energies for enolate **14** (6 member ring chelation).

G = -1041.252377 Hartree $G_{MP2} = -651335.8477$ kcal/mol

С	0.00000000	0.00000000	0.00000000
Η	-0.05694100	0.15631700	-1.08116400
Η	-0.58493500	2.09721700	0.19138100
Η	-0.45121700	2.15287100	2.72302000
С	1.55528200	2.00064000	1.93889100
С	3.03289800	3.83599300	1.33275700
С	3.96834100	1.68616300	1.90447700
Η	2.55191200	0.15553800	2.44013100
Η	5.14711100	3.40398300	1.34663200
Η	0.88979100	3.98848600	1.42071500
С	-3.09585900	1.46651200	1.39360400
Η	-2.07280700	3.33237300	1.43644900
С	-5.19266900	3.63268500	1.04362800
Η	-5.57968000	2.61528500	0.91163800
Η	-6.51064500	4.27193500	2.67855700
Η	-6.56653400	5.79700700	-0.00169100
0	-4.21539600	0.75290700	1.44239900
0	-2.97786200	-1.36731500	1.06474000
0	-0.86385200	-1.11902400	0.33398100
Η	-2.84818100	-0.31658800	3.72299500
Η	-3.69869300	-1.86721300	3.76655200
Н	-6.44156300	-0.98621000	1.95012000
Н	-5.53370400	-2.46857600	1.64699400

Н	1.01796900 -0.26678000	0.28286400
С	-0.56958200 1.18900500	0.80032400
С	0.15791800 1.45437200	2.13969500
Н	0.19195900 0.51547300	2.70533300
С	1.74984000 3.33357000	1.54670700
С	4.14698600 3.01207200	1.50945200
С	2.68173200 1.18623400	2.11651800
Н	4.82916200 1.04010300	2.05403800
Н	3.16346200 4.87282300	1.03485800
N	-1.94341400 0.70942600	1.00049200
С	-3.01240900 2.80145600	1.56072700
0	-4.06330200 3.59480600	1.94105000
Η	-4.87710700 4.01290600	0.06138000
С	-6.23358700 4.51949700	1.65441700
С	-6.83078400 5.52684400	1.01894500
Н	-7.61345000 6.11638100	1.48869300
В	-4.23560200 -0.65830600	1.93617100
С	-2.01032000 -0.62319900	0.81649100
С	-3.79726900 -0.81426100	3.47346300
Η	-4.56130700 -0.37015000	4.12557600
С	-5.55992300 -1.39208300	1.43602000
Η	-5.72672300 -1.26697400	0.35830000

Table S7. Geometric coordinates and thermally corrected MP2 energies for rearrangement product **17** (no chelation).

G = -1041.307135 Hartree $G_{MP2} = -651375.0352$ kcal/mol

С	$0.00000000 \ 0.00000000 \ 0.00000000$
Н	-0.09401800 0.63400200 0.88800600
Н	-0.51373600 -1.69522300 1.29178500
Η	-0.39301400 -3.42041400 -0.53282600
С	1.60697000 -2.75988400 -0.08857300
С	3.09694700 - 3.69541400 1.59099700
С	4.01748500 -2.49473900 -0.28927100
Н	2.58903900 -1.73343400 -1.71001400
Н	5.20863200 - 3.37775000 1.27686900
Н	0.95125000 -3.87162000 1.63928000
С	-2.89986000 -2.19156200 0.13326200
Н	-4.35296900 -1.61576100 -1.34617600
Η	-4.47007200 0.12114300 0.33686000
С	-5.04967100 -1.09111300 2.02057600
С	-6.16245400 -1.11462700 2.75291100
Η	-6.13911200 -1.30284400 3.82286600
В	-4.95608900 -4.26536300 -0.83712400
Н	-6.61472200 -5.68762300 -1.21951000
Н	-6.46973500 -5.25068700 0.49606200
Н	-4.30609000 -5.07611100 -2.81340000
Η	-3.01071900 -4.90810900 -1.64002300
С	-2.03241300 -0.13076000 -1.05631100
0	-2.97711000 0.20778200 -1.72478600

Н 1.02873900 0.02587400 -0.36052800 C -0.52814700 -1.42193700 0.23514100 C 0.20238700 - 2.50478600 - 0.59216400 Н 0.22407600 -2.19053200 -1.64300800 C 1.81008600 - 3.47563200 1.10116200 C 4.20552900 - 3.20364500 0.89725200 C 2.72695300 -2.27506200 -0.77640000 H 4.87387500 -2.11543100 -0.84044400 Н 3.23527200 -4.25630600 2.51151700 N -1.92425100 -1.23930900 -0.19872500 C -4.35287300 -1.93356500 -0.30024700 C -5.00778100 -0.81236000 0.54234900 Н -6.02543300 -0.68208600 0.15822700 H -4.09178700 -1.27383200 2.50944000 H -7.14193900 -0.94879300 2.30905500 O -5.11402400 -3.10969700 -0.11883400 C -5.90003900 -5.46054300 -0.41475300 H -5.32419500 -6.38341100 -0.26052500 C -3.91714000 -4.41913600 -2.02630800 H -3.59760800 -3.48229400 -2.49886800 O -2.56964700 -3.16888100 0.78096700 O -0.85371200 0.53822800 -1.03394500

Table S8. Geometric coordinates and thermally corrected MP2 energies for rearrangement product **16** (chelated).

