
T3. Ab Initio Hartree-Fock Calculations 
The point of the empirical parameters in semiempirical calculations was to cut 
down on the number of electron-electron repulsion integrals that needed to be 
computed.  In ab initio calculations one simply calculates them all.  This 
inevitably means that ab initio calculations take much longer than semiempirical 
ones.  Some modification of basis sets is generally employed in order to make the 
calculations tractable. 
 We have specified before that our molecular orbitals are commonly expressed 
as linear combinations of atomic orbitals (the LCAO approximation): 
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but we have not said what the analytical forms of the atomic orbitals are.  For the 
hydrogen atom or for monatomic ions with only one electron, the atomic orbitals 
can be found exactly. 
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The wave functions are conveniently expressed in spherical polar coordinates: 
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The indices n, l, and ml are the principal, azimuthal, 
and magnetic quantum numbers, respectively.  The 
first few examples of the functions Rn,l and Yl,m are 
tabulated below and on the next page.  The Rn,l 
functions define the radial part of each wave 
function, while the Yl,m functions (which are called 
spherical harmonics) define the angular part.  The 
true spherical harmonics are complex.  They can be 
used in linear combinations that are real, but these 
linear combinations do not have the proper ml 

quantum number. 
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In practice, the radial nodes make little difference to the description of bonding, 
but considerably complicate the calculation of electron-electron repulsion 
integrals.  Slater proposed a series of radial functions lacking nodes: 
 

! 

R
n ,l = (2" )

n+
1

2 (2n)![ ]
#
1

2 r
n#1
e
#"r  

 

! 

" =
Z # s

n*
 

 
 
Z = atomic number 
s = shielding parameter 
n*= effective principal quantum number 

n 
1 
2 
3 
4 
5 
6 

n* 
1.0 
2.0 
3.0 
3.7 
4.0 
4.2 

 
The shielding parameter s is given an empirical value based on n and l, and on 
the number of other electrons of various types (s, p, d etc.) in the atom. 
 In combination with the angular functions, these radial functions generate a 
set of atomic-orbital-like basis functions that have subsequently become known 
as Slater-type-orbitals (STOs).  However, for large molecules even the STOs do 
not provide a computationally tractable basis set.  They are consequently 
commonly further approximated by Gaussian-type orbitals (GTOs), which have 
a exp[–ζr2] distance dependence, instead of exp[–ζr].  The reason is that the 
electron-electron repulsion integrals can then be solved analytically, whereas 
with STOs they can only be solved numerically.  The down side is that one GTO 



is a very bad approximation to a STO – the GTO falls off too quickly with 
increasing r, and lacks the proper “cusp” at the nucleus.  This problem is handled 
by using several GTOs to represent one STO.  Even though this greatly increases 
the total number of basis functions, it still turns out to be computationally 
quicker than trying to use the STO functions themselves. 
 When we come to consider molecules rather than atoms, the wave functions 
for the electrons do not look much like atomic orbitals.  Even though we use the 
LCAO approximation, there is no reason to restrict ourselves to the orbitals that 
we consider “natural” for isolated atoms.  Thus, while a 1s orbital is an exact 
(aside from relativity) and sufficient description of the electron wave function of 
a ground-state hydrogen atom, a good description of the electron wave function 
for a hydrogen atom in a molecule may require that we used p or d orbitals, and 
will generally be improved if we have several orbitals of each type in our basis 
set.  However, for every orbital that we add to the basis set, the calculation gets 
bigger.  There are groups of more-or-less standard basis sets from which one can 
select on the basis of the size of the molecule and the availability of 
computational resources. 
 
A General Representation of Gaussian Basis Sets 
A common, if not completely specific, way of specifying the basis set used in a 
calculation is as illustrated in the following example: (14s,9p,5d)/[8s,4p,2d].  This 
is sometimes called a contraction scheme – it shows how the primitive Gaussians 
are contracted together to simulate STOs.  The particular example illustrated here 
means that for the atom in question there were 8 s-type functions, 4 sets of p-type 
functions and 2 sets of d-type functions.  The 8 s-type functions were 
approximated by linear combinations of 14 Gaussians, the 4 sets of p-type 
functions by 9 sets of Gaussians, and the 2 sets of d-type functions by 5 sets of 
Gaussians.  The reason this is not completely specific is that it doesn’t tell us how 
the Gaussians were divided up to make the basis functions.  A more specific 
specification would be one such as this: [62111111/5211/32].  The  s, p, and d 
functions are separated from each other by slashes.  Within each group the 
number of digits tells us how many basis functions of that type there are, and the 
value of the digit tells us how many primitive Gaussians were used to represent 
each basis function. 
 
