
Fitting Program Code and Instructions

a. General Description

 The data from the Job plot experiments can be fit parametrically to a
mathematical model for a specific ensemble. The programs for performing these
fits were written for use in MatLab version 7.1. Fitting Job plot data can be
achieved without any prior knowledge of programming or use of MatLab by
following the directions for the end user (vide infer). Annotated program code is
also included. In the program code sections, the primary functions are boxed in
by a double line, and the other code is boxed in by a single line so as to be easily
distinguished from the annotations. Note that although relative integrations and
relative populations are different, here they are used synonymously.

One of three programs fits the experimental data to the model ensemble.

• Single Aggregate allows for fits to ensembles composed of a single
aggregation state--ensembles of dimers, tetramers, and hexamers. Single
aggregate allows constraint of the fit to a symmetric plot for ensembles of
dimers or of enantiomers.

• Monomer_Dimer allows for fits to ensembles of monomers and dimers.
• Dimer_Tetramer allows for fits to ensembles of dimers and tetramers.

 The Single_Aggregate functions were extended to allow for fitting data of
mixtures of monomers and dimers or mixtures of dimers and tetramers. Note
that although the functions share the same or similar names as those used for the
Single_Aggregate case, their input and behavior differs. Each program consists
of a data file, the experimental result input file, in addition to several other files
described below.

• Try_fit. The script compares the experimentally measured data against
current model parameters by plotting the curves for the model and the
experimental data provided in the data file. The script also computes and
reports the error between the model and the measurements. The inputs
are: 1) XA or Xa 2) phi, phi_monomer, phi_dimer and/or phi_tetramer 3)
peak_assignment, peak_assignment_monomer, peak_assignment_dimer,
and/or peak_assignment_tetramer 4) Expt_Populations 5) Expt_Errors.
 The outputs are: 1) plot of experimental relative integrations versus
XA 2) a plot of the theoretical model according to the phi’s provided on
the same axis as the experimental data 3) the root mean square difference
between theory and experiment. If no errors are given, then all points are
weighted equally. If errors are given, then the most precise points are
weighted more heavily in the error calculations. For each [AnBm], the
script computes both the mean error and root mean square error. If the
mean error is positive, then the model over-estimates the abundance of
[AnBm] on average. The root mean square error measures the goodness of
the fit.

• Refine_fit. The concentration of each species in an ensemble, [AnBm],

depends on the mole fraction of the subunit A, XA(j), and on the relative

stability, phi(n+1). This function refines the initial estimate of phi to more
closely match the predicted relative integrations to the experimental
relative integrations. When the script reaches completion, it reports the
new values of phi and the root mean square difference between the
predicted and observed populations. The inputs are: 1) XA or Xa 2) phi,
phi_monomer, phi_dimer and/or phi_tetramer 3) peak_assignment,
peak_assignment_monomer, peak_assignment_dimer, and/or
peak_assignment_tetramer 4) Expt_Populations 5) Expt_Errors. The
outputs are the refined values of phi, phi_new, phidnew and/or phitnew,
and the root mean square error of the new estimate, error. The script
Refine_fit_s is used for fitting data from ensembles of a single aggregation
state which requires a symmetric plot. Symmetry is required if A and B
are enantiomers or if the ensemble is of dimers although the reason is
different in each case. The symmetry is achieved in this script by
requiring that AnBm and AmBn have same value of phi. For ensembles
which do not have inherent symmetry in the plot, the script refine_fit
should be used. The inputs and outputs are the same as in refine_fit.

• Multimers. This script computes the concentrations of each species in the

ensemble according to the predicted XA(j) and phi’s. In this
parameterization, the aggregate concentrations are adjusted until the
closest XA(j) to the experimental result is obtained. These adjustments in
turn determine all the aggregate concentrations. Multimers can be fed
multiple values XA(j) and will determine the aggregate concentrations for
each value. Parameterizations specific to each fitting program are detailed
before the code.

• Populations. The concentrations of AnBm computed by Multimers are

converted by the function in Populations into calculated values for the
relative integrations. For each value of XA(j), a set of populations
(PP(j,n+1) or Model_populations) is predicted.

• Error_of_Model. This script evaluates the fit of the model by comparing

each model population to the experimentally measured population,
weighted by the accuracy of the measurement.

b. Instructions for the end user

1. Open the program folder and then open the data file.
Single Aggregate: Data1
Monomer_Dimer: Data_Monomer_Dimer
Dimer_Tetramer: Data_Dimer_Tetramer

2. Enter the experimental data as described in the data file. Data may be
copied and pasted from Excel or other programs. Save.

3. Open MatLab.
4. Choose the directory where the program is stored from the drop down

menu at the top of the workspace.
5. Load the data by entering the name of the data file in the command line.

6. Enter the appropriate Try_fit function for plotting the experimental data
and the initial curves removing the Expt_Errors input from the function if
no Expt_Errors were entered:
Single Aggregate: try_fit(XA, phi, peak_assignment, Expt_Populations,
 Expt_Errors)
Monomer_Dimer: try_fit(Xa, Ctotal, phi_monomer,
 peak_assignment_monomer, phi_dimer, peak_assignment_dimer,
 Expt_Populations, Expt_Errors)
Dimer_Tetramer: try_fit(Xa, Ctotal, phi_dimer, peak_assignment_dimer,
 phi_tetramer, peak_assignment_tetramer, Expt_Populations,
 Expt_Errors)

7. Look at the resulting figure and check that the data points are plotted
correctly and that the curves’ colors coordinate with the data points’
colors. If not, an error in the peak assignment has been made. If a curve is
missing, check that the phi’s have been input correctly. Entering whos in
the command line will return information about which parameters the
computer has recognized as well as the size of the parameter arrays. If
need be, return to the data file and make corrections. Be sure to save,
reload the data file, and check the plot again after making the corrections.
Enter clf in the command line clear the figure.

8. Adjust the initial phi values such that the curves have a reasonable
starting point by returning to the data file and entering new values. Be
sure to save, reload the data file, and check the plot again. Alternatively,
enter phi = [# # # etc.] in the command line. Use the Try_fit function to
check how close the curves are to the data.

9. Enter the function for performing the fit found in the Refine_fit or
Refine_fit_s script. If no Expt_Errors were entered, remove the
Expt_Errors term from the refine_fit input.
Single Aggregate: [phi_new, error] = refine_fit(XA, phi, peak_assignment,
 Expt_Populations, Expt_Errors)
Single Aggregate symmetric: [phi_new, error] = refine_fit_s(XA, phi,
 peak_assignment, Expt_Populations, Expt_Errors)
Monomer_Dimer: try_fit(Xa, Ctotal, phi_monomer,
 peak_assignment_monomer, phi_dimer, peak_assignment_dimer,
 Expt_Populations, Expt_Errors)
Dimer_Tetramer: try_fit(Xa, Ctotal, phi_dimer, peak_assignment_dimer,
 phi_tetramer, peak_assignment_tetramer, Expt_Populations,
 Expt_Errors)

10. If the fit stalls, press ctrl+c to abort the fit. A list of where the error
occurred will be returned. For fitting ensembles of monomers and dimers
or dimers and tetramers, a stalled fit likely indicates the need to set and fix
one of the phi’s for missing aggregates to 0.00001. The output provides the
optimized phi’s and the error (root mean square of the weighted sum of
squares of the residuals).