G = -1041.296955 Hartree $G_{MP2} = -651370.1006$ kcal/mol

С	$0.00000000 \ 0.0000000 \ 0.00000000$
Н	0.14731600 0.17908000 -1.06966000
Н	0.29894400 -2.12683900 -0.43473100
Η	-0.00330700 -2.90027000 1.94487600
С	-1.91498300 -2.26255100 1.18487900
С	-3.53178500 -3.64363700 0.00539700
С	-4.26986500 -1.65335400 1.15427700
Н	-2.73986500 -0.53291900 2.17453400
Н	-5.58231700 -2.97381800 0.06605200
Н	-1.42762200 -4.07950500 0.12713300
С	2.64262500 -2.27265400 0.93157300
Н	4.24631600 -1.52415700 2.17052300
В	3.61264600 -4.50872100 1.01770200
С	3.12404600 -5.56588100 2.11529300
Н	3.96513300 -6.21279700 2.40264600
С	3.95389900 -5.06625000 -0.45093200
Н	3.15149700 -5.69984300 -0.85190000
С	4.94581500 -1.52039400 0.12441600
Н	4.75788600 -2.10294800 -0.78715100
Н	6.83476700 -2.51909300 0.65508900
Н	6.79564800 0.54372100 0.30252400
С	2.02340900 0.12435600 1.08388400
0	3.01256000 0.58993900 1.57987200

Н -1.01034800 0.29279500 0.28541500 C 0.35434200 -1.43808300 0.41025100 C -0.48274300 -1.98294700 1.58947000 H -0.45143400 -1.25577900 2.40999700 C -2.22108800 -3.38970700 0.40754500 C -4.56042200 -2.77410500 0.37625800 C -2.95573500 -1.40062700 1.55436200 H -5.06486200 -0.97679100 1.45598100 H -3.75140700 -4.52446900 -0.59179800 N 1.77020900 -1.23925700 0.78052400 С 4.12547800 -2.16040800 1.28424700 O 4.49350000 - 3.47132700 1.56613300 O 2.23313900 - 3.43672400 0.74457700 Н 2.32972200 -6.22847300 1.74729800 Н 2.76879600 - 5.08528800 3.03657400 Н 4.85377200 -5.69555200 -0.40007500 H 4.16021400 -4.28656500 -1.19740400 H 4.60879800 -0.49299100 -0.04501400 C 6.41495800 -1.53721100 0.44540400 C 7.18859300 -0.45259300 0.49600500 Н 8.24722800 -0.51903900 0.73295500 O 0.93101800 0.83253700 0.72947200

Table S9. Geometric coordinates and thermally corrected MP2 energies for transition structure 18_A .

G = -1041.231479 Hartree $G_{MP2} = -651325.2492$ kcal/mol

С	0.0000000 0.0000000 0.0000000
Η	0.10540400 0.21886900 -1.06792100
Η	0.57376700 -2.04799500 -0.52137900
С	2.89768900 -1.97320900 0.95660400
Н	4.47701500 -0.96214500 2.13727900
В	3.75472400 -4.10882700 1.10969300
С	4.31967900 -5.15090400 0.03444500
Η	5.17493600 - 5.71702100 0.42759100
С	3.21394400 -4.74307400 2.48905900
Η	2.82794400 - 3.99140000 3.19066300
С	6.36106100 -2.71651100 0.30410200
Η	5.42893300 -2.59513800 -1.63129800
Η	4.77216100 -0.22748300 -1.38830100
Η	6.89537600 -2.15896500 1.06656700
С	2.00066000 0.30771000 1.07660200
Ο	2.95355100 0.87780400 1.54916300
Η	-0.34953800 -1.44108300 2.33767600
С	-1.65035500 -2.54222500 1.01458800
С	-4.06325500 -2.23020900 0.96237500
С	-3.05940500 -4.02033600 -0.30708300
Η	$-0.91871000\ -4.19649900\ -0.16052200$
Н	$-5.17928300 \ -3.61770200 \ -0.25463500$
Н	-2.70406200 -1.00678400 2.09999200

