Enantioselective Alkylation of 2-Alkyl Pyridines Controlled by Organolithium Aggregation

Joshua J. Gladfelder,[†] Santanu Ghosh,[†] Maša Podunavac,[†] Andrew W. Cook,[†] Yun Ma,[†] Ryan A. Woltornist, [‡] Ivan Keresztes,[‡] Trevor W. Hayton,^{*,†} David B. Collum,^{*,‡} Armen Zakarian^{*,†}

[†]Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States

[‡]Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States

Supplementary Information II

-150 f1 (ppm) -130 10 -10 -30 -50 -70 -90 -110 -170 -190 -210 -230 -250 -270 -290 -310

-3.48 -3.48 -3.46 -3.43 -3.42 -3.42 -3.40 -3.40 -3.40 -3.20 -3.19 -3.19 1.94 1.94 1.95 1.95 1.95 1.175 1.175 1.175 1.175 1.173 1.173 1.173 1.173 1.173 1.173 1.173 1.173 1.173 1.175 1.173 1.175

28.59 28.59 28.59 28.59 28.59 28.59 28.50 29.50

-	3
5	5
~	~
10	10
Y	4
i.	j
	/

Parameter	Value
1 Title	SG2-165-F19
2 Origin	Varian
3 Instrument	vnmrs
4 Solvent	cdcl3
5 Temperature	25.0
6 Number of Scans	32
7 Relaxation Delay	4.8000
8 Spectrometer Frequency	376.11
9 Nucleus	19F

110 100 f1 (ppm) 220 210 200 190 180 170 160 150 140 130 120 -10 3.01

	D D	00 UM-0 V	Ki 1	- A	2013 - D.M.		20 C.		6 8 6 0		217 04	45 54 5	S 104.5	- 41 - 5					2 - 1 K 1				- C. M
220	210	200	190	180	170	160	150	140	130	120	110 f1 (p	100 pm)	90	80	70	60	50	40	30	20	10	0	-10

Copies of NMR spectra for aggregate $(2-Py)(CH_2CH_2OMe)CHLi \bullet (R)-Li^1DA \bullet HMPA$ **1r**.

1D NMR [³¹P, ⁶Li] Spectroscopic Studies

Figure S2-1. ³¹P NMR spectra (202.404 MHz, toluene-*d*₈) of 0.10 M **1r-Li** prepared from (*R*)-¹DA with 2.0 equiv [⁶Li]*n*-BuLi, 1.0 equiv **1r**, and 0.75 equiv HMPA recorded at -80 °C after aging at 0 °C for 40 mins: (A) with broad-band ⁶Li decoupling; (B) fully coupled. δ 24.88 (t, ²*J*_{P-Li} = 3.50), 23.61 (t, ²*J*_{P-Li} = 4.51).

Figure S2-2. ³¹P NMR spectra (202.404 MHz, toluene-*d*₈) of 0.10 M **1r-Li** prepared from (*R*)-¹DA with 2.0 equiv [⁶Li]*n*-BuLi, 1.0 equiv **1r**, and 0.75 equiv HMPA recorded at -80 °C after aging at 0 °C for 40 mins: (A) with single frequency ⁶Li decoupling 20 Hz off resonance from the ⁶Li doublet at 2.48 ppm; (B) with single frequency ⁶Li decoupling of the ⁶Li doublet at 2.48 ppm.

Figure S2-3. ⁶Li NMR spectra (73.578 MHz, toluene-*d*₈) of 0.10 M **1r-Li** prepared from (*R*)-¹DA with 2.0 equiv [⁶Li]*n*-BuLi, 1.0 equiv **1r**, and 0.75 equiv HMPA recorded at -80 °C after aging at 0 °C for 40 mins: (A) with broad-band ³¹P decoupling; (B) fully coupled. δ 2.47 (d, ²*J*_{Li-P} =3.50), 1.64 (s).

Figure S2-4. ⁶Li NMR spectra (73.578 MHz, toluene-*d*₈) of 0.10 M **1r**-Li prepared from (*R*)-¹DA with 2.0 equiv [⁶Li]*n*-BuLi, 1.0 equiv **1r**, and 0.75 equiv HMPA recorded at -80 °C after aging at 0 °C for 40 mins: (A) off-resonance decoupling; (B) on-resonance decoupling of the ³¹P triplet at 23.61 ppm; (C) on-resonance decoupling of the ³¹P triplet at 24.9 ppm.

Figure S2-5. ¹H NMR spectrum (499.76 MHz, toluene- d_8) at -80 °C of a sample containing 1r-Li.