11. Replace the initial phi values with the optimized values by entering in the
command line: phi = phi_new for the single aggregate fit, phi_monomer =
phi_monomer_new and phi_dimer = phi_dimer_new for the monomer_dimer
fit, and phi_dimer = phi_dimer_new and phi_tetramer = phi_tetramer_new for
the dimer_tetramer fit.

12. Observe the optimized fit using the try_fit function.
13. Better fits may be obtained using different start values if a local minimum

was obtained.

c. Definitions

1. XA(j) is the mole fraction of A for a set of relative integrations.
2. Ctotal is the absolute subunit concentration and is only used in the

Monomer_Dimer and Dimer_Tetramer fits.
3. Expt_Populations are the relative integrations of the observed aggregates

with a range of (j,k) -> k-th NMR peak.
4. Expt_Errors is the experimental error in Expt_Populations(j,k) and is an

optional input. In the Try_fit script, Expt_Errors are the size of the error
bars.

5. peak_assignment, peak_assignment_monomer,
peak_assignment_dimer, and peak_assignment_tetramer assign each
column of Expt_Populations to a specific aggregate. The program expects
aggregates to be ordered by increasing number of A subunits.

6. phi, phi_monomer, phi_dimer, and phi_tetramer are a measure of the
relative stability of the aggregate and is related to the free energy of the
species by kTln phi. Phi’s must be positive integers and have N+1 values
for an ensemble consisting of species with N total subunits. The program
expects phi’s to be listed in the order of increasing A subunit as it is in
peak_assignment. Phi_monomer, phi_dimer, and phi_tetramer are used
in the monomer_dimer and dimer_tetramer fits.

7. phi_constant allows some values of phi to be fixed in the monomer_dimer
and dimer_tetramer programs and has the same length as the total
number of phi’s.

8. Expt_weights(j,k) are the amount each experimental data point
contributes to the error in the fit. It is calculated by 1. /(Expt_Errors +
mean(mean(Expt_Errors))). If no Expt_Errors are entered, all points are
weighted equally.

9. Concentrations, is the set of concentrations for each aggregate in the
ensemble, [AnBm]. Concentration_monomer(j,n+1),
Concentration_dimer(j, n+1), and Concentration_tetramer (j, n+1) are the
concentrations of the monomer, dimer and tetramer aggregates in the
Monomer_Dimer and Dimer_Tetramer fits.

10. PP and Model_Populations are the calculated relative
populations/integrations for the model of the ensemble.

11. mean_error is the root mean square difference in the weighted sum of
squares of the residuals over the entire fit.

12. pop_error(1,j) is the mean of population j - mean of model value for
population j. For example, pop_error(1,1) is the mean amount the
prediction of [A0BN] misses the measured amount. The value could be
negative, zero, or positive.

13. pop_error(2,j) is the root mean square error for population j. For example,
pop_error(2,1) is the root square amount the prediction of [A0BN] missed
by. Its value is always positive.

14. phi_new, phidnew, and phitnew are the refined values of phi.

15. error is the root mean square error of new estimate.

d. Single Aggregate Fitting Code

d.1. Single Aggregate--Data1

XA(j). The mole fractions are listed in terms of A such that the first mole fraction
corresponds to the first row of Expt_Populations.

XA = [0.000 0.084 0.145 etc.];

Expt_Populations are input as a column of data for each aggregate. If an
aggregate has two resonances, they should be summed and entered as a single
relative integration. Recall that each row must end with a semi-colon.

Expt_Populations =[0.000 0.000 1.000 ;
0.000 0.168 0.832 ;
0.000 0.290 0.710 ;
etc.;];

Expt_Errors are input as an array the same size as Expt_Populations. Each
column and row should correspond to the row and column of Expt_Populations.
Expt_Errors is optional and should be left as “Expt_Errors = [;];” if none are
provided.

Expt_Errors = [;];

peak_assignment. The program expects the peaks to be listed in the order of
increasing A subunit as shown below:

Hexamers: peak_assignment = [[A0B6] [A1B5] [A2B4] [A3B3] [A4B2] [A5B1] [A6B0]]
Tetramers: peak_assignment = [[A0B4] [A1B3] [A2B2] [A3B1] [A4B0]]
Dimers: peak_assignment = [[A0B2] [A1B1] [A2B0]]

The column number of the corresponding relative integration is input in the
order designated above. If an aggregate was not observed, it should be assigned
to column 1. Its absence will be accounted for in phi. For example, if the
populations are listed in the order: [A2B2] [A3B1] [A1B3] [A0B4] [A4B0], then
peak_assignment = [4 3 1 2 5]. If a relative integration is a sum of two
unresolved resonances, enter the same column for each aggregate contributing to
the resonance.

peak_assignment = [3 2 1];

phi is listed in the order of increasing A subunit as it is in peak_assignment. The
phi’s provided here will be the start value for the fit. If an aggregate was not
observed, it should be assigned a phi value of 0.

phi = [1 1 1];

d.2. Single Aggregate—Try Fit

function try_fit(XA, phi, peak_assignment, Expt_Populations, Expt_Errors

Code for weighting the Expt_Populations. If no Expt_Errors are entered, all
points are weighted equally.

 if (nargin<5)
 Expt_weights=ones(size(Expt_Populations));
 else
 Expt_weights = 1./(Expt_Errors + mean(mean(Expt_Errors)));
 end

Code for plotting the experimental data.

 hold on ; cscheme='bgrmkcybgrmkcy'; axis([0 1 0 1]); xlabel('X_A');
ylabel('Mole Fractions');
 for j=1:size(Expt_Populations,2)
 if (nargin<5)
 plot(XA, Expt_Populations(:,j),sprintf('%so',cscheme(j)));
 else
 errorbar(XA, Expt_Populations(:,j),
Expt_Errors(:,j),sprintf('%so',cscheme(j)));
 end
 end

Code for plotting the model with the provided phi’s.

 XAc = [0:0.01:1]; TP=Populations(multimers(XAc,phi), peak_assignment);
 for j=1:size(TP,2)
 plot(XAc,TP(:,j),sprintf('%c',cscheme(j)));
 end

Code for computing and reporting the error.