H -1.03561400 0.16126400 0.30201500 C 0.52449600 -1.40432800 0.35928900 N 1.88191200 -1.04918800 0.78931300 C 4.10591700 -1.81955400 1.60147500 O 4.82468800 - 2.96179200 1.53749400 O 2.68115200 - 3.18224400 0.48908500 Н 4.62023700 -4.70458400 -0.92127900 Н 3.54358000 - 5.89346200 - 0.19563200 H 4.00702700 - 5.29442000 3.01102800 Н 2.40448800 - 5.45978800 2.29365300 C 5.77136500 -2.02152200 -0.77311100 C 5.36810300 -0.72697300 -0.62988000 Н 5.71305700 -0.10623500 0.19009700 Н 6.65122800 - 3.75500400 0.20152700 O 0.83461900 0.91856300 0.73560600 C -0.27335100 -2.11561700 1.47612200 Н 0.30852700 - 2.98764400 1.79274600 C -2.79886200 -1.84723900 1.41550600 C -4.19645500 -3.31656300 0.09754200 C -1.79874700 -3.63614900 0.14849200 H -3.15527700 -4.87349200 -0.97345800 H -4.94249300 -1.68160100 1.28960600

Table S10. Geometric coordinates and thermally corrected MP2 energies for transition structure 18_B .

- G = -1041.23127 Hartree $G_{MP2} = -651324.9035$ kcal/mol
- 0.0000000 0.0000000 0.0000000С 0.06570100 0.05835700 1.09168900 Η H -0.58201600 -2.09482000 0.27985000 C -2.12367900 0.54307100 -0.66636700 O -3.09954800 1.21241700 -0.90193300 C -4.47687000 -1.37874800 -0.70223300 O -5.22443700 -2.49795600 -0.82437900 O -2.87959800 -2.98124200 -0.75505000 H -5.37162800 -4.38907600 1.33823200 Н -4.23292800 -3.09220700 1.71779100 H -5.38411300 -5.44085700 -1.33269800 H -3.67382500 -5.77494200 -1.12446300 H -6.78985800 -1.82325100 -2.32113200 C -4.98326800 -2.15284700 -3.45851400 H -5.12163400 -0.05952900 -3.01417900 H -4.37731700 -2.92345700 -3.92950000 H -0.16882400 -1.00838600 -2.55787300 С 1.28157300 -2.37016400 -1.72542400 С 3.67907100 -2.13477500 -2.07109600 C 2.81174900 -4.11899000 -1.00588700 H 0.67286000 -4.20884500 -0.77621500 Н 4.90813300 - 3.76677200 - 1.37982600 2.21567500 -0.67380500 -2.67246500 Н

Н 0.98670200 0.16551600 -0.43400200 C -0.66065800 -1.30737400 -0.47296200 N -2.05082800 -0.84449600 -0.56244700 O -0.87847400 1.04944100 -0.45967200 C -3.13513900 -1.69276200 -0.69950100 H -4.94282500 -0.41423700 -0.58960200 B -4.21196200 -3.72018900 -0.47493300 C -4.37499600 -3.99200500 1.10470900 H -3.64594100 -4.74026600 1.44437300 C -4.38492100 -4.99446500 -1.42746900 Н -4.20229700 -4.79825500 -2.49106000 C -6.04933300 -2.55575700 -2.62572300 H -6.38566100 -3.58537800 -2.61511800 C -4.53467900 -0.86554600 -3.44111000 Н -3.62128000 -0.57171200 -3.95018100 C -0.12750400 -1.82738900 -1.82894500 H -0.81248400 -2.60925800 -2.17090900 2.37988600 -1.63716900 -2.19392000 С С 3.89848900 - 3.37647400 - 1.47441400 C 1.51580300 - 3.61978700 - 1.13169900 Н 2.97321000 - 5.09107700 - 0.54754400 Н 4.51719600 -1.55327200 -2.44594600

Table S11. Geometric coordinates and thermally corrected MP2 energies for transition structure $18_{\rm C}$.

G = -1041.228303 Hartree $G_{MP2} = -651321.3575$ kcal/mol

0.0000000 0.0000000 0.0000000С Н 0.08966700 0.20825700 -1.07152200 Н 0.50590100 -2.06688700 -0.51657100 C 2.85998400 - 2.04857300 0.91385300 H 4.46016700 -1.09005000 2.09672900 6.32629600 - 2.91196900 0.24046300 С H 5.83015800 - 3.39976200 - 0.58774100 7.22870500 -1.05646800 0.87974300 Η H 4.89431000 -1.14523700 -1.14483600 B 3.66295200 -4.20378800 1.02071700 C 4.17397600 -5.24509100 -0.08515900 Н 5.09595500 - 5.75669400 0.22161900 C 3.13660700 -4.84371600 2.40250400 H 2.79834200 - 4.09186900 3.12794900 C 2.02944000 0.26029400 1.03579400 O 3.00454000 0.80810100 1.48860400 H -0.33835100 -1.41185600 2.35606800 C -1.69453200 -2.49242500 1.07181500 C -4.09849500 -2.11429100 1.05729700 C -3.16811000 -3.95492300 -0.19576500 H -1.03051100 -4.18736600 -0.08492200 H -5.27476100 -3.49245200 -0.11272900 H -2.68548000 -0.90894600 2.14752400