The Pople Basis Sets 
J.A. Pople has been one of the principal contributors to ab initio electronic 
structure theory.  He and his coworkers have developed a series of basis sets, 
with names that one commonly sees in the chemistry literature: 
STO–3G:  This is the smallest and least accurate of the Pople basis sets.  It uses 
three Gaussian functions to represent each Slater-type orbital, and uses only the 
atomic valence basis functions.  Thus for hydrogen it would be (3s)/[1s] and for 
carbon and other elements in that row in the periodic table it would be 
(6s,3p)/[2s,1p], or [33/3] in the more specific representation. 
3–21G: This is the smallest of the so-called split-valence basis sets.  It recognizes 
that the bonding in molecules is not well described by the use of just atomic 
valence basis functions, and so provides the valence shell with two sets of each 
type of orbital, having different ζ values – i.e. different distance dependencies.  
One often hears such a basis set described as being of “valence double-zeta” 
quality.  For hydrogen, the contraction scheme is (3s)/[2s] or [21].  For elements 



in the carbon row the contraction scheme is (6s,3p)/[3s,2p] or [321/21].  The total 
number of primitive Gaussians required for each carbon atom is 15: that’s 3 for 
the 1s orbital, 2 for 2s and 1 for 2s’, 2 each for 2px, 2py, and 2pz, and 1 each for 2px’, 
2py’, and 2pz’. 
6-31G* or 6-31G(d): This is one of the most commonly used basis sets for 
medium-sized organic molecules.  It is the first in the Pople series to use 
polarization functions, i.e. basis functions of higher angular momentum than 
would be necessary for the wave function of the hydrogenic atom.  In this case, 
the polarization functions are d functions on atoms in the carbon row of the 
periodic table.  For hydrogen the contraction scheme is (4s)/[2s] or [31] and for 
carbon it is (10s,4p,1d)/[3s,2p,1d]  or [631/31/1].  By default in ab initio 
programs such as Gaussian 03 and GAMESS, the d functions are the six Cartesian 
d functions 
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harmonic d orbitals.  Thus, each carbon atom is represented by 28 primitive 
Gaussians. 
6-31G** or 6-31G(d,p):  This is like 6-31G(d) except that there are now p-type 
polarization functions added to the hydrogens. 
6-311G* or 6-311G(d):  This is a basis set of valence triple-zeta quality.  Its 
contraction scheme is (11s,5p,1d)/[4s,3p,1d] or [6311/311/1].  For some reason, 
the default in Gaussian 03 uses 5 spherical-harmonic d functions instead of the 6 
Cartesian d functions used for the 6-31G(d) basis set.  With the default setting, 
there are then 31 primitive Gaussians for each carbon atom. 
6-31+G* or 6-31+G(d):  The “+” basis sets add so-called diffuse functions to the 
previously described mix.  The diffuse functions represent very loosely held 
electrons, and so the orbitals are big (small ζ).  They are also typically s-type 
functions.  In 6-31+G(d) they are added only to the non-hydrogen atoms.  In 6-
31++G(d) they are added to hydrogens as well.  They are defined for larger basis 
sets too, so 6-311++G(d,p) is a recognized combination.  Diffuse-function basis 
sets are primarily of value for describing anions and electronic excited states, 
although there is evidence that their inclusion is useful in most density-
functional calculations, too (vide infra). 
 
The Dunning Correlation-Consistent Basis Sets 
The Pople basis sets were created at time when Hartree-Fock calculations were 
the best most people could do.  The exponents (ζ) and the contraction coefficients 
(linear-combination coefficients for the primitive Gaussians) were optimized for 
HF-type calculations.  Subsequently, more sophisticated calculations, designed to 
capture at least some electron correlation (see T4 and T5), have become 
computationally feasible.  Dunning has therefore created a completely new 
group of basis sets whose adjustable parameters have been optimized for post-
Hartree-Fock calculations.  They are the cc-pVDZ, cc-pVTZ, etc. basis sets.  The 
“cc” stands for “correlation consistent,” the “p” stands for “polarization,” 
indicating that polarization functions are included in all of the basis sets, and the 
“VDZ” or “VTZ” stand for “valence-double-zeta” or “valence-triple-zeta,” 
respectively.  Here are the sets of basis functions in each: 

Elements cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z 
 H, He  2s,1p  3s,2p,1d 4s,3p,2d,1f 5s,4p,3d,2f,1g 
 Li – Ne  3s,2p,1d  4s,3p,2d,1f 5s,4p,3d,2f,1g 6s,5p,4d,3f,2g,1h 
 Na – Ar.  4s,3p,1d  5s,4p,2d,1f 6s,5p,3d,2f,1g 7s,6p,4d,3f,2g,1h 



As usual, these basis functions are contracted from Gaussians.  Thus, for 
example, a carbon atom in the cc-pVTZ basis set has the following contraction 
scheme: (22s,7p,2d,1f)/[4s,3p,2d,1f]. 
 

T4. Post-Hartree-Fock Calculations 
T4.1  Introduction to the Electron Correlation Problem 
Let’s review the RHF description of the H2 molecule.  This is a simple case to 
analyze in detail because we have only two electrons and two molecular orbitals 
amongst which to distribute them.  There are four ways to do this with singlet 
coupling (i.e. with one α-spin and one β-spin electron): 
 

 
 

 
 Each of the configurations χ2 – χ4 can be viewed as being derived from the 
configuration χ1 by one or more substitutions of σu* for σg in the Slater 
determinant.  Configurations χ2 and χ3 are single-substitution configurations (a 
substitution replaces σg by σu* in an entire column of the determinant), while χ4 is 
a double-substitution configuration. 
 The RHF description of the bonding in H2 uses just the configuration χ1.  One 
could imagine a better description coming from some linear combination of χ1 
and χ4 (the other two configurations have different symmetry and could not 
mix), but how much of an improvement would this be?  The answer is shown on 
the next page.  (Note: there is a subtle but important point about how the TCSCF 
calculations shown in the figure are done.  See the MCSCF section T4.5.) 