 [mean_error, pop_error] = Error_of_Model(XA, phi, peak_assignment,
Expt_Populations, Expt_weights);
 N = length(phi)-1;
 fprintf(1,'\nThe Mean mismatch is %f percent.\n', mean_error*100);
 for j=1:size(pop_error,2)
 fprintf(1,'Predicted value of species A%dB%d +A%dB%d exceeds
measurement by %f percent and mean square error of %f percent.\n ',j-1,N-
j+1,N-j+1,j-1,pop_error(1,j)*100,pop_error(2,j)*100);
 end

d.3. Single Aggregate—Refine_fit

function [phi_new, error] = refine_fit(XA, phi, peak_assignment,
Expt_Populations, Expt_Errors)

If no Expt_Errors are entered, all points are weighted equally.

if (nargin<5)
 Expt_weights = ones(size(Expt_Populations));
else
 Expt_weights = 1./(Expt_Errors + mean(mean(Expt_Errors)));
 end

Set-up the parameters.

N = length(phi)-1;
param = [2:(N+1)];

The initial step size for improving the model is 10%.

step_size = 0.1*phi(param),

 Initialize the search.

N_no_progress = 0;
N_max_trials = 30;

Compute and report the initial quality of the fit.

[error_best, temp] = Error_of_Model(XA,phi, peak_assignment,
Expt_Populations) ;
fprintf(1,'\n Initial Error of Fit = %f percent.\n', error_best * 100);

Iteratively try to improve fit by changing each parameter in turn.

while (N_no_progress < N_max_trials)
 flag = 0;
 for k=1:length(param)

Step to the right and to the left.

 phi_testr = phi;
 phi_testr(param(k))=abs(phi(param(k)) + step_size(k));

 [error_testr, temp] = Error_of_Model(XA,phi_testr, peak_assignment,
Expt_Populations, Expt_weights);
 phi_testl = phi;
 phi_testl(param(k))=abs(phi(param(k)) - step_size(k));
 [error_testl, temp] = Error_of_Model(XA,phi_testl,
peak_assignment,Expt_Populations, Expt_weights);

Decide if a step should be taken. If the step is positive, continue that direction. If
the negative step is better, continue that way. If no improvement occurs, flag
that step and begin reducing the step size. N_no_progress is the number of steps
since the error last improved. N_max_trials is the number of iterations to
perform without the error getting better before ending the script. It is set to 30.

 if (error_testr<error_best)
 error_best=error_testr; phi=phi_testr; step_size(k) = step_size(k) * 1.5;
 N_no_progress=0;
 elseif (error_testl <error_best)
 error_best=error_testl; phi=phi_testl; step_size(k) = step_size(k) * 1.5;
 N_no_progress=0;
 else
 flag = flag + 1;
 end
 end
 if (flag>2)
 step_size = step_size * (0.75 + 0.25*rand);
 N_no_progress=N_no_progress+1;
 end

After adjusting each element of rel_weight, report the new fit.

 fprintf(1,'\nError - %f , Last Good Step - %d , Mean Step Size - %f \n
',error_best, N_no_progress, 100*mean(step_size./phi(param)));
 fprintf(1,' Phi - %f',phi);
 end
 error=error_best;
 phi_new = phi;

d.4. Single Aggregate—Refine_fit_s

function [phi_new, error] = refine_fit_s(XA,phi, peak_assignment,
Expt_Populations, Expt_Errors)

If no Expt_Errors are entered, all points are weighted equally.

if (nargin<5)
 Expt_weights = ones(size(Expt_Populations));

else
 Expt_weights = 1./(Expt_Errors + mean(mean(Expt_Errors)));
 end

Because some phi’s are equivalent in a symmetric plot and the model is
unchanged by multiplication, only some of the parameters need to be adjusted.
Here the program is told which parameters to adjust.

N = length(phi)-1;
param = [1:ceil(N/2)];

The initial step size for improving the model is 10%.

step_size = 0.1*phi(param),

Initialize the search.

N_no_progress = 0;
N_max_trials = 30;

Compute and report the initial quality of the fit.

[error_best, temp] = Error_of_Model(XA,phi, peak_assignment,
Expt_Populations, Expt_weights) ;
fprintf(1,'\n Initial Error of Fit = %f percent.\n', error_best * 100);

Iteratively try to improve fit by changing each parameter in turn.

while (N_no_progress < N_max_trials)
 flag = 0;
 for k=1:length(param) % Try tweaking each parameter in turn.

Step to the right and to the left.

 phi_testr = phi;
 phi_testr(param(k))=abs(phi(param(k)) + step_size(k));
 phi_testr(N+2-param(k))=phi_testr(param(k));
 [error_testr, temp] = Error_of_Model(XA,phi_testr, peak_assignment,
Expt_Populations, Expt_weights);
 phi_testl = phi;
 phi_testl(param(k))=abs(phi(param(k)) - step_size(k));
 phi_testl(N+2-param(k))=phi_testl(param(k));
 [error_testl, temp] = Error_of_Model(XA,phi_testl,
peak_assignment,Expt_Populations, Expt_weights);

Decide if a step should be taken. If the step is positive, continue that direction. If
the negative step is better, continue that way. If no improvement occurs, flag
that step and begin reducing the step size.

 if (error_testr<error_best)
 error_best=error_testr; phi=phi_testr; step_size(k) = step_size(k) * 1.5;
 N_no_progress=0;
 elseif (error_testl <error_best)
 error_best=error_testl; phi=phi_testl; step_size(k) = step_size(k) * 1.5;
 N_no_progress=0;
 else
 flag = flag + 1; % Failure. Add it to the list.
 end
 end
 if (flag>=length(param)) % Failed to improve by stepping in any direction
 step_size = step_size * (0.75 + 0.25*rand); % Reduce step size
 N_no_progress=N_no_progress+1;
 end

After adjusting each element of rel_weight, report the new fit.

 fprintf(1,'\nError - %f , Last Good Step - %d , Mean Step Size - %f \n
',error_best, N_no_progress, 100*mean(step_size./phi(param)));
 fprintf(1,' Phi - %f',phi);
 end
 error=error_best;
 phi_new = phi;

d.5. Multimers

Two subunits A and B are mixed to form an ensemble of N-mers in
solution. A given N-mer is described by it's composition, AnBm where n+m = N
and N = length(phi)-1. Thus, N+1 different species are possible in solution. The
concentration of each species is determined by XA(j) and phi. This ensemble is
parameterized with the set,

Concentration(j,n+1) = phi(n+1) * Mn(n+1) * C(A_0:B_N)^(1 - n/N) *
C(A_N:B_0)^(n/N)

where C(j,n+1) is the concentration of species AnBm for mole fraction XA(j) and
Mn is the multiplicity of state j (N!/(j!*(N-j)!). The mole fraction is of course,

XA(j) = Sum(n*Concentration(j,n+1)) / Sum(Concentration(j,n+1))

The concentrations are normalized to be mole fractions of aggregates such that

(Sum over n of (Concentration(j,n+1)) = 1

In this parameterization, C(j,1) and C(j,N+1) are adjusted until the closest
XA(j) to the experimental result is obtained because XA(j) is the quantity the
experimenter adjusts. These adjustments in turn determine all the C(j,n+1)'s.
Multimers can be fed multiple values XA(j) and will determine the aggregate
concentrations for each value. The returned Concentration(j,n+1) is the
concentration of species [AnBm] for the j-th value of XA(j).