H -1.02474100 0.19097500 0.32124300 C 0.49360900 -1.41521000 0.35937800 N 1.86943500 -1.09469200 0.75755100 C 4.07754800 -1.92738900 1.54073800 O 4.77376200 - 3.08951900 1.45442700 H 7.00300300 - 3.53841300 0.81093200 C 6.51336100 -1.51025400 0.19628200 C 5.61569600 -0.71991600 -0.45301400 Н 5.62579200 0.36182800 -0.36398200 O 2.60712300 - 3.24638900 0.42796700 Н 4.34532100 - 4.80922400 - 1.07853200 H 3.41801500 -6.03045000 -0.21963300 H 3.92341900 - 5.43278600 2.89186600 Н 2.29656800 - 5.52720300 2.21718700 O 0.87339200 0.90024300 0.71226800 C -0.29785800 -2.09591300 1.49966000 Н 0.26870100 - 2.97954200 1.81209900 C -2.81586600 -1.75853600 1.48035900 C -4.27763400 -3.21235000 0.21581900 C -1.88909300 -3.59754300 0.22945300 H -3.29975800 -4.81731800 -0.84389500 H -4.95607300 -1.53548700 1.38996500

Table S12. Geometric coordinates and thermally corrected MP2 energies for transition structure $18_{\rm D}$.

G = -1041.210713 Hartree $G_{MP2} = -651321.2071$ kcal/mol

С	$0.00000000 \ 0.0000000 \ 0.00000000$
Н	0.07520000 0.00993500 1.09263000
Н	-0.51682900 -2.12216600 0.18810700
С	-2.14633800 0.50745700 -0.62213500
0	-3.14414300 1.15776900 -0.81416500
С	-4.43559500 -1.48577900 -0.72656500
0	-5.15403800 -2.62504000 -0.90135400
0	-2.78693900 -3.03350600 -0.88430500
Н	-5.21264700 -4.65210900 1.13305600
Η	-4.13177000 -3.33016400 1.58719200
Н	-5.22440400 -5.47150400 -1.69557500
Н	-3.55375000 -5.87178100 -1.33157700
С	-6.05034700 -1.28355000 -3.02185900
Н	-3.99630500 -1.23974700 -3.59593200
Н	-6.92897500 -0.68310600 -2.79331600
Н	-5.31635400 -3.30949700 -3.10890800
Η	-0.15655700 -0.89542500 -2.59874800
С	1.33909300 -2.25068400 -1.83708400
С	3.72697000 -1.92961600 -2.18061700
С	2.92318500 -3.98504600 -1.20438700
Н	0.78901900 -4.14804300 -0.97128900
Η	5.00653800 -3.55455700 -1.56890200
Η	2.21856500 -0.48636200 -2.70916600

Н 0.97677700 0.21524600 -0.43458000 C -0.62515800 -1.30402600 -0.52738300 N -2.02975500 -0.88098800 -0.58736400 O -0.91433300 1.04163200 -0.40283400 C -3.08858900 -1.75794300 -0.74904000 H -4.92384500 -0.54673300 -0.53522200 B -4.08630000 -3.83093600 -0.63639400 C -4.23436300 -4.19936900 0.92437800 Н -3.47286500 -4.93322000 1.22174800 C -4.20879600 -5.05519400 -1.66366200 H -3.90938700 -4.81871400 -2.69354100 C -6.04849400 -2.65195600 -2.65992300 C -4.88662800 -0.66435100 -3.35878400 H -4.81442900 0.41277200 -3.47125300 H -6.96231600 -3.13278200 -2.32882700 C -0.08590000 -1.74544300 -1.90856000 H -0.74943200 -2.53138400 -2.28193100 C 2.41319600 -1.46527400 -2.27576400 C 3.98548000 - 3.19020600 - 1.64209400 C 1.61265000 -3.51887000 -1.30238300 3.11523900 - 4.97195000 - 0.79176500 Η 4.54590500 -1.30723600 -2.53146200 Η
Table S13. Geometric coordinates and thermally corrected MP2 energies for transition structure 21_A .

G = -928.130041 Hartree $G_{MP2} = -580544.4903$ kcal/mol

0.0000000 0.0000000 0.0000000
-0.16887400 -0.57744417 -0.91630091
-1.23589891 1.53294591 -0.95056626
-0.95111826 3.29719500 0.71306583
0.84611766 3.23489209 2.42183491
1.21531183 1.54961909 2.04086700
1.72321783 2.34970317 -0.46441200
1.32438374 3.99277409 0.03318509
-3.16126000 1.47164991 1.01191040
-4.18079326 0.58942291 2.77937140
-4.56546809 3.31414834 0.85825469
-5.58101309 3.75789291 -0.29838548
-5.87786483 2.94969074 -0.97385131
-3.97287366 4.50943378 1.76795991
-4.78172357 5.01957486 2.30972900
-7.02105914 1.05609828 0.99981445
-6.22620295 0.50470731 -0.89324726
-5.52100009 -1.06097540 1.67371852
-5.17568274 -2.61461053 -0.37739109
-3.65851840 -1.91399983 0.16337478
-7.57432288 1.91241028 0.63416102
-0.43474909 -0.80271091 1.11815709