 



One sees that for the H2 molecule at its equilibrium geometry, the RHF 
description agrees pretty well with the TCSCF description.  Consistent with this, 
the contribution from the double-substitution configuration (i.e. the magnitude 
of c2

2) is quite small at this geometry.  However, the RHF description is 
completely inadequate for describing the breaking of the H–H bond.  By 
definition, the potential energy of an electron in an isolated ground-state 
hydrogen atom is exactly –0.5 hartree, and so the potential energy of an H2 
molecule should asymptotically approach –1 hartree as we stretch the H–H bond.  
The TCSCF wave function does that, but the RHF one does not.  Indeed there is 
no real sign of asymptotic leveling off of the energy even out to 5 Å!  The reason 
is that the RHF wave function describes a pair of electrons that spend half their 
time in the vicinity of one H nucleus or the other no matter how far apart the nuclei 
are!  In other words, the dissociation limit for the RHF wave function is 1/2(H•  
•H) and 1/2(H+  –H).  The latter contribution shouldn’t be there in the 
completely dissociated state, but it should be there in H2 molecule.  The TCSCF 
wave function allows us to add in a second configuration that subtracts out the 
ionic contribution in a smooth way as the H–H distance increases. 
 The incorrect description of bond breaking by RHF wave functions is due to 
their neglect of electron correlation.  The particular variety that is needed to 
describe a pair of dissociated H atoms is called nondynamic electron correlation.  In 
brief, any time one has a number of electrons that are incompletely filling a set of 
nearly-degenerate energy levels, the wave function cannot be properly described 
by a single Slater determinant.  There will be several determinants (two in the 
case we just discussed) that have linear-combination coefficients with nearly 
equal absolute magnitude.  The kinds of species that require this sort of 
description are singlet-state biradicals (triplet states can usually be reasonably 
described by a single UHF determinant), singlet radical pairs, and antiaromatic 
annulenes such as cyclobutadiene, and, most importantly, many transition states. 
 The need for multideterminant wave functions for description of nondynamic 
electron correlation provides a real problem for the Dewar-type semiempirical 
MO models.  These were supposed to have their electron correlation built in by 
parameterization.  The problem is that there exists no parameterization that can 
describe nondynamic electron correlation properly.  If one uses a 
multideterminant wave function (which can be done in MOPAC) then one 
double counts some of the electron correlation, making the resulting species too 
stable.  If one uses single-determinant wave functions then the entire description 
of the species is wrong.  Notice, however, that the Pople-type semiempirical 
methods (CNDO and INDO) do not have this problem because they were never 
parameterized to include electron correlation in the first place. 
 Even when there is not a near-degeneracy issue, the neglect of electron 
correlation in RHF wave functions can still have negative consequences.  For 
example, important aspects of non-bonded interactions, such as van der Waals 
forces, can only be described with wave functions that include electron 
correlation.  If one chose to address such problems with multideterminant wave 
functions, one would find that the RHF configuration would have by far the 
largest weight in the linear combination, but although the weights of the other 
configurations may be small, there would be a lot of them.  Together these small 
individual contributions from a large number of configurations can have an 
important overall effect.  This is generally known as dynamic electron correlation. 



 The various methods that have been devised for handling the electron-
correlation problem differ in how well they deal with the dynamic and 
nondynamic components, as described in the following sections. 
 
 
T4.2  Configuration Interaction (CI) 
We can imagine writing our multideterminant wave function as follows: 
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The Cs are just linear-combination coefficients, and the χs are Slater 
determinants.  The first one, χ0, is just the HF determinant.  It is called the 
reference configuration, because all of the other determinants are defined with 
respect to it, using the molecular orbitals that were optimized for the HF 
solution.  The second term contains all of the single-substitution determinants, 
where the subscript i and superscript a mean that molecular orbital i of the 
reference configuration is replaced by virtual orbital a.  (The virtual orbitals are 
the empty molecular orbitals in the HF calculation.)  The third term contains all 
of the double-substitution determinants, and so on. 
 If we could evaluate the energy of such a wave function, we would get the 
exact solution to the Schrödinger equation for the particular basis set that we 
have selected.  In other words, we would have completely recovered from 
having made the orbital approximation in the first place.  However, this so-called 
Full Configuration Interaction (FCI) is not practical for most molecules, as we 
will see. 
 In order to find the energy of our wave function, we need to evaluate: 
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as usual.  We can substitute the expression for Ψ in terms of the Slater 
determinants, and then use the Variation Principle to optimize the CI 
coefficients.  The result will look superficially like the one that we got for simple 
Hückel theory: 

! 