The returned XA and Concentrations(n+1) are a function of phi and a
parameter, A.

C(n+1) = N * Constant * M(n) * phi(n+1) * A^n * (1-A)^(N-n)

where N, Constant, Mn, and A are numbers so that,

sum(C(n+1)) = 1

XA = sum(C(n+1)*n)/N; 0 <= A <= 1.

The bisection method is used to get the value of A for which XA is the one
supplied to bisect. The concentration of each species is then returned for that
value of a.

function Concentration = multimer(XA, phi)

For each XA(j), Concentration(j,:) is determined.

for j=1:length(XA)

Cconc is returned by the function bisect.

Concentration(j,:) = bisect(XA(j),phi);
end
function Conc = bisect(XA, phi)

Initialize values of A. XA may differ by 1e-6 at the end of bisection and while not
close enough, continue to bisect by the difference of Amin and Amax.

 tolerance = 1e-6;
 Amax = 1; Amin = 0;
 [Xmin, Conc]=Cparametric(Amin, phi);
 [Xmax, Conc]=Cparametric(Amax, phi);

while ((Xmax-XA)>tolerance)
Atest = (Amin+Amax)/2;

 [Xtest, Conc]=Cparametric(Atest,phi);
 if (Xtest>XA)
 Amax = Atest; Xmax=Xtest;

 else
 Amin = Atest; Xmin=Xtest;
 end
 end
 function [XA, Concs] = Cparametric(A, phi)

Parametric form where mole fraction and Concentrations are determined for A,
phi and N.

N = length(phi)-1;
B = 1-A;
Concs(1)= B^N*phi(1);
Concs(N+1)=A^N*phi(N+1);
Mn=1;

Calculate each unscaled concentration.

for k=2:N
 idx=k-1;
 Mn = Mn * (N+1-idx)/idx;
 Concs(k) = phi(k)*A^idx*B^(N-idx)*Mn;
end

Normalize the concentration and calculate the mole fraction.

Concs = Concs / sum(Concs);
XA = sum(Concs.*[0:N]/N);

d.6. Single Aggregate—Populations

function result = Populations(Concentrations, peak_assignment)

For each type of aggregate, add to correct NMR resonance.

 result = zeros(size(Concentrations,1),max(peak_assignment));
 N = size(Concentrations,2);
 for j=1:N
 idx = peak_assignment(j);
 result(:,idx) = result(:,idx) + Concentrations(:,j);
 end

d.7. Single Aggregate—Error of Model

Function: [mean_error, pop_error] = Error_of_Model(XA, phi, peak_assignment,
Expt_Populations, Expt_Errors)

function [mean_error, pop_error] = Error_of_Model(XA, phi, peak_assignment,
Expt_Populations, Expt_Errors)

If no Expt_weights are given, weight all points equally.

 if (nargin<5)
 Expt_weights=ones(size(Expt_Populations));
else
 Expt_weights = 1./(Expt_Errors + mean(mean(Expt_Errors)));
 end

Compute values from the model.

 Concentrations = multimers(XA,phi);
 PP = Populations(Concentrations, peak_assignment);

Compute the mean error.

 diff = PP - Expt_Populations;
 mean_error = sqrt(sum(sum(diff.*diff.*Expt_weights)) /
sum(sum(Expt_weights)));

Compute the error for each population independently.

 pop_error = sum(diff.*Expt_weights,1) ./ sum(Expt_weights,1);
 pop_error(2,:) = sqrt(sum(diff.*diff.*Expt_weights,1) ./ sum(Expt_weights,1));

e. Monomer_Dimer Fitting Code

e.1. Monomer_Dimer -- Data_Monomer_Dimer

XA(j). The mole fractions are listed in terms of A such that the first mole fraction
corresponds to the first row of Expt_Populations.

Xa = [0.0000 0.1000 1.0000 etc];

Ctotal must have the same value through out and have the same length as Xa.

Ctotal = [0.100 0.100 0.100 etc];

Expt_Populations are input as a column of data for each aggregate. If an
aggregate has two resonances, they should be summed and entered as a single
relative integration. Recall that each row must end with a semi-colon.

Expt_Populations = [1.000 0.0000 0.0000;
0.8170 0.1830 0.0000;
0.6274 0.3294 0.0432;
etc;];

Expt_Errors are input as an array the same size as Expt_Populations. Each
column and row should correspond to the row and column of Expt_Populations.
Expt_Errors is optional and should be left as “Expt_Errors = [;];” if none are
provided.

Expt_Errors = [;];

peak_assignment_monomer and peak_assignment_dimer. The program
expects the peaks to be listed in the order of increasing A subunit as shown
below:

peak_assignment_monomer = [[A0B1] [A1B0]]
peak_assignment_dimer = [[A0B2] [A1B1] [A2B0]]

The column number of the corresponding relative integration is input in the
order designated above. If an aggregate was not observed, it should be assigned
to column 1. For example, if the populations are listed in the order: [A1B1]
[A0B1] [A2B0], then peak_assignment_monomer = [2 1] and
peak_assignment_dimer = [1 1 3]. If a relative integration is a sum of two
unresolved resonances, enter the same column number for each aggregate
contributing to the resonance.

peak_assignment_monomer = [1 3];
peak_assignment_dimer = [1 2 3];

phi_monomer and phi_dimer are listed in the order of increasing A subunit as it
is in peak_assignment. The phi’s provided here will be the start value for the fit.
If an aggregate was not observed, it should be assigned a phi value of 0. The fit
may require that a missing aggregate be assigned a phi of 0.00001 rather than 0 to
avoid dividing by zero problem in the fit.

phi_monomer = [0 1];
phi_dimer = [1 1 0.00001];

phi_constant indicates the phi's which should not be changed based on all five
phi values in the order [A0B1], [A1B0], [A0B2], [A1B1], and [A2B0]. Values of 0
disallow optimization of the corresponding phi. A value of 1 allows for
optimization. For example, to fix the phi for [A0B2], phi_constant = [1 1 0 1 1].

phi_constant = [1 1 1 1 1];

e.2. Monomer_Dimer—Try_fit

function try_fit(Xa, Ctotal, phi_monomer, peak_assignment_monomer,
phi_dimer, peak_assignment_dimer, Expt_Populations, Expt_Errors)

Code for weighting the Expt_Populations. If no Expt_Errors are entered, all
points are weighted equally.

 if (nargin<8)
 Expt_weights=ones(size(Expt_Populations));
 else
 Expt_weights = 1./(Expt_Errors + mean(mean(Expt_Errors)));
 end

 Code for plotting the experimental data.

 hold on ; cscheme='bgrmkcybgrmkcy'; axis([0 1 0 1]); xlabel('X_A');
ylabel('Relative Integration');
 for j=1:size(Expt_Populations,2)
 if (nargin<8)
 plot(Xa, Expt_Populations(:,j),sprintf('%so',cscheme(j)));
 else
 errorbar(Xa, Expt_Populations(:,j),
Expt_Errors(:,j),sprintf('%so',cscheme(j)));
 end
 end

Code for plotting the model with the provided phi’s.