H 1.06876800 0.18547700 0.11509200 C -0.86190609 1.28424800 0.04148874 C -0.16466417 2.53231700 0.63890391 C 0.41546774 2.30531109 2.03953891 H -0.35145626 1.98075600 2.75280991 C 0.89648683 3.05613509 -0.33858200 Н 0.46725783 3.25804017 -1.32818600 N -1.97532217 0.78888591 0.86411857 C -4.18366360 1.28043891 1.94827131 O -5.09894997 2.22144103 1.84242278 O -3.35816657 2.50276043 0.24410934 H -5.13166652 4.54891817 -0.91901557 H -6.50173934 4.18938648 0.12825860 Н -3.46254874 5.26788760 1.16025166 Н -3.25954857 4.15496495 2.52449891 C -6.27384621 0.25206583 0.16747591 C -5.41462222 -0.74605997 0.63665569 C -4.63765114 -1.65891488 -0.26148440 H -4.50038162 -1.23354953 -1.25802314 H -7.10521490 0.81997691 2.06551440 C -1.65445809 -0.38894100 1.53939791 O -2.31988109 -0.96241674 2.36861009

Table S14. Geometric coordinates and thermally corrected MP2 energies for transition structure 21_B .

G = -928.12871 Hartree $G_{MP2} = -580542.881$ kcal/mol

С	0.0000000 0.0000000 0.0000000
Η	0.17443100 0.56314000 -0.92277700
Н	-1.39998300 1.60426800 0.50375700
Н	-1.91455600 0.90154500 2.78525800
Н	0.17100700 1.76307000 3.82231900
Н	-0.21089400 2.66621000 2.34960200
Η	0.40319900 -1.11653500 2.57997000
Η	-1.31596400 -1.52939600 2.70180100
С	-1.75924200 -1.45057400 -0.24012300
0	-2.39077000 -2.40658500 -0.62424100
С	-4.67389900 -0.60790500 -0.08344200
0	-5.81701100 0.02142100 0.25607000
0	-3.89253700 1.04442500 1.24942400
Η	-6.43065000 2.70400800 -0.58941400
Н	-4.82300400 2.21858400 -1.13923100
Н	-7.24324200 1.92577600 2.05772700
Η	-5.80558300 2.73403200 2.66214000
Η	-7.26997400 -1.73924400 0.55226300
С	-5.94944400 -1.81930500 2.25740800
Н	-5.26812700 -3.16302800 0.76963700
Η	-3.00014000 -3.30345000 1.84626500
Η	-4.08733300 -4.35167700 2.74585200

Н 0.93522500 -0.07646100 0.55591800 C -1.16422300 0.58674800 0.82861200 C -0.94902300 0.60340400 2.36143600 C 0.08056900 1.68148400 2.73396700 Н 1.07959700 1.44855700 2.34284100 C -0.57043400 -0.76518800 2.94365400 Н -0.50522500 -0.70287700 4.03549700 N -2.24483100 -0.31020100 0.38970200 O -0.41047300 -1.33509600 -0.35765300 C -3.59086700 -0.00622300 0.52149500 H -4.67879100 -1.41313000 -0.79955500 B -5.36635300 1.41375100 0.92290900 C -5.40216400 2.51539400 -0.25431300 H -4.99890600 3.47485300 0.09731300 C -6.17258300 1.78127000 2.25695400 H -6.07605600 1.03817400 3.05851400 C -6.93687700 -1.23394100 1.45234700 Н -7.61669200 -0.49292800 1.85371000 C -5.05809900 -2.72446900 1.74285800 C -3.89313400 -3.30139300 2.48074900 Н -3.67943500 -2.75366000 3.40437800 H -5.76020400 -1.39316000 3.24138900

Table S15. Geometric coordinates and thermally corrected MP2 energies for transition structure 21_{C} .

G = -928.127504 Hartree $G_{MP2} = -580539.5605$ kcal/mol

С	0.0000000 0.0000000 0.0000000
Η	-0.16699000 -0.42593900 -0.99503600
Η	$\textbf{-0.98915000} \hspace{0.1in} 1.78152400 \hspace{0.1in} \textbf{-0.78996100}$
Η	-0.64700300 3.25119500 1.12684200
Η	1.22447300 1.11189200 2.31125600
Η	-0.34130200 1.60502100 2.98189700
Η	1.73556500 3.77557800 0.68898700
Η	0.90977300 3.33717800 -0.81290600
С	-3.06030100 1.68259200 1.03042500
Н	$-4.30057000 \ 0.70966100 \ 2.58444200$
С	-6.79854200 1.86114800 0.80112500
Η	$\textbf{-6.46831900} \hspace{0.1cm} \textbf{2.28991400} \hspace{0.1cm} \textbf{-0.13456000}$
Η	-7.23212800 0.04184100 1.85991500
Η	$-5.26172900 \hspace{0.1cm} 0.16246700 \hspace{0.1cm} -0.49989000$
Η	-6.14712100 -2.10793700 1.43180400
Η	$-4.48848800 \ -1.92738700 \ \ 0.83472800$
0	-3.08856100 2.80854000 0.35396600
Η	$-5.27848000 \ \ 3.77499900 \ -1.04712800$
Η	$-4.49181800 \hspace{0.1in} 5.26871600 \hspace{0.1in} -0.55582700$
Η	-2.94140200 5.39491400 1.67253400
Н	-3.02437800 4.09351400 2.87403600
0	$-0.58853800 - 0.88423700 \ \ 0.97398000$

