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Considerations during numerical-methods-based 
Curve Fitting 

 
 
 
1. Local versus Global Minima 
 Nonlinear least-squares fitting is an iterative process that attempts to find a 
minimum on a complicated multidimensional surface. There always is the chance of 
getting trapped in a local minimum. For this reason, try different initial guesses to attempt 
to locate either other local minima or of course preferably the global minimum. 

 
 
2. Parameter Correlation 
 A problem frequently encountered in curve fitting is the occurrence of strongly 
correlated parameters. Two or more parameters may be adjusted agonistically or 
antagonistically with no loss in fitting quality. In the case of a model that depends 
linearly on its parameters, the correlation can be systematically described by a correlation 
matrix that derives from the variance-covariance matrix (multi-parameter analog of the 
variance σ2). Each coefficient of the correlation matrix indicates the correlation between 
two fit coefficients as a number between -1 and 1. The correlation between two 
coefficients is perfect if the corresponding element is 1, it is a perfect inverse correlation 
if the element is -1, and there is no correlation if it is 0. Fits in which an element of the 
correlation matrix is very close to 1 or -1 signals "identifiability" problems: the absolute 
value of strongly correlated parameters cannot be determined. An example of this is the 
correlation between k2 and k-2 in figure 1. 

 k1 k2 k-2 k3 k4 k-4 

k1 1.00 -0.76 -0.74 0.11 -0.87 -0.63 

k2 -0.76 1.00 0.99 -0.41 0.58 0.41 

k-2 -0.74 0.99 1.00 -0.37 0.55 0.41 

k3 0.11 -0.41 -0.37 1.00 -0.20 -0.15 

k4 -0.87 0.58 0.55 -0.20 1.00 0.82 

k-4 -0.63 0.41 0.41 -0.15 0.82 1.00 

Figure 1. Correlation Matrix of a six-parameter system 
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 Correlation matrices can be good indications of correlated variables but are only 
accurate for linear systems. If the fitting function is nonlinear in the fit coefficients, then 
the error estimates are an approximation. The quality of the approximation will therefore 
depend on the nature of the nonlinearity at the particular location in parameter space. One 
may manually check for parameter correlations by supplying different initial guesses. 
This should naturally be assisted by one’s chemical intuition since correlations are rooted 
in the system under investigation. 
 A more systematic approach to determining correlation coefficients for nonlinear 
cases is to compute the χ2-surface by sampling parameter space. Plotting χ2 with respect 
to two other parameters may give a plot like the one shown in figure 2. 
 

 
Figure 2. Contour Plot of χ2-surface. 
 
The example shows an inverse correlation of the two parameters. Decreasing k1 while 
increasing k2 yields an equally low value in χ2 and therefore an equally good fit as 
indicated by the deep blue color. 
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The next three sections are devoted to technical challenges of numerical methods during 
curve fitting. 
 
 
3. The fudge factor ‘epsilon’ in Levenberg-Marquardt fitting 
 Epsilon (also referred to as lambda λ in other sources) is a fudge factor used in the 
Levenberg-Marquardt algorithm of nonlinear least-squares fitting. Epsilon values are 
used to calculate partial derivatives with respect to each fit coefficient. The partial 
derivatives in turn are used to determine the search direction for the coefficients that give 
the smallest chi-square. If the function depends only weakly on a coefficient the 
derivatives may appear to be zero. The solution to that problem is to set an epsilon value 
large enough to give a nonzero difference in the function output. Alternatively, if the 
function depends strongly on a coefficient epsilon should be set to a lower value. A good 
choice for epsilon will greatly improve the quality and efficiency of the fit. Choosing 
epsilon values is an empirical process and can be thought of as a separate adjustable 
parameter for curve fitting. As a rule of thumb, adjust epsilon in powers of ten (1, 0.1, 
0.01 etc.). 
 
 
4. Numerical Integration Methods 
 One of the primary hurdles of numerical integration is the presence of stiff 
differential equations. This occurs frequently in chemical kinetics where concentrations 
abruptly change curvature. An example is shown in figure 3. 
 

  
Figure 3a. non-Stiff Solver          Figure 3b. Stiff Solver 
 
 A non-Stiff solver spends much effort in integrating the later parts of the curve 
because it needed to dramatically reduce its step-size at the point of large curvature. The 
stiff solver is able to adapt to the changes in curvature better and leads to increased 
performance. Bulirsch-Stoer and Runge-Kutta methods are adequate solvers for smooth 
(nonstiff) problems with the latter being more commonly used. Trial runs indicate that 
Adams-Moulton may be fastest for nonstiff problems. BDF is definitely the preferred 
algorithm for stiff problems. Runge-Kutta is a robust method that may work on problems 
that fail with other methods. 
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5. Computer Precision during Numerical Integration 
 Computers have a limit in the number of digits they can handle. One may reach 
this limit if values differ by many orders of magnitude. To avoid such computer precision 
problems, it is suggested to scale parameters and concentrations to a value of around 
unity. This involves modifying the model by introducing pseudo-rate constants and 
pseudo-concentrations. An example is shown below: 
 
d[A]/dt = k1[A][B] - k-1 [C] 
[A]0 = 0.1 (decreases to 0.0 over time) 
[B]0 = 2.5 10-5 (remains low over time) 
[C]0 = 0.0  (increases to 0.1 over time) 
 
k1= 0.25 
k-1 = 1.51⋅10-7 
 
Rewrite the differential equation above as: 
 
d[A]/dt = k1[A][B’] - k-1’[C] 
 
where k-1 =10-7⋅k-1’ = 1.51⋅10-7 
 [B]0 = 10-5⋅ [B’]0 = 2.5 10-5 
 
k-1 and [B]0 were scaled to values closer to unity. The numerical integration will now 
proceed more smoothly and more accurately. 


