
 Mathematical Descriptions of Ensembles 
 
 
Note:  The following mathematical descriptions of enolate ensembles are based 
on an ensemble of hexamers composed of two enantiomers, R and S, which is 
archived in the supporting information for McNeil, A. J.; Toombes, G. E. S.; 
Chandramouli, S. V.; Vanasse, B. J.; Ayers, T. A.; O'Brien, M. K.; Lobkovsky, E.; 
Gruner, S. M.; Marohn, J. A.; Collum, D. B. J. Am. Chem. Soc. 2004, 126, 5938.  
Here R and S will be replaced with the more general definition A and B.  In 
addition, Χn that defined the mole fraction of the aggregate with n subunits of 
type A will be replaced with relative integration, In.  
 
 
a. Ensembles of Aggregates of the Same Aggregation Number 
 
a.1.  General Description 
 

A mixture of two lithium enolates, A and B, of the same aggregation 
number, N, form an ensemble of aggregates generally described as 
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where n is the number of A subunits in the aggregate.  The following ensembles 
are most likely: 
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In the continuous variation experiment, the ratio of A and B are varied 

while keeping the total concentration of the two constant.  The relative 
integrations of each aggregate in the ensemble are measured through integration 
of the corresponding NMR resonances.  The independent variable is the mole 
fraction of subunits A, ΧA, and the dependent variables are the relative 
integrations of each aggregated species, In.  Thus, In is predicted as a function of 
ΧA for a given model. 
 The mathematical description of the equilibria in the above ensembles 
begins by considering that each aggregate with n subunits of A and N-n subunits 
of B has a discrete number of permutations or statistically unequal combinations.  
For example, a tetrameric aggregate A2B2 derives from six statistically discrete 
combinations (Chart 1).  Rather than consider each permutation, ρ, individually, 
a linear combination of the permutations with the same number of A subunits, 
nρ, are treated as a single species, AnBN-n (Chart 1). 
 
 
 



 
 
 
 
Chart 1.  A description of the linear combinations of permutations for ensembles 
of dimers, tetramers or hexamers. 
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The concentrations of each group of permutations, [AnBN-n], are described 

by the Boltzmann distribution.  The concentrations will depend on  
 

1.  Multiplicity (Mn) :  The number of permutations, ρ, for which 
nρ = n is the number of ways an aggregate of stoichiometry AnBN-n 
can be arranged.  The numerical value of Mn is determined with 
Pascal’s triangle or binomial theory to achieve the general result 
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2.  Free Energy (gρ) :  Each permutation may have a different energy 
of assembly.  In theory, AABB may be a less stable permutation 
than ABAB.  In practice, positional isomers occur in only hexamers.    
 
3.  Chemical Potential (µA and µB) :  The total concentration of A, 
[A]total, and of B, [B]total, will set the chemical potentials and shift the 



likelihood of various species. If [A]total increases relative to [B]total, for 
instance, then [A3B1] will increase relative to [A1B3]. 
 

 
a.2.  Mathematical Description  
 

Consider a given permutation, ρ, with nρ subunits of type A and N-nρ of 
type B.  The Boltzmann distribution gives its equilibrium concentration as 
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where C is a constant that relates the concentration of the solution to the activity, 
gp is the free energy of assembly of ρ, µA is the chemical potential of A, and µB is 
the chemical potential of B.  For the proposed experiments, all states for which np 
= n are indistinguishable.  The linear combination of concentrations of ρ for 
which np= n is given by 
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where the average free energy is taken over all states for which nρ = n.  For the 
remainder of the discussion, the effective variables will be defined as 
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where kTlnφn describes the mean free energy of permutations in [AnBN-n].  φn can 
be thought of as a measure of the relative stability among the aggregates. 
Increasing φn favors [AnBN-n] as would be expected if those states have a low free 
energy.1  Free energies can only be measured relative to the free energy of a 
reference state; only the relative energies of the aggregates can be measured, not 
the absolute values.  
 Substituting the effective variables into the expression for