Н	1.07223500 0.04612100 0.19475800
С	-0.71777100 1.35514400 0.17943600
С	0.05816400 2.42357900 0.98700000
С	0.50588100 1.93850700 2.37334800
Н	0.99504600 2.75547800 2.91472000
С	1.23943300 2.95471700 0.16047900
Н	1.99730500 2.18114700 -0.01979600
Ν	-1.93722700 0.88782500 0.85763500
С	$-4.15038500 \ 1.48656300 \ 1.85463000$
0	-5.01329100 2.51797300 1.74729900
Н	-7.47036400 2.47169300 1.39336500
С	-6.70469100 0.48093200 1.01352000
С	-5.78303200 -0.28467500 0.34544500
С	-5.54107200 -1.73860700 0.59830600
Н	-5.78614100 -2.33170300 -0.29487100
В	-4.21879500 3.67491300 0.97639500
С	-5.05942000 4.40832900 -0.17700700
Н	$-6.01199500 \ 4.80736800 \ 0.19649400$
С	-3.60338900 4.63832000 2.11586300
Н	-4.39768000 5.18044100 2.64610900
С	-1.78488000 -0.38791600 1.38525300
0	-2.55572500 -0.99003700 2.09512900

Table S16. Geometric coordinates and thermally corrected MP2 energies for transition structure 21_{D} .

G = -928.127379 Hartree $G_{MP2} = -580539.744$ kcal/mol

С	0.0000000 0.0000000 0.0000000
Η	-0.22157600 -0.50096800 -0.94818000
Н	1.25166900 -1.74330900 0.42727700
Н	1.83474900 -1.19833900 2.72792300
Н	-0.31955100 -1.86475000 3.75977700
Н	-0.05879700 -2.74296700 2.24610900
Н	-0.23768500 1.07757700 2.61822700
Н	1.51712600 1.28455400 2.74877100
С	1.87689000 1.30460900 -0.17338300
0	2.58621100 2.22444900 -0.50644500
С	4.73573200 0.28120800 0.08873300
0	5.80970800 -0.48453900 0.38332200
0	3.76273500 -1.48549600 1.11828300
Н	4.74281200 -2.33425800 -1.39311000
Н	4.74098300 -3.78223500 -0.37160000
Н	6.99985200 -2.64876900 1.98119000
Н	5.54195200 -3.59993600 2.22267100
С	6.55046100 1.78657300 1.70937900
Η	4.72877200 1.48869000 2.73974300
Н	5.39145000 4.17363800 1.31952200
Η	4.49054200 4.02588800 2.84593000
Η	7.93465400 0.13974400 1.44480200

Н -0.92560700 0.12885500 0.56242200 C 1.10959700 -0.72292500 0.79379600 C 0.90507600 -0.77779200 2.32759500 C -0.23402700 -1.74875400 2.67411300 H -1.20538400 -1.39027700 2.30948800 C 0.68795400 0.60224500 2.96480100 H 0.61629600 0.50588300 4.05369000 N 2.26336100 0.09353500 0.38765000 O 0.52347200 1.31053300 -0.29372300 C 3.57846900 -0.32172500 0.53480800 H 4.83595300 1.16981200 -0.51036600 B 5.21963800 -1.91877500 0.79740200 C 5.23961800 -2.81829800 -0.54154000 H 6.26932200 - 3.04052000 - 0.85161700 C 5.90950800 -2.57366700 2.08948800 Н 5.70190800 - 2.04615000 3.03038600 C 6.97810800 0.45802000 1.84305000 C 5.30228100 2.17626100 2.11948400 C 4.71255600 3.53119500 1.88941200 Н 3.77032800 3.45752400 1.33500900 Н 7.13300700 2.46693400 1.08888800 Н 6.55505300 -0.17034500 2.61429400

Table S17. Geometric coordinates and thermally corrected MP2 energies for transition structure of **1g** rearranging from favor face forming anti product.