C j(Hkj " ESkj ) = 0
j=1

n

#

Or,  in matrix formulation :

E =C"1
HC

 

 
However, the coefficients that we are trying to optimize are not the LCAO 
coefficients that define how the molecular orbitals are made up of the atomic 
orbitals; rather they are CI coefficients that define how the CI wave function is 
made up of Slater determinants.  Let’s look at the CI matrix, H, that we are trying 
to diagonalize: 
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All of the unshaded blocks of the CI matrix are zero.  The 0,1 and 1,0 blocks 
corresponding to integrals of the type 
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theorem, which says that single-substitution configurations, by themselves, make 
no contribution to improving the HF wave function.  (Overall they make a 
contribution because the 1,2 and 2,1 blocks are nonzero.)  The remaining zero 
blocks of the CI matrix have that value because H is a function containing only 
one- and two-electron terms.  If the two Slater determinants in a block Hij differ 
in more than two molecular orbitals, the matrix element vanishes. 
 If we could diagonalize the CI matrix, we would get the energies and wave 
functions of all of the electronic states of a particular spin symmetry (singlets, 
triplets, etc.), and the results would be the best possible (nonrelativistic) solutions 
we could get for whatever basis set we have used.  The reason that is not 
practical is the vast number of configurations that one generates by permuting 
electrons among molecular orbitals. For a water molecule described with a 6-
31G(d) basis set, there are approximately 1010 singlet Slater determinants one can 
write.  That means our CI matrix would be of dimension 1010 × 1010.  Not even 
modern computers can diagonalize matrices of that size.  So, what is to be done? 
 
T4.2.1  Limited Configuration Interaction 
One could imagine truncating the full CI expression by ignoring all determinants 
that involve more than a certain number of substitutions from the reference 
determinant.  These limited versions of configuration are given abbreviations, 
CIS, CID, CISD, CISDT, CISDTQ, etc. that indicate which sets of substitutions 
have been retained (S=single, D=double, T=triple, Q=quadruple). Each CI 
calculation has a number of roots, corresponding to different electronic states.  
Because of Brillouin’s theorem, the smallest truncation that can improve the 
ground-state wave function is CID.  If you request a CIS calculation in the 
Gaussian03 package, it automatically assumes you are asking for higher roots of 
the CI determinant, since the lowest energy one would be identical with the HF 
solution. 
 Limited CI is variational, meaning that an improvement of the level of theory 
is guaranteed to give a lower energy (eg. ECISDT < ECISD).  However, limited CI has 
the major flaw that it is not size consistent.  Size consistency means that the 
following intuitively obvious criterion should be satisfied: the total energy of two 
atoms or molecules, A and B, separated by a near infinite distance, must be equal 
to the sums of the energies of A and B calculated separately.  The reason this 
criterion is not satisfied for limited CI is easy to see.  Suppose one did a CID 
calculation on A and then one on B.  Those determinants involving both double 
substitutions on A and double substitutions on B would be included in the 
separate calculations, but would be excluded in a CID calculation on A and B 



together (no matter the distance between them) because they would then be 
counted as quadruple substitutions. 
 A device for getting around this problem has been discovered.  It is called 
Quadratically-convergent Configuration Interaction or QCI.  The technical 
details of how this is done will not be covered here, but it should be recognized 
that the improvement comes at the cost of some computational overhead. 
 Limited CI and QCI calculations provide a good way of capturing dynamic 
electron correlation.  They do not do such a good job on nondynamic electron 
correlation, for reasons explained in section T4.5. 
 
T4.3  Møller-Plesset Theory 
The Møller-Plesset approach is to treat the electron correlation problem as an 
exercise in perturbation theory.  In perturbation theory one treats the 
Hamiltonian of a system of interest (H) as being derivable from a simpler 
Hamiltonian (H(0)) for which the solution to the Schrödinger equation is known. 
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Here V is the perturbing potential, and λ is some number <<1. 
The wave function, Ψ , that would be the eigenfunction of H is written in terms of 
the (known) wave function for H(0), plus a series of correction terms: 
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 Perturbation theory permits Ψ (1) and E(1) to be calculated from V and Ψ (0).  
Then Ψ (2) and E(2) can be calculated from V and Ψ (1, and so on.  Each correction 
term gets harder to calculate, but also smaller in magnitude, and so at some point 
the series can be truncated. 
 A common use of this approach is to determine the interaction between 
molecules by treating the wave function of the interacting system as a perturbed 
version of the wave functions of the separate reactants. 
 In Møller-Plesset theory the electron-electron repulsion is treated as a 
perturbation on the one-electron (i.e. extended-Hückel) Hamiltonian.  The first-
order correction provides the Hartree-Fock solution.  Higher-order corrections 
incorporate increasing amounts of electron correlation.  They are commonly 
specified by the letters MP and a number, indicating where the perturbation-
theory expansion was terminated. 
 MP2 theory is roughly equivalent to CISD in terms of the amount of electron 
correlation that it captures.  However it is much quicker to evaluate than the full 
CISD expression.  It also has the advantage over CISD of being size consistent.  
However, it has one big flaw: CISD was accomplished by using the exact 
Hamiltonian on a truncated-expansion wave function.  It was therefore 
variational.  MP theory uses a truncated Hamiltonian, and is therefore not 
variational.  That means that one cannot use the calculated energy as a measure 
of the quality of the calculation.  Indeed, there is no objective measure of quality 