 Xac = [0:0.01:1];
 Ctotalac = Ctotal(1)*ones(size(Xac));
 [Conc_Monomers, Conc_Dimers] = multimers(Xac, Ctotalac, phi_monomer,
phi_dimer);
 TP=Populations(Conc_Monomers, peak_assignment_monomer,
Conc_Dimers, peak_assignment_dimer);
 for j=1:size(TP,2)
 plot(Xac,TP(:,j),sprintf('%c',cscheme(j)));
 end

Code for computing and reporting the error.

 [mean_error, pop_error] = Error_of_Model(Xa, Ctotal, phi_monomer,
peak_assignment_monomer, phi_dimer, peak_assignment_dimer,
Expt_Populations, Expt_weights);

 fprintf(1,'\nThe Mean mismatch is %f percent.\n', mean_error*100);
 for j=1:size(pop_error,2)
 fprintf(1,'Predicted value of population %d exceeds measurement by %f
percent and mean square error of %f percent.\n
',j,pop_error(1,j)*100,pop_error(2,j)*100);
 end

e.3. Monomer_Dimer—Refine_fit

function [phi_monomer_new, phi_dimer_new, error] = refine_fit(Xa,
Ctotal,phi_monomer, peak_assignment_monomer, phi_dimer,
peak_assignment_dimer, Expt_Populations, phi_constant, Expt_Errors)

If no Expt_Errors are entered, all points are weighted equally.

if (nargin<9)
 Expt_weights = ones(size(Expt_Populations));
else
 Expt_weights = 1./(Expt_Errors + mean(mean(Expt_Errors)));
end

Set-up the parameters to merge the monomer and dimer inputs to a single input.

phimerge = [phi_monomer, phi_dimer];
idx_monomer = [1 2]; idx_dimer = [3 4 5];
param = [1:length(phimerge)];

The initial step size for improving the model is 10%.

step_size = 0.1*phi_constant.*phimerge(param);

Initialize the search. N_no_progress is the number of steps since the error last
improved. N_max_trials is the number of iterations to perform without the error
getting better before ending the script. It is set to 30.

N_no_progress = 0;
N_max_trials = 30;

Compute and report the initial quality of the fit.

[error_best, temp] = Error_of_Model(Xa,Ctotal,phimerge(idx_monomer),
peak_assignment_monomer, phimerge(idx_dimer), peak_assignment_dimer,
Expt_Populations, Expt_weights);
fprintf(1,'\n Initial Error of Fit = %f percent.\n', error_best * 100);

Iteratively try to improve fit by changing each parameter in turn.

while (N_no_progress < N_max_trials)
 flag = 0;
 for k=1:length(param)

Step to the right and to the left.

 phi_testr = phimerge;
 phi_testr(param(k))=abs(phimerge(param(k)) + step_size(k));
 [error_testr, temp] = Error_of_Model(Xa,Ctotal,phi_testr(idx_monomer),
peak_assignment_monomer, phi_testr(idx_dimer), peak_assignment_dimer,
Expt_Populations, Expt_weights);
 phi_testl = phimerge;
 phi_testl(param(k))=abs(phimerge(param(k)) - step_size(k));
 [error_testl, temp] = Error_of_Model(Xa,Ctotal,phi_testl(idx_monomer),
peak_assignment_monomer, phi_testl(idx_dimer), peak_assignment_dimer,
Expt_Populations, Expt_weights);

Decide if a step should be taken. If the step is positive, continue that direction. If
the negative step is better, continue that way. If no improvement occurs, flag
that step and begin reducing the step size.

 if (error_testr<error_best)
 error_best=error_testr; phimerge=phi_testr; step_size(k) = step_size(k) *
1.5;
 N_no_progress=0;
 elseif (error_testl <error_best)
 error_best=error_testl; phimerge=phi_testl; step_size(k) = step_size(k) * 1.5;
 N_no_progress=0;
 else
 flag = flag + 1;
 end
 end
 if (flag>=length(param))
 step_size = step_size * (0.75 + 0.25*rand);
 N_no_progress=N_no_progress+1;
 end

After adjusting each element of rel_weight, report the new fit.

 fprintf(1,'\nError - %f , Last Good Step - %d , Mean Step Size - %f \n
',error_best, N_no_progress, 100*mean(step_size));
 fprintf('\n Phi Dimer - '); fprintf(1,'%f ', phimerge(idx_monomer));
 fprintf(1,'\n Phi Tetramer - '); fprintf(1,'%f ',phimerge(idx_dimer));
 end
 error=error_best;
 phi_monomer_new = phimerge(idx_monomer);

 phi_dimer_new = phimerge(idx_dimer);

e.4. Monomer_Dimer—Mulitmers

Two subunits A and B are mixed to form an ensemble of monomers and
dimers in solution. A given N-mer is described by it's composition, AnBm where
n+m = N and N = 1 and 2. Thus, five different species are possible in solution.
The concentration of each species is determined by Xa(j), Chi, and phi_monomer
or phi_dimer. The outputs are Concentration_monomer(j,n+1) and
Concentration_dimer(j, 1).

In this parameterization, the “relative chemical potential”, a, is adjusted
until the closest XA(j) to the experimental result is obtained. These adjustments
in turn determine Chi, the monomer/dimer scaler, and all the aggregate
concentrations. Multimers can be fed multiple values XA(j) and will determine
the aggregate concentrations for each value. The returned Concentration(j,n+1)
is the concentration of species [AnBm] for the j-th value of XA(j).

The returned XA and Concentrations(n+1) are a function of phi and a such
that,

[B1] = Chi/Ctotal * phi_monomer(1) * b
[A1] = Chi/Ctotal * phi_monomer(2) * a

[B2] = 2 * Chi^2/Ctotal * phi_dimer(1) * b * b
[AB] = 2 * 2 * Chi^2/Ctotal * phi_dimer(2) * a * b
[A2] = 2* Chi^2/Ctotal * phi_dimer(3) * a * a

Xa = sum(Conc_monomer.*[0 1]) + sum(Conc_dimer.* [0 0.5 1]);

 The bisection method is used to get the value of a for which Xa is the one
supplied to bisect. The concentration of each species is then returned for that
value of a.

function [Concentration_monomer, Concentration_dimer] = multimers(Xa,
Ctotal, phi_monomer, phi_dimer)

For each Xa(j), Concentration_monomer(j,:) and Concentration_dimer(j,:) are
determined.

for j=1:length(Xa)

Conc_monomer and Conc_dimer are the total concentrations of monomers and
dimers and are returned by the function bisect.