G = -928.119238 Hartree $G_{MP2} = -580536.7388$ kcal/mol

С	0.0000000 0.0000000 0.0000000
Η	-0.14462800 -0.35814100 -1.02469400
Η	-1.05135500 1.79404600 -0.67375100
Н	-0.73433300 3.16360200 1.31373700
Н	0.92486700 2.60645900 3.07387700
Н	1.18054100 1.00137100 2.38290800
Н	1.94079100 2.22273600 0.12718700
Н	1.62893000 3.77479900 0.90626700
С	-3.10789300 1.51968000 1.13597900
Н	-4.27982400 0.45131000 2.68266100
В	-4.36257800 3.45502900 1.13698200
С	-5.26807700 4.16039900 0.01919000
Н	$-5.58616100 \hspace{0.1cm} 3.49146300 \hspace{0.1cm} -0.79053400$
С	-3.78018400 4.42515100 2.28736800
Н	-4.59179100 4.90490600 2.85023600
С	-6.78762400 1.49016000 0.95494200
Η	$\textbf{-5.95683600} \hspace{0.1in} 1.08957300 \hspace{0.1in} \textbf{-0.96473500}$
С	-5.91003100 - 1.44665700 1.47876800
Н	$-4.97445100 \ -1.82675900 \ \ 1.90054600$
Н	-5.04093400 - 1.04113900 - 0.48784200
Н	$\textbf{-7.20381400} \hspace{0.1cm} \textbf{2.44440600} \hspace{0.1cm} \textbf{0.65972400}$
0	$-0.57011800 - 0.96919400 \ \ 0.90110600$

1.06873000 0.06331300 0.20930300 Η C -0.75824100 1.31913100 0.26631000 C -0.00890600 2.36174500 1.13064500 C 0.44870300 1.81187300 2.48923900 H -0.39286700 1.43194300 3.07794400 1.16001400 2.96526000 0.33707200 С Н 0.82455200 3.38247700 -0.61990500 N -1.95606500 0.77738400 0.92498900 C -4.16321500 1.26285700 1.98422900 O -5.09010600 2.23764900 1.89933800 O -3.20511700 2.65570900 0.48244700 H -4.70311600 4.97689800 -0.45052400 Н -6.16750500 4.61996500 0.45133100 H -3.17672900 5.23122600 1.84773800 Н -3.14900800 3.89927000 3.01663600 C -6.18931900 0.65191600 0.00381500 C -5.63540000 -0.57021400 0.29479700 H -6.49651500 -2.32029200 1.15628100 H -6.47304000 -0.94326100 2.26895200 Н -7.14184100 1.10009600 1.90155100 C -1.77878300 -0.53375300 1.34521400 O -2.53812400 -1.20984300 1.99822700

Table S18. Geometric coordinates and thermally corrected MP2 energies for transition structure of **1g** rearranging from nonfavor face forming anti product.

G = -928.118502 Hartree $G_{MP2} = -580536.5739$ kcal/mol

- С 0.0000000 0.0000000 0.0000000H -0.24386000 -0.40011300 -0.98972100 H 1.26089400 -1.77464500 0.21551500 H 1.90708100 -1.46750100 2.54056200 H -0.21944800 -2.22069700 3.56342800 Н -0.02070200 -2.93919800 1.95934900 Н -0.13397800 0.83271300 2.71297100 H 1.62696600 0.99577500 2.82924500 С 1.86724900 1.32634200 -0.08163900 O 2.56365000 2.28337800 -0.32407200 С 4.73475300 0.31218100 0.01495500 B 5.27686600 -1.91100300 0.59017200 С 5.31986500 -2.71745300 -0.80621700 H 4.79420100 -2.20028200 -1.62005900 С 5.99283900 - 2.62529100 1.83243000 H 5.88280700 - 2.09437500 2.78665600 С 6.90889600 0.44895800 1.80402800 Н 7.47583800 -0.42802700 2.08819400 С 5.09470900 2.01171900 2.32987000 H 4.57609400 3.39037900 0.77168900 H 6.30410800 2.97576800 0.79832900 Н 5.50493200 0.23825400 3.39296700
- Н -0.91083400 0.06307200 0.59677900 1.13205800 -0.79535600 0.68528400 С C 0.97142600 -1.00208600 2.21143200 C -0.16847000 -1.99299700 2.49340400 H -1.14674300 -1.58974700 2.20150300 0.78908000 0.30877300 2.99024200 С Н 0.73568800 0.10162600 4.06470000 N 2.27207300 0.06080800 0.32460200 O 0.51088100 1.33741600 -0.16642600 C 3.59486400 -0.33914200 0.43437400 O 5.82971800 -0.43096000 0.27398200 3.81169600 -1.53418900 0.93698500 0 Η 4.86182500 - 3.70982700 - 0.69583900 Н 6.35389900 - 2.87773600 - 1.13895600 Η 7.06584200 -2.77734500 1.65236200 Η 5.56346600 - 3.62585400 1.97773100 H 7.39212200 1.10395000 1.08900400 C 5.86324300 0.91140400 2.61698800 5.42515400 3.15743200 1.42207700 С Н 5.62439200 4.05537000 2.02624400 4.20468900 2.16299000 2.94086300 Η H 4.82054800 1.25498400 -0.49814300

Table S19. Geometric coordinates and thermally corrected MP2 energies for transition structure of **1g** rearranging from favor face forming syn product.