– one just has to hope that increasing numbers of correction terms lead to an 
increasingly accurate result. 
 As implemented in Gaussian 03, MP4 theory comes in two forms: MP4(SDQ) 
and MP4(SDTQ).  As the letters in parentheses imply, the former excludes but 
the latter includes triple-substitution determinants.  Inclusion of triples greatly 
increases the size of the computation, but can also significantly improve the 
quality of the results.  The highest level MP theory available in Gaussian 03 is 
MP5, but it is impractical for molecules of a size interesting to organic chemists. 
 It is important to note that Møller-Plesset theory, being predicated on the idea 
of a small perturbation, is valid only for systems in which the reference 
configuration is dominant.  It cannot be used reliably on systems in which 
nondynamic electron correlation is important.  It is also only valid for the lowest-
energy state of each spin multiplicity. 
 
T4.4  Coupled-Cluster Theory 
Through a clever reformulation of the CI expansion in terms of exponential 
operators, coupled cluster theory manages to solve the size consistency problem 
of limited CI.  That is CCSD (couple clusters with single and double 
substitutions) actually includes the missing quadruple-substitution terms (and 
some higher terms too) of CISD.  The price for this reformulation is that the 
method is no longer variational.  Neverthless, CCSD(T) (the parentheses around 
the T means that the triple-substitution clusters are only included approximately) 
is currently considered the best practical method for calculating dynamic 
electron correlation of moderate-sized molecules.  Like the various limited-CI 
methods it does not do a very good job with nondynamic electron correlation.  
The reason is explained in the next section. 
 
T4.5  MCSCF, CASSCF, and GVB Calculations 
It is useful at this point to remind ourselves of the many linear-combination 
coefficients that go into a CI calculation.  They are summarized in the schematic 
diagram below: 
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In a typical calculation, the Gaussian contraction coefficients and exponents are 
optimized just once, and define the basis set for the calculation.  Note however, 
that the Dunning correlation-consistent basis sets were constructed with the 
recognition that the earlier Pople-type basis sets had been variationally 
optimized only for HF calculations, and that a different set of coefficients and 
exponents might be more suited to post-HF calculations. 
 In any of the post-HF methods that we have discussed so far, the variational 
optimization of the LCAO coefficients is undertaken only for the reference (HF) 
configuration.  The other determinants use the same LCAO coefficients, even 
though those would certainly not be optimum if one were to variationally 
optimize them for each configuration.  This does not present a serious error 
when the reference configuration makes the dominant contribution, but it can be 
a problem when there are two or more configurations that make contributions of 
similar magnitude (i.e. when nondynamic electron correlation is important).  The 
most notorious species exhibiting such behavior are singlet-state biradicals.  For 
such situations one should use Multi-Configuration Self-Consistent Field 
(MCSCF) methods, in which the LCAO coefficients are individually optimized 
for each determinant, and the CI coefficients are optimized simultaneously.  Not 
surprisingly, this is much more work than just optimizing the CI coefficients, and 
really not computationally tractable if many configurations are included in the 
CI.   
 A common solution is to restrict the MCSCF computation to an “active space” 
of orbitals that encompasses the key sites of bond making and breaking.  Such 
restricted MCSCSF calculations are commonly called CASSCF, for Complete 
Active Space Self Consistent Field.  The CASSCF terminology generally includes 
two numbers in parentheses, separated by a comma, such as CASSCF(4,4) or 
CASSCF(12,10).  The first specifies the number of electrons included in the 
MCSCF calculation, and the second specifies the number of orbitals.  The 
procedure for carrying out a CASSCF(6,6)/6-31G(d) calculation on benzene is 
indicated in the following diagram: 

 



GVB theory does something like CASSCF.  In its most common form, GVB-PP 
(Generalized Valence Bond – Perfect Pairing), it retains the electron-pair bond 
concept of VB theory.  Electrons are permuted among the σ and σ* orbitals (or π 
and π* orbitals) of an electron-pair bond, but not between the orbitals of one 
atom pair and another.  The simplest possible CASSCF calculation CASSCF(2,2) 
is thus identical in its result to GVB-PP(1).  These methods are also known as 
TCSCF for Two-Configuration Self Consistent Field.  This is the minimum level 
of theory that can capture the nondynamic electron correlation of a simple 
(unconjugated) singlet-state biradical. 
 The principal problem with CASSCF is that it provides no correlation for 
electrons outside of the active space.  Thus the dynamic component of electron 
correlation is poorly treated by such methods. 
 