 [Concentration_monomer(j,:), Concentration_dimer(j,:)] = bisect(Xa(j),
Ctotal(j),phi_monomer, phi_dimer);
end

function [Conc_monomer, Conc_dimer] = bisect(Xa, Ctotal,phi_monomer,
phi_dimer);

 Initialize values of a. Xa may differ by 1e-6 at the end of bisection and while not
close enough, continue to bisect by the difference of amin and amax.

 tolerance = 1e-6;
 amax = 1; amin = 0;
 [Xmin, Conc_monomer, Conc_dimer]=Cparametric(amin, phi_monomer,
phi_dimer, Ctotal);
 [Xmax, Conc_monomer, Conc_dimer]=Cparametric(amax, phi_monomer,
phi_dimer, Ctotal);
 while ((Xmax-Xa)>tolerance)
 atest = (amin+amax)/2;
 [Xtest, Conc_monomer, Conc_dimer]=Cparametric(atest, phi_monomer,
phi_dimer, Ctotal);
 if (Xtest>Xa)
 amax = atest; Xmax=Xtest;
 else
 amin = atest; Xmin=Xtest;
 end
 end
function [Xa, Conc_monomer, Conc_dimer]=Cparametric(a, phi_monomer,
phi_dimer, Ctotal)

Parametric form where Xa, Mtotal, Dtotal, and Chi are determined for a, phi and
N. Note that Chi is actually Chi = Mtotal / (4*Dtotal) * (sqrt(1 + 8 *
Dtotal*Ctotal/(Mtotal*Mtotal)) - 1), but the equation has been modified to
address of case of Mtotal = 0 or Dtotal = 0. The script will still have trouble if
both Mtotal and Dtotal =0 but that indicates a mistake in the choice of
phi_monomer and phi_dimer has been made.

b=1-a;
Mtotal = phi_monomer(1)*b + phi_monomer(2) * a;
Dtotal = phi_dimer(1)*b*b + 2*phi_dimer(2)*b*a + phi_dimer(3)*a*a;
Chi =(sqrt(Mtotal*Mtotal + 8 * Dtotal*Ctotal) - Mtotal +
(Dtotal==0)*(2*Mtotal*Ctotal)) / (4* Dtotal + (Dtotal==0));

Normalize the concentrations of monomers and dimers and calculate the mole
fraction.

Conc_monomer = Chi/Ctotal * [phi_monomer(1)*b, phi_monomer(2) * a] ;
Conc_dimer = 2 * Chi^2/Ctotal * [phi_dimer(1)*b*b , 2*phi_dimer(2)*b*a ,
phi_dimer(3)*a*a];
Xa = sum(Conc_monomer.*[0 1]) + sum(Conc_dimer.* [0 0.5 1]);

e.5. Monomer_Dimer—Populations

function result = Populations(Concentration_monomer,
peak_assignment_monomer, Concentration_dimer, peak_assignment_dimer)

For each type of aggregate, add to correct NMR resonance.

 result = zeros(size(Concentration_monomer,1), max(
max(peak_assignment_monomer) , max(peak_assignment_dimer)));
 N = size(Concentration_monomer,2);
 for j=1:N
 idx = peak_assignment_monomer(j);
 result(:,idx) = result(:,idx) + Concentration_monomer(:,j);
 end
 N = size(Concentration_dimer,2);
 for j=1:N
 idx = peak_assignment_dimer(j);
 result(:,idx) = result(:,idx) + Concentration_dimer(:,j);
 end

e.6. Monomer_Dimer—Error of Model

function [mean_error, pop_error] = Error_of_Model(Xa, Ctotal, phi_monomer,
peak_assignment_monomer, phi_dimer, peak_assignment_dimer,
Expt_Populations, Expt_Errors)

If no Expt_weights are given, weight all points equally.

 if (nargin<8)
 Expt_weights=ones(size(Expt_Populations));
 else
 Expt_weights = 1./(Expt_Errors + mean(mean(Expt_Errors)));
 end

Compute values from the model.

 [Conc_Monomers, Conc_Dimers] = multimers(Xa, Ctotal, phi_monomer,
phi_dimer);
Model_Populations = Populations(Conc_Monomers,
peak_assignment_monomer, Conc_Dimers, peak_assignment_dimer);

Compute the mean error.

 diff = Model_Populations - Expt_Populations;

 mean_error = sqrt(sum(sum(diff.*diff.*Expt_weights)) /
sum(sum(Expt_weights)));

Compute the error for each population independently.

 pop_error = sum(diff.*Expt_weights,1) ./ sum(Expt_weights,1);
 pop_error(2,:) = sqrt(sum(diff.*diff.*Expt_weights,1) ./ sum(Expt_weights,1));

f. Dimer_Tetramer Fitting Code

f.1. Dimer_Tetramer -- Data_Dimer_Tetramer

XA(j). The mole fractions are listed in terms of A such that the first mole fraction
corresponds to the first row of Expt_Populations.

Xa = [0.0000 0.1000 1.0000 etc];

Ctotal must have the same value through out and have the same length as Xa.

Ctotal = [0.100 0.100 0.100 etc];

Expt_Populations are input as a column of data for each aggregate. If an
aggregate has two resonances, they should be summed and entered as a single
relative integration. Recall that each row must end with a semi-colon.

Expt_Populations = [1.000 0.0000 0.0000;
0.8170 0.1830 0.0000;
0.6274 0.3294 0.0432;
etc;];

Expt_Errors are input as an array the same size as Expt_Populations. Each
column and row should correspond to the row and column of Expt_Populations.
Expt_Errors is optional and should be left as “Expt_Errors = [;];” if none are
provided.

Expt_Errors = [;];

peak_assignment_dimer and peak_assignment_tetramer. The program expects
the peaks to be listed in the order of increasing A subunit as shown below:

peak_assignment_dimer = [[A0B2] [A1B1] [A2B0]]
peak_assignment_tetramer = [[A0B4] [A1B3] [A2B2] [A3B1] [A4B0]]

The column number of the corresponding relative integration is input in the
order designated above. If an aggregate was not observed, it should be assigned
to column 1. For example, if the populations are listed in the order: [A1B1]
[A0B4] [A2B0], then peak_assignment_dimer = [1 1 3] and
peak_assignment_tetramer = [2 1 1 1 1]. If a relative integration is a sum of
two unresolved resonances, enter the same column number for each aggregate
contributing to the resonance.

peak_assignment_dimer = [1 2 3];
peak_assignment_tetramer = [1 2 3 4 5];

phi_dimer and phi_tetramer are listed in the order of increasing A subunit as it
is in peak_assignment. The phi’s provided here will be the start value for the fit.
If an aggregate was not observed, it should be assigned a phi value of 0. The fit
may require that a missing aggregate be assigned a phi of 0.00001 rather than 0 to
avoid dividing by zero problem in the fit.