G = -928.11662 Hartree $G_{MP2} = -580534.9285$ kcal/mol

С	0.00000000 0.00000000 0.00000000
Η	0.14392900 -0.47578400 0.97603600
Н	1.16755700 1.64571800 0.84051800
Η	0.88631800 3.25086900 -0.96555200
Η	-1.17471900 1.33932600 -2.22199600
Н	0.40730700 1.75648600 -2.90558800
Н	-0.61252200 3.33141700 1.02326900
Н	-1.80906000 2.32385800 0.18577400
С	3.15703700 1.47376000 -1.06726400
Н	4.19414800 0.52748600 -2.77319400
С	6.82806100 1.19786600 -1.06719100
Н	6.72771300 1.62467300 -0.08011500
Н	6.80902200 -0.57862800 -2.25975700
Н	5.29906800 -1.83712800 -0.94508100
Н	5.62458500 -1.12566200 1.55933900
Н	4.02734100 -0.80625000 0.89484100
0	3.36053900 2.50413300 -0.26974300
Η	6.47893500 4.18259600 -0.12645200
Η	5.73703000 3.09636500 1.06556300
Η	3.44488100 5.21340400 -1.34668300
Н	3.31086600 4.02626100 -2.65632300
0	0.49555300 -0.89295000 -1.01527100

H -1.06765400 0.14360300 -0.17268400 C 0.82659800 1.29845400 -0.13848600 C 0.12013500 2.47365800 -0.85521700 C -0.39769600 2.11300800 -2.25462600 Н -0.83717200 2.99623600 -2.73061000 C -0.99395600 3.04380400 0.03618400 Н -1.43165400 3.93605900 -0.42378500 N 1.97594300 0.77097500 -0.88839900 C 4.15777200 1.25557300 -1.98161900 O 5.16814100 2.13939200 -1.80136800 Н 7.52130600 1.70873700 -1.72524500 C 6.50076600 -0.15090200 -1.30730500 C 5.60019000 -0.86337800 -0.56193400 C 5.08480800 -0.53269300 0.80536100 H 5.18598000 0.52267500 1.06836400 B 4.53723100 3.30466000 -0.87333800 C 5.52024900 3.83201000 0.27869400 H 5.06471400 4.69513000 0.78227200 C 3.98844400 4.42948600 -1.89179100 Н 4.81436400 4.92329100 -2.42066700 C 1.71795500 -0.47683800 -1.44411000 O 2.42631000 -1.11472300 -2.18523700

Table S20. Geometric coordinates and thermally corrected MP2 energies for transition structure of **1g** rearranging from nonfavor face forming syn product.

G = -928.116483 Hartree $G_{MP2} = -580534.3017$ kcal/mol

С	0.0000000 0.0000000 0.0000000
Η	0.16951300 0.40155500 -1.00480600
Η	-1.27595600 1.75252000 0.29658500
Η	-1.78030300 1.38318100 2.67049900
Н	0.38185300 2.27478400 3.53130700
Н	-0.03100700 3.00531300 1.97344600
Η	-1.26023600 -1.06934900 2.89569800
Η	-0.40853900 -0.09402300 4.09684500
С	-1.85059300 -1.35242900 0.01581200
0	-2.55024100 -2.30898500 -0.21309800
С	-4.68709100 -0.27474700 0.02739400
0	-5.79185800 0.45519300 0.30781300
0	-3.79577600 1.44990400 1.19067900
Η	-4.66134800 2.40056400 -1.32488600
Н	-4.73938900 3.80239800 -0.24413700
Η	-7.08064500 2.56847800 1.92592200
Н	-5.62874300 3.47470200 2.32430600
С	-6.49041800 -1.85898600 1.50193200
Н	-4.90448700 -3.19308300 1.86004700
Н	-3.54315000 -1.61549800 3.14321600
Η	-4.90944100 -1.94904000 4.20159600
Н	-7.94463400 -0.33597600 1.01491900

Н 0.95022300 -0.04400600 0.53374000 C -1.09891600 0.77619800 0.75722200 C -0.83964600 0.99083900 2.26815100 C 0.24192400 2.06443600 2.46564000 Н 1.21435100 1.74528200 2.06803000 C -0.49204900 -0.29959600 3.02406400 Н 0.46511300 -0.72461500 2.69878300 N -2.24676500 -0.09733900 0.46813100 O -0.49730700 -1.34664600 -0.12881200 C -3.56725100 0.31424500 0.56164600 H -4.74974400 -1.15762100 -0.58519300 B -5.23436000 1.88293100 0.81951500 C -5.20975400 2.83806400 -0.47999600 Н -6.22693900 3.05528500 -0.83178600 C -6.00145200 2.46588600 2.10174000 Н -5.86528600 1.87797600 3.02008600 C -7.04390000 -0.56629700 1.57203500 C -5.32468300 -2.22314700 2.12060900 C -4.62850200 -1.50371500 3.23486500 H -4.85866400 -0.43646400 3.27472900 H -6.88733800 -2.53395800 0.74561800 Н -6.84349000 0.08019400 2.41395600