
T6.2 Molecular Mechanics 
 
We have seen that Benson group additivities are capable of giving heats of 
formation of molecules with accuracies comparable to those of the best ab initio 
procedures.  However, non-quantum-mechanical procedures are not reliable for 
transition states or many kinds of reactive intermediates where bonding is often 
far from the Lewis electron-pair approximation.  Nevertheless, the remarkable 
simplicity of group-additivity methods in comparison to any quantum 
mechanical procedure makes them appealing candidates for dealing with the 
energetics of large “normal” molecules.  The principal barrier to wide application 
is the difficulty of dealing with angle strain and non-bonded interactions such as 
steric and dipole-dipole effects.  The purpose of molecular mechanics is to 
provide a solution to this problem through, as its name implies, the use of purely 
mechanical models. 
 Given that group additivity can provide good estimates of heats of formation 
for strain-free molecules, what one wants to be able to estimate are the various 
strain contributions in any given molecular structure.  These contributions are 
generally treated as additive, although, as we will see, it is sometimes necessary 
to include interaction terms. 
 For bond stretches and angle deformations, a minimal model could be based 
on Hooke’s law. 
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 E  = strain energy 
 k  = force constant 
 l  = bond length 
 l° = optimum bond length 

Assuming similar behavior for stretches and bends, and assuming too that the 
effects in different parts of a molecule are additive, one would write: 
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However, these quadratic terms turn out not to be good enough to describe the 
strain energy for large displacements from the equilibrium values.  It is thus 
common to add higher order polynomial terms to correct for anharmonicity.  
Even these have limited ranges of application, as the graph on the next page 
shows.  The best empirical function for describing bond stretching over larger 
distances is the Morse potential: 
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where D is the bond dissociation energy and a is an empirical parameter (often 
the 1 in the square brackets is omitted, in which case the energy at l = l° becomes 
–D and that at infinity is zero; including the 1 makes the energy zero at l = l° and 
+D at infinity). 



The reason that polynomial expressions are usually used in place of the Morse 
potential in molecular mechanics programs is that they are much faster for 
computers to evaluate. 
 Van der Waals forces are generally included for atoms that are not directly 
bonded (in which case they are included in the value of ks) or are not bonded to a 
common third atom (in which case they are included in the value of kθ).  The 
function that most accurately represents such forces is the Hill function: 
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where c1–c3 are taken to be universal constants and the parameters ε and r* are 
atom-pair specific.  The distance between the nonbonded atoms is r.   

Morse vs Cubic Potential Functions
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Again because of the relatively large computational cost of evaluating the 
exponential, the Hill function is sometimes replaced with the Leonard-Jones 
potential: 
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 There is a problem with assigning sums of “standard” van der Waals radii 
from Pauling and Bondi to r*.  These values for the van der Waals radii came 
from X-ray crystallography.  It was assumed that the distances of closest 
approach between atoms in different molecules would be the sum of their van 
der Waals radii. 

 
 
However, this gives values for the atomic van der Waals radii that are too small, 
because atoms that are slightly further apart than the closest-approach pairs are 
in the attractive parts of their van der Waals potentials, and so they act to bring 
the closest-approach pairs inside their own minimum-energy distances.  Because 
there are typically a large number of these not-quite-closest-approach atom pairs, 
their total effect can be quite large.  Thus Pauling and Bondi thought that the van 
der Waals radius of hydrogen was 1.2 Å, whereas values of 1.5 Å or larger work 
best in molecular mechanics calculations. 
 Torsional contributions to the strain energy in symmetrical sp3-sp3 rotors, 
such as ethane, can be represented by functions such as: 
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(where ω is the dihedral angle, and V0 is the barrier height).  For less symmetrical 
cases, the torsional potential is generally expanded in a Fourier series: 
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A force field consisting of a sum of the Es, Eθ, Evdw, and Eω terms just discussed 
does quite well in reproducing the structures and relative energies of relatively 
unstrained alkanes.  However, it does not do well in reproducing the geometries 
and strain energies of small rings.  For example, cyclobutane is predicted to have 
C–C bonds like those of cyclohexane (1.535 Å) and to be planar, whereas in 
reality it has longer C–C bonds (1.548 Å) and is puckered.  In order to correct for 
problems of this kind, interaction terms between bond length and bond angle, 
and between torsion and bond angle can be introduced.  They take forms such 
as: 
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A force field including these terms can correctly describe most alkanes and 
unconjugated alkenes and alkynes.  However, another problem arises for 
conjugated systems.  The molecular mechanics model, in treating bonds as 
localized mechanical objects, is in some ways like the Lewis electron-pair-bond 
model.  Like the Lewis model, molecular mechanics has difficulty dealing with 
electron delocalization and its consequences for the energy and structure of 
molecules. 
 The problem can be illustrated by naphthalene, whose C–C bond lengths are 
related to the π bond order in the molecule: 

!

"

"' "' "'

! !

" "

 
 
One sees that the α–β bond is double in two resonance structures and single in 
one, whereas the β–β’ bond is double in one and single in two.  One might 
consequently expect the α–β bond to have the higher bond order and to be 
shorter.  That expectation is consistent with the experimental fact that the α–β 
bond length is 1.371 Å whereas the β–β’ bond length is 1.422 Å.  This kind of 
phenomenon cannot be described by simple mechanical functions.  
Consequently, most molecular mechanics procedures get around it by doing 
something like a PPP calculation (effectively a HF on just the π electrons), and 
then correcting the bond length on the basis of the calculated bond order.  For 
example, the MM2 force field uses the empirical relationship: 
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where lij is the length of a bond between carbons i and j and ρij is the π bond 
order between them.  An empirical correction to the calculated ΔHf° for the 
molecule also has to be made on the basis of the computed π-electron energy. 
 Once heteroatoms are added, it is commonly necessary to include some 
method of handling dipole-dipole interactions.  A typical expression is: 
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where c is a constant, µ1 and µ2 are the magnitudes of the two dipole moments, 
and D is the effective dielectric constant.  The definitions of r12, χ, α1, and α2 are 
shown diagramatically below: 
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The MM2 Force Field 
(Allinger, N.L. JACS 1977, 99, 8127) 
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The MM3 Force Field 
(Allinger, N.L.; Yuh, Y.H.; Lii, J.-H. JACS 1989, 111, 8551.) 
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(where bonds a and b are attached to a common atom with angle #.)
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Hydrogen bonding and anomeric effects were subsequently added (Allinger, 
N.L.; Rahman, M.; Lii, J.-H. JACS 1990, 112, 8293.) 