phi_dimer = [0.00001 1 1];
phi_tetramer = [1 1 0.00001 1 1];

phi_constant indicates the phi's which should not be changed based on all five
phi values in the order [A0B2], [A1B1], [A2B0], [A0B4], [A1B3], [A2B2], [A3B1], [A4B0].
Values of 0 disallow optimization of the corresponding phi. A value of 1 allows
for optimization. For example, to fix the phi for [A1B3], phi_constant = [1 1 1 1 0
1 1 1].

phi_constant = [1 1 1 1 1 1 1 1];

f.2. Dimer_Tetramer—Try_fit

function try_fit(Xa, Ctotal, phi_dimer, peak_assignment_dimer, phi_tetramer,
peak_assignment_tetramer, Expt_Populations, Expt_Errors)

Code for weighting the Expt_Populations. If no Expt_Errors are entered, all
points are weighted equally.

 if (nargin<8)
 Expt_weights=ones(size(Expt_Populations));
 else
 Expt_weights = 1./(Expt_Errors + mean(mean(Expt_Errors)));
 end

Code for plotting the experimental data.

 hold on ; cscheme='bgrmkcybgrmkcy'; axis([0 1 0 1]); xlabel('X_R');
ylabel('Mole Fractions');
 for j=1:size(Expt_Populations,2)
 if (nargin<8)
 plot(Xa, Expt_Populations(:,j),sprintf('%so',cscheme(j)));
 else
 errorbar(Xa, Expt_Populations(:,j),
Expt_Errors(:,j),sprintf('%so',cscheme(j)));
 end
 end

Code for plotting the model with the provided phi’s.

 Xac = [0:0.01:1];
 Ctotalac = Ctotal(1)*ones(size(Xac));
 [Conc_Dimers, Conc_Tetramers] = multimers(Xac, Ctotalac, phi_dimer,
phi_tetramer);
 TP=Populations(Conc_Dimers, peak_assignment_dimer, Conc_Tetramers,
peak_assignment_tetramer);
 for j=1:size(TP,2)
 plot(Xac,TP(:,j),sprintf('%c',cscheme(j)));
 end

Code for computing and reporting the error.

 [mean_error, pop_error] = Error_of_Model(Xa, Ctotal, phi_dimer,
peak_assignment_dimer, phi_tetramer, peak_assignment_tetramer,
Expt_Populations, Expt_weights);
 fprintf(1,'\nThe Mean mismatch is %f percent.\n', mean_error*100);
 for j=1:size(pop_error,2)
 fprintf(1,'Predicted value of population %d exceeds measurement by %f
percent and mean square error of %f percent.\n
',j,pop_error(1,j)*100,pop_error(2,j)*100);
 end

f.3. Dimer_Tetramer—Refine_fit

function [phi_dimer_new, phi_tetramer_new, error] = refine_fit(Xa,
Ctotal,phi_dimer, peak_assignment_dimer, phi_tetramer,
peak_assignment_tetramer, Expt_Populations, phi_constant, Expt_Errors)

If no Expt_Errors are entered, all points are weighted equally.

if (nargin<9)
 Expt_weights = ones(size(Expt_Populations));
else

 Expt_weights = 1./(Expt_Errors + mean(mean(Expt_Errors)));
end

Set-up the parameters to merge the dimer and tetramer inputs to a single input.

phimerge = [phi_dimer, phi_tetramer];
idx_dimer = [1 2 3]; idx_tetramer = [4 5 6 7 8];
param = [1:length(phimerge)];

The initial step size for improving the model is 10%.

step_size = 0.1*phi_constant.*phimerge(param);

 Initialize the search.

N_no_progress = 0;
N_max_trials = 30;

Compute and report the initial quality of the fit.

[error_best, temp] = Error_of_Model(Xa,Ctotal,phimerge(idx_dimer),
peak_assignment_dimer, phimerge(idx_tetramer), peak_assignment_tetramer,
Expt_Populations, Expt_weights);
fprintf(1,'\n Initial Error of Fit = %f percent.\n', error_best * 100);

Iteratively try to improve fit by changing each parameter in turn.

while (N_no_progress < N_max_trials)
 flag = 0;
 for k=1:length(param)

Step to the right and to the left.

 phi_testr = phimerge;
 phi_testr(param(k))=abs(phimerge(param(k)) + step_size(k));
 [error_testr, temp] = Error_of_Model(Xa,Ctotal,phi_testr(idx_dimer),
peak_assignment_dimer, phi_testr(idx_tetramer), peak_assignment_tetramer,
Expt_Populations, Expt_weights);
 phi_testl = phimerge;
 phi_testl(param(k))=abs(phimerge(param(k)) - step_size(k));
 [error_testl, temp] = Error_of_Model(Xa,Ctotal,phi_testl(idx_dimer),
peak_assignment_dimer, phi_testl(idx_tetramer), peak_assignment_tetramer,
Expt_Populations, Expt_weights);

Decide if a step should be taken. If the step is positive, continue that direction. If
the negative step is better, continue that way. If no improvement occurs, flag
that step and begin reducing the step size.

 if (error_testr<error_best)
 error_best=error_testr; phimerge=phi_testr; step_size(k) = step_size(k) *
1.5;
 N_no_progress=0;
 elseif (error_testl <error_best)
 error_best=error_testl; phimerge=phi_testl; step_size(k) = step_size(k) *
1.5;
 N_no_progress=0;
 else
 flag = flag + 1;
 end
 end
 if (flag>=length(param))
 step_size = step_size * (0.75 + 0.25*rand);
 N_no_progress=N_no_progress+1;
 end

 After adjusting each element of rel_weight, report the new fit.

 fprintf(1,'\nError - %f , Last Good Step - %d , Mean Step Size - %f \n
',error_best, N_no_progress, 100*mean(step_size));
 fprintf('\n Phi Dimer - '); fprintf(1,'%f ', phimerge(idx_dimer));
 fprintf(1,'\n Phi Tetramer - '); fprintf(1,'%f ',phimerge(idx_tetramer));
 end
 error=error_best;
 phi_dimer_new = phimerge(idx_dimer);
 phi_tetramer_new = phimerge(idx_tetramer);

f.4. Dimer_Tetramer—Multimers

Two subunits A and B are mixed to form an ensemble of monomers and
dimers in solution. A given N-mer is described by it's composition, AnBm where
n+m = N and N = 1 and 2. Thus, five different species are possible in solution.
The concentration of each species is determined by Xa(j), Chi, and phi_dimer or
phi_tetramer. The outputs are Concentration_dimer(j,n+1) and
Concentration_tetramer(j, 1).

In this parameterization, the “relative chemical potential”, a, is adjusted
until the closest XA(j) to the experimental result is obtained. These adjustments
in turn determine Chi_squared, the dimer/tetramer scaler, and all the aggregate
concentrations. Multimers can be fed multiple values Xa(j) and will determine
the aggregate concentrations for each value. The returned Concentration(j,n+1)
is the concentration of species [AnBm] for the j-th value of Xa(j).