T4.6  Multireference CI and Multireference Perturbation Theory 
In order to do a good job with both dynamic and nondynamic electron 
correlation, one needs to do CI or perturbation theory from multiple reference 
configurations.  One does a CASSCF calculation first and uses the resulting 
multideterminant wave function to provide reference configurations for the 
calculation of dynamic electron correlation.  In their calculation on cyclopropane 
stereomutation, Getty, et al.) did TCSCF-CISD – i.e. CI with single and double 
substitutions from a two-configuration reference wave function. 
 Multireference CI is very computationally intensive, and far from user 
friendly, and so in recent years a number of efforts to formulate multireference 
second-order perturbation theory have been reported.  There are four readily 
available versions of such methods CASMP2 (in Gaussian 03), MCQDPT (in 
GAMESS), CASPT2 (in MOLCAS), and RS2C (in MOLPRO).  Most people think 
that CASPT2 does the best job.  A number of people (BKC included) think that 
the CASMP2 in Gaussian 03 is just plain wrong!  None of these methods is easily 
able to do geometry optimization or vibrational-frequency calculation, and so the 
standard approach is to run CASPT2(m,n)//CASSCF(m,n). 
 

T4.7  Composite Methods 
Gaussian 03 includes a number of methods designed to approximate the result of 
high-level electron correlation calculations with large basis sets.  All of these 
methods involve additivity schemes, with some empirical parameters included. 
 
The Gaussian models G1, G2, and G3: 
G2, for example, tries to estimate the result of a QCISD(T)/6-311+G(3df,2p) 
calculation by combining results of QCISD(T) with smaller basis sets and lower-
level correlation approximations with the big basis set. 
 
The “Complete Basis Set” or CBS models CBS-4, CBS-QB3, and CBS-APNO: 
The CBS methods use extrapolation schemes to try to estimate what one would 
get with an infinitely large basis set and a high-level correlation method.  CBS-
QB3 is practical for molecules with up to about 10 heavy (i.e. non-hydrogen) 
atoms, and generally gives properties such as bond energies within about ±1 
kcal/mol. 
Note: None of the composite methods can handle nondynamic electron correlation very 
well, and so they are unreliable for things such as singlet biradicals, and may be 
questionable for transition states. 



T5. Density Functional Theory 
For a good introductory reference see: Kohn, W.; Becke, A.D.; Parr, R.G. J. Phys. 
Chem. 1996, 100, 12974. 
 
Density functional theory (DFT) takes a completely different approach to 
calculation of electronic structure from either MO or VB theory.  Whereas the 
latter two consider the multielectron wave function, Ψ(1,2…n) to be the 
fundamental function from which all else can be derived, DFT, as its name 
implies, assigns that role to ρ(r), the electron density.  The two are related by: 
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i.e. ρ(r) is the probability of finding one electron out of n in a volume element 
between r and r + dr (for some reason, the τ of MO theory traditionally gets 
replaced by a confusing r in DFT).  However, this relationship does not have to 
serve as a definition of ρ(r).  It could equally well serve as a (not very convenient) 
definition of Ψ . 
 More importantly, the first Hohenberg-Kohn Theorem proves that all 
physical properties of a system can be uniquely determined from ρ(r), without 
need to calculate Ψ .  So how are we going to find ρ(r)?  An answer comes from 
writing the expression for the energy of a system of electrons as a functional of ρ: 
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Here E(ρ) is the energy, F(ρ) is called the Hohenberg-Kohn functional, T(ρ) is the 
kinetic-energy functional (which can be calculated exactly) and Uee(ρ) is the 
electron-electron repulsion functional (which cannot, except for the case of the 
uniform “electron gas” in which v(r)=0).  The function v(r) is the 
“external”potential experienced by the electrons (usually due just to the nuclei).  
“External” means the potential beyond that exerted by the electrons on each 
other.  The second Hohenberg-Kohn Theorem proves that there exists an 
equivalent to the Variation Principle in MO theory, i.e. any trial density ρ(r) will 
give an energy E(ρ) that is greater than E0, the true ground-state energy of the 
system with density ρ0(r).  Thus in searching for the best density, one seeks to 
minimize the energy of the system, just as one does in searching for the best Ψ in 
variational MO theory. 
 The best practical approach for optimizing the density thus far has come from 
the Kohn-Sham approach.  They postulate a set of orbitals, ϕj(r), describing a set 
of noninteracting electrons (in the Hartree-Fock sense – i.e. the electrons feel each 
other’s average field but do not respond explicitly to one another) whose density 
is equal to the true density for the molecule: 
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Now the expression for F(ρ) becomes: 
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This turns out to be just a reformulation of the Hartree-Fock expression except 
for the Exc(ρ) term, which is known as the exchange correlation energy.  If an 
expression for this were known, then its addition would turn the Hartree-Fock 
approximation into an exact theory, aside from relativity.  Needless to say, an 
analytical expression for Exc(ρ) is not known.   
 Most of the recent research in DFT has been involved in coming up with 
various approximate expressions for Exc(ρ).  The need to approximate Exc(ρ) 
means that the various DFT methods are not variational.  Furthermore, many of 
the expressions for Exc(ρ) are empirical, and so one winds up with sets of 
different DFT methods and no objective way of choosing one over another. 
 That said, the method known as B3LYP has been extremely popular in recent 
years, and seems to have given very good results for a variety of molecules.  (The 
B,L,Y, and P stand for Becke, Lee, Yang, and Parr, whose functionals are used in 
this method.  The exchange correlation functional is divided into exchange and 
correlation parts.  The correlation part comes from L, Y, and P, and the exchange 
part from B.  The 3 comes from the fact that this one of Becke’s exchange 
functionals has three parameters in it.)  B3LYP is sometimes called a hybrid 
method, because the expression for Becke’s exchange functional requires that a 
HF calculation be carried out. 
 The great appeal of DFT methods is that they generally require little more 
effort than a HF calculation, but can include dynamic electron correlation quite 
well.  If an exact expression for Exc(ρ) were known, nondynamic electron 
correlation would also be included.  In reality, it has been much debated whether 
the approximate expressions for Exc(ρ) currently available do include 
nondynamic electron correlation.  A number of authors (notably Houk at UCLA) 
have used UB3LYP (i.e. B3LYP with unrestricted Kohn-Sham orbitals) to carry 
out calculations on singlet biradicals.  These empirically seem to give good 
results in a number of cases, but the <S2> value that one calculates is invariably 
(and necessarily) near 1.0 instead of 0.  Several theorists (notably Davidson at 
Indiana University) think that UB3LYP is not reliable for systems needing good 
descriptions of nondynamic electron correlation.  In summary, the debate is 
between those who say “It works” and those who say “But it shouldn’t.” 
 Note: The designation “B3LYP” is unfortunately not unique.  Different programs for 
doing density functional calculations interpret it in different ways.  The problem is 
described in: Hertwig, R. H.; Koch, W. Chem. Phys. Lett. 1997, 268, 345.  It stems 
from two different suggestions for the form of the exchange functional in the same paper; 
some programs followed one suggestion and some the other.  For example, Gaussian 03 
and GAMESS have different definitions.  The differences are not huge, but if you are 
trying to compare your results with something in the literature, you do need to make 
certain that you used the same implementation! 



