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Curve Fitting 
 
Introduction: 
 The objective of curve fitting is to theoretically describe experimental data with a  
model (function or equation) and to find the parameters associated with this model. 
Models of primary importance to us are mechanistic models. Mechanistic models are 
specifically formulated to provide insight into a chemical, biological, or physical process 
that is thought to govern the phenomenon under study. Parameters derived from 
mechanistic models are quantitative estimates of real system properties (rate constants, 
dissociation constants, catalytic velocities etc.). It is important to distinguish mechanistic 
models from empirical models that are mathematical functions formulated to fit a 
particular curve but whose parameters do not necessarily correspond to a biological, 
chemical or physical property. An example of an empirical fit is a polynomial fit to the 
baseline of a NMR spectrum with the goal to baseline-correct the spectrum. The final 
coefficients are physically meaningless and also of no interest. The objective of curve 
fitting is different: one is just trying to draw a curve through the baseline. Other examples 
of empirical fitting include interpolations such as splines and smoothing. We will not be 
concerned with such empirical curve fitting methods in this discussion. 
 
Curve Fitting: The Least-Squares method: 
 Curve fitting finds the values of the coefficients (parameters) which make a 
function match the data as closely as possible. The best values of the coefficients are the 
ones that minimize the value of Chi-square. Chi-square is defined as: 
 

 
 
where y is a fitted value for a given point, yi is the measured data value for the point and 
σi is an estimate of the standard deviation for yi (discussed under weighting). In other 
words, the best values of the coefficients are obtained when the sum of the squared 
distances ∑(y-yi)2 of the fit to the data is minimized while giving data points more weight 
during this minimization process that have smaller errors (σi). 
This principle is illustrated easiest with the case of fitting data to a straight line: y = ax + 
b. We presume that there is a theoretical reason for our data to fall on a straight line 
(→mechanistic model). 
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The sum-of-squares ∑(y-yi)2 is, like the name implies, the sum of the squares illustrated 
in the figure above. The Least-Squares method during curve-fitting aims to minimize this 
sum. 
 
The method of minimization is therefore called least-squares fitting (or regression). The 
reason that the squares are minimized as opposed to just the vertical distances is related 
to the squared term in the Gaussian error distribution. No further details are provided 
here. 

 
We distinguish linear least-squares from nonlinear least-squares fitting. If the dependent 
variable y is linearly dependent on the parameter the linear least-squares method of 
minimization applies (e.g. straight line, polynomial). This proceeds noniteratively in one 
step. Nonlinear least-squares fitting is computationally more intensive as the fit 
iteratively tries various values to yield the minimum value of chi-square. 
Note that in the case of linear least squares fitting, the function need not be linear in the 
argument x, but only in the parameters that are determined to give the best fit. Therefore, 
y=aex is an example of a linear least squares problem (y is linearly dependent on a) 
whereas y=aebx is an example of a nonlinear least-squares problem due to the nonlinear 
dependence of y on the parameter b. 
 
Nonlinear least-squares fitting employs the Levenberg-Marquardt algorithm to search for 
the coefficients that minimize chi-square. It has become the industry standard in 
nonlinear regression. As the fit proceeds and better values are found, the chi-square value 
decreases. The fit is finished when the rate at which chi-square decreases is small enough 
(other convergence criteria may apply). 
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Assumption of the nonlinear least-squares method: 
(1) x is known precisely, all the error is in y. 
(2) variation in y follows a Gaussian distribution 
(3) scatter is the same all the way along the curve 
 
Implications of this assumption on data processing prior to fitting: 
(1) Shifting x-value by a constant: ok 
(2) divide/ multiply all x-values by constant: ok 
(3) smooth data prior to curve fitting (interpolation, spline, smoothing) 
 → error distribution is no longer Gaussian resulting in misleading fits. 
(4) Applying nonlinear transforms: 1/y, √y, log(y) etc. 
 →again, error distribution is no longer Gaussian leading to less accurate or 
 inaccurate estimates of parameters and skewed/biased error bars. 
 
 
Weighting: 
 In general, a weight wi must be assigned for each measurement yi. This weighting 
term is used in the calculation of chi-square: 
 

 
 
If estimates of the standard deviation σi are available, the true weights can be used (wi = 
σi). One can provide this a priori by measuring the standard deviation of the experimental 
noise. Otherwise, σi is first set to unity and estimated posteriori from the residuals after 
the fit. This has no implications on the fitting process but rather is necessary to calculate 
valid error bars of the fit. One may provide user-specific weighting to assign greater or 
lesser importance to certain data points. This is based on experience or on common-sense 
criteria. This may introduce bias. However, there exist physical models that require such 
weighting terms. Examples include: 
wi = 1/yi    and, 
wi =√yi. 
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Analysis of the Fit 
 
(1)Residuals - A good visual cue: 
 A residual is what is left when one subtracts the fit from the raw data. Ideally, the 
raw data is equal to some known function plus random noise. If one subtracts the function 
from the data, what is left therefore should be noise. If this is not the case, then the 
function does not properly fit the raw data. The residuals illustrated in the left-hand figure 
are the result of a good fit whereas the residuals in right-hand figure reflect a deviance. 
 

 
 
95% confidence limit  
-Assessing error of parameter estimates 
 Reporting the parameter estimates as ‘best estimate ±δ’ means that the estimate of 
the parameter lies between ‘best estimate -δ’ and ‘best estimate +δ’ with a 95% 
probability. Note that valid error estimates are only valid if all the data points have 
roughly equal errors and if the fit function is, in fact, appropriate to the data. It is 
therefore important to inspect the residuals first before interpreting 95% confidence 
limits. 
 
Correlation Matrix 
-Assessing uniqueness of parameter estimates 
 A correlation matrix is a normalized form of the covariance matrix (covariance 
matrix is an array of covariances between the parameters. It is the natural generalization 
to higher dimensions of the concept of the variance). Each element of the correlation 
matrix shows the correlation between two fit coefficients as a number between -1 and 1. 
The correlation between two coefficients is perfect if the corresponding element is 1, it is 

a perfect inverse correlation if the 
element is -1, and there is no 
correlation if it is 0. 
Note that the matrix is symmetric 
with respect to the diagonal. One 
should be suspicious of fits in which 
an element of the correlation matrix 
is very close to 1 or -1. This may 
signal "identifiability" problems. 
That is, the fit does not distinguish 
between two of the parameters very 

well, and so the fit is not very well constrained. 

 k1 k2 k-2 k3 k4 k-4 

k1 1.00 -0.76 -0.74 0.11 -0.87 -0.63 

k2 -0.76 1.00 0.99 -0.41 0.58 0.41 

k-2 -0.74 0.99 1.00 -0.37 0.55 0.41 

k3 0.11 -0.41 -0.37 1.00 -0.20 -0.15 

k4 -0.87 0.58 0.55 -0.20 1.00 0.82 

k-4 -0.63 0.41 0.41 -0.15 0.82 1.00 