The returned Xa and Concentrations(n+1) are a function of phi and a such
that,

 [B2] = 2 * Chi_squared/Ctotal * phi_dimer(1) * b * b
[AB] = 2 * 2 * Chi_squared /Ctotal * phi_dimer(2) * a * b

[A2] = 2* Chi_squared /Ctotal * phi_dimer(3) * a * a

[B4] = 4 * Chi_squared^2/Ctotal * phi_tetramer(1) * b^4
[A1B3] = 4 * 4 * Chi_squared^2 /Ctotal * phi_tetramer(2) * a * b^3
[A2B2] = 4 * 6 * Chi_squared^2 /Ctotal * phi_tetramer(3) * a^2 * b^2
[A1B3] = 4 * 4 * Chi_squared^2 /Ctotal * phi_tetramer(4) * a^3 * b
[A4] = 4* Chi_squared^2 /Ctotal * phi_tetramer(5) * a^4

Xa = sum(Conc_dimer.* [0 0.5 1]) + sum(Conc_tetramer.*[0 0.25 0.5 0.75 1])

 The bisection method is used to get the value of a for which Xa is the one
supplied to bisect. The concentration of each species is then returned for that
value of a.

function [Concentration_dimer, Concentration_tetramer] = multimers(Xa, Ctotal,
phi_dimer, phi_tetramer)

For each Xa(j), Concentration_dimer(j,:) and Concentration_tetramer(j,:) are
determined.

for j=1:length(Xa)

Conc_dimer and Conc_tetramer are the total concentrations of dimers and
tetramers and are returned by the function bisect.

 [Concentration_dimer(j,:), Concentration_tetramer(j,:)] = bisect(Xa(j),
Ctotal(j),phi_dimer, phi_tetramer);
end
function [Conc_dimer, Conc_tetramer] = bisect(Xa, Ctotal,phi_dimer,
phi_tetramer);

Initialize values of a. Xa may differ by 1e-6 at the end of bisection and while not
close enough, continue to bisect by the difference of amin and amax.

 tolerance = 1e-6; % Amount Xr may differ by an end of bisection..
 amax = 1; amin = 0;
 [Xmin, Conc_dimer, Conc_tetramer]=Cparametric(amin, phi_dimer,
phi_tetramer, Ctotal);
 [Xmax, Conc_dimer, Conc_tetramer]=Cparametric(amax, phi_dimer,
phi_tetramer, Ctotal);
 while ((Xmax-Xa)>tolerance) % While not close enough, continue to bisect
difference of rmin and rmax.
 atest = (amin+amax)/2;
 [Xtest, Conc_dimer, Conc_tetramer]=Cparametric(atest, phi_dimer,
phi_tetramer, Ctotal);
 if (Xtest>Xa)
 amax = atest; Xmax=Xtest;

 else
 amin = atest; Xmin=Xtest;
 end
 end
function [Xa, Conc_dimer, Conc_tetramer]=Cparametric(a, phi_dimer,
phi_tetramer, Ctotal)

Parametric form where Xa, Dtotal, Ttotal, and Chi_squared are determined for a,
phi and N. Note that Chi is actually Chi_squared = Dtotal / (4*Ttotal) * (sqrt(1 +
4 * Ttotal*Ctotal/(Dtotal*Dtotal)) - 1), but the equation has been modified to
address of case of Dtotal = 0 or Ttotal = 0. The script will still have trouble if
both Dtotal and Ttotal =0 but that indicates a mistake in the choice of phi_dimer
and phi_tetramer has been made.

b=1-a;
Dtotal = phi_dimer(1)*b*b + 2 * phi_dimer(2) * a * b + phi_dimer(3) * a*a;
Ttotal = phi_tetramer(1)*b^4 + 4*phi_tetramer(2)*b^3*a +
6*phi_tetramer(3)*b*b*a*a + 4*phi_tetramer(4)*b*a^3 + phi_tetramer(5)*a^4;
Chi_squared = (sqrt(Dtotal*Dtotal + 4 * Ttotal*Ctotal) - Dtotal +
(Ttotal==0)*(2*Dtotal*Ctotal)) / (4* Ttotal + (Ttotal==0));

Normalize the concentrations of monomers and dimers and calculate the mole
fraction.

Conc_dimer = 2 * Chi_squared/Ctotal * [phi_dimer(1)*b*b , 2*phi_dimer(2)*b*a
, phi_dimer(3)*a*a] ;
Conc_tetramer = 4 * Chi_squared^2/Ctotal * [phi_tetramer(1)*b*b*b*b,
4*phi_tetramer(2)*b*b*b*a, 6*phi_tetramer(3)*b*b*a*a, 4*phi_tetramer(4)*b*a*a*a ,
phi_tetramer(5)*a*a*a*a];
Xa = sum(Conc_dimer .*[0 0.5 1]) + sum(Conc_tetramer.* [0 0.25 0.5 0.75 1]);

f.5. Dimer_Tetramer—Populations

function result = Populations(Concentration_dimer, peak_assignment_dimer,
Concentration_tetramer, peak_assignment_tetramer)

For each type of aggregate, add to correct NMR resonance.

 result = zeros(size(Concentration_dimer,1), max(
max(peak_assignment_dimer) , max(peak_assignment_tetramer)));
 N = size(Concentration_dimer,2);
 for j=1:N % Go through each type of aggregate and add to correct NMR peak.
 idx = peak_assignment_dimer(j);
 result(:,idx) = result(:,idx) + Concentration_dimer(:,j);
 end
 N = size(Concentration_tetramer,2);
 for j=1:N % Go through each type of aggregate and add to correct NMR peak.

 idx = peak_assignment_tetramer(j);
 result(:,idx) = result(:,idx) + Concentration_tetramer(:,j);
 end

f.6. Dimer_Tetramer—Error of Model

function [mean_error, pop_error] = Error_of_Model(Xa, Ctotal, phi_dimer,
peak_assignment_dimer, phi_tetramer, peak_assignment_tetramer,
Expt_Populations, Expt_Errors)

If no Expt_weights are given, weight all points equally.

 if (nargin<8)
 Expt_weights=ones(size(Expt_Populations));
else
 Expt_weights = 1./(Expt_Errors + mean(mean(Expt_Errors)));
 end

Compute values from the model.

 [Conc_Dimers, Conc_Tetramers] = multimers(Xa, Ctotal, phi_dimer,
phi_tetramer);
 Model_Populations = Populations(Conc_Dimers, peak_assignment_dimer,
Conc_Tetramers, peak_assignment_tetramer);

Compute the mean error.

 diff = Model_Populations - Expt_Populations;
 mean_error = sqrt(sum(sum(diff.*diff.*Expt_weights)) /
sum(sum(Expt_weights)));

Compute the error for each population independently.

 pop_error = sum(diff.*Expt_weights,1) ./ sum(Expt_weights,1);
 pop_error(2,:) = sqrt(sum(diff.*diff.*Expt_weights,1) ./ sum(Expt_weights,1));