 
 
 
 
 
 
Summary of Methods for Treating Electron Correlation 
We have seen a large number of ways of trying to deal with the electron-
correlation problem.  They all have their pros and cons.  In the end, the questions 
of cost, size consistency, variational character and ability to handle dynamic 
and/or nondynamic electron correlation have to be weighed against each other.  
Here is a table that can help when trying to pick a method for a particular 
problem. 
 

 
Method 

Dynamic 
Correlation 

Nondynamic 
Correlation 

Size 
Consistent 

 
Variational 

 
Scalinga 

 HF Poor – None None Yes Yes n2 
 B3LYP Very Good Controversial Yes No ~ n3 

 MP2 Fair None Yes No nN4 
 CISD Good Fair No Yes n2N4 
 CCSD Very Good Fair Yes No n2N4 
 MP4 Excellent None Yes No n3N4 
 CCSD(T) Excellent Good Yes No n3N4 
 CASSCF None Excellent No Yes b 
 CASPT2 Good Excellent No No b 
a n is the number of occupied orbitals and N the number of virtual orbitals.  The scaling 
expressions are approximate and based on the assumption that N >> n. 
b  The number of configurations contributing to a CASSCF wave function in C1 symmetry is given 
by: 
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where S is the total spin (i.e. 1/2 of the number of unpaired electrons), ν is the number of active 
electrons, and µ is the number of active orbitals.  For higher symmetry species, the number of 
configurations will be smaller.  For CASPT2 the number of configurations is the same, but then 
the calculation will take roughly nN4 times longer because of the MP2-like correction for dynamic 
electron correlation. 
 
 

 

 

 

 

 

 

 

 

 



E 5. Isotope Effects 
 
The theory of kinetic isotope effects, in which isotopic substitution alters the rate 
of a reaction is best developed by beginning with equilibrium isotope effects, such 
as those shown below: 
 
 HT  + H2O    H2  +  HTO K298 = 6.26±0.10 
 
 H12CN  +  13CN–  H13CN  +  12CN– K298 = 1.026±0.002 
 
Why is there an effect from isotopic substitution at all, and why does its 
magnitude depend on the nature of the isotope? 
 
From statistical thermodynamics: 
 

A    B 
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Q = partition function   ε0 = lowest energy level 
kB = Boltzmann’s constant   gi = degeneracy of energy level i 
 
According to the Born-Oppenheimer approximation: 
 

QTOT = QTRANSQROTQVIBQELECQNUC 
 

For QELEC with a non-degenerate ground state, define ε0 = 0: 
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Usually ε1 >> kBT, so all terms beyond the first are ~ 0.  Hence QELEC≈ 1.  Similarly, 
QNUC≈ 1. 
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M = mass of molecule   h = Planck’s constant 
V .= volume of container 
 
From the rigid rotor solutions to the Schrödinger equation: 
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IA = moment of inertia around principal axis A 
σ .= external symmetry number (= number of equivalent representations of the 
molecule attainable purely by rigid rotation). 
 
From the harmonic oscillator solutions to the Schrödinger equation: 
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νI = frequency of mode i   N = number of atoms in molecule 
 
These approximations give quite a good account of equilibrium isotope effects.  
For the two examples given, one calculates values of 6.35 and 1.030, respectively.  
The isotope effects arise because the different masses of the isotopes affect QTRANS 
directly (through M), QROT through the moments of inertia, and QVIB through the 
mass dependence of the vibrational frequencies. 
 
Kinetic isotope effects are generally explained within the context of Transition 
State Theory: 
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k1 = rate constant for reaction of lighter isotope 
k2 = rate constant for reaction of heavier isotope 
κ1,2 = transmission coefficients Q‡ = partition function for transition state 
 
Substituting as before for the partition functions gives: 
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EXC =  Excitation term (factored out of vibrational partition function) :
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ZPE =  Zero - point - energy term (also from vibrational partion function) :
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If we assume that κ1 ≈ κ2; M2

‡/M1
‡ ≈ M2/M1; I2

‡/I1
‡ ≈ I2/I1, then MMI ≈ 1.   



 
For most organic molecules, 
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i < 0.08 at 298 K.  Hence 
EXC ≈ 1.  (This is generally true for organic reactions, but see:  Slaughter, L. M.; 
Wolczanski, P. T.; Klinckman, T. R.; Cundari, T. R. J. Am. Chem. Soc. 2000, 122, 
7953 for evidence that it may not be reliably true in organometallic reactions.) 
 
Kinetic isotope effects are therefore traceable primarily to differences in ZPE 
between transition states and reactants: 
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1. The isotopically heavier molecule always has the lower ZPE. 
2. As the force constant of a particular mode increases, the difference in ZPE 

for the two isotopes increases. 
3. As a consequence of 1 and 2, the heavier isotope always prefers to be in 

the more strongly bound position. 
4. The difference in ZPE for two isotopes decreases as the atomic number of 

the element increases. 
 
Calculation of isotope effects with Gaussian 03 
 
Many of the papers reporting the use of ab initio or density functional theory to 
compute isotope effects cite the application of specific programs (such as 
“QUIVER”) for the purpose.  However, unless tunneling corrections need to be 
made, this isn’t necessary.  All one has to do is to calculate activation free 
energies for the isotopic isomers.  The isotope effect is then given by: 
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Within the WebMO interface, this can be accomplished in the following way: 
 

1. Calculate the free energy of the reactant(s) for the unlabeled molecule(s) 
by geometry optimizing and then carrying out a vibrational frequency 
computation.  When you calculate the vibrational frequencies, click the 
“Save Checkpoint File” box in the “Advanced” panel. 

2. Do the same thing for the transition state. 
3. Since isotopic substitution does not affect the Hessian within the limits of 

the Born-Oppenheimer approximation, it is unnecessary to repeat the 
lengthy computation of the Hessian.  It’s that information that is being 
saved in the checkpoint files for steps 1 & 2.  To access the information 
select “New Job Using This Geometry” from the vibrational frequency 
calculations on one of your unlabeled species.  In the job options window, 
select “Use Checkpoint File” in the “Advanced” panel, and choose the 



correct checkpoint file from the dropdown menu.  Next, select the 
“Preview” panel and hit the “Generate” button.  You will now need to 
edit the Gaussian input file to request that the force-constant matrix (i.e. 
Hessian) be read in, and to specify where and what your isotopes are.  
You do this by adding immediately after the “FREQ” keyword: 
=(READFC,READISO).  Then, after the last two numbers in the input file 
(which specify the charge and spin multiplicity of your molecule, and so 
would be 0 1 for a neutral singlet) leave one blank line followed by the 
temperature in K and pressure in atmospheres, followed by a list of 
atomic masses in amu, in the order in which your atoms were numbered 
in the unlabeled molecule.  For example, if I had done a B3LYP/6-31G(d) 
frequency calculation on ethylene, with the two carbons numbered 1 and 
2, and I wanted to repeat the calculation for a single 13C-labeled 
isotopomer at 298.15 K and 1 atmosphere, the input file would look like 
this: 

 
%CHK=output.chk 
%NOSAVE 
#N B3LYP/6-31G(d) FREQ=(READFC,READISO) GEOM=CHECKPOINT 
<Blank line> 
C2H4 
<Blank line> 
0 1 
<Blank line> 
298.15 1.0 
13 
12 
1 
1 
1 
1 
<Blank line> 
 
 The integer masses for the atoms are automatically replaced by exact 

masses for the isotopes in the program.  All of the blank lines are 
important, which is why they are shown explicitly in this example.  When 
you click on the “Submit Job” instruction, you should find that the new 
calculation is complete in a second or two, no matter how long the original 
calculation might have taken.  Furthermore, the free energy that you see 
reported should be slightly different from the one for the unlabeled 
molecule. 

4. Repeat this exercise for each of your reactant(s) and for the transition 
state.  Thereby calculate an activation free energy for the unlabeled 
reaction and one for the reaction with your chosen isotope(s).  These two 
quantities are respectively the 
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‡ in the equation for the isotope 
effect (although make sure you have converted from hartrees to the units 
of R – typically kcal/mol).  If your reaction is bimolecular, you don’t need 
to worry about the standard state, because the unlabeled and isotopically 
substituted reactions will be referred to the same standard state (which 
defaults to 1 atmosphere in Gaussian 03), and so any correction for a 
change of standard state would cancel out in the comparison. 

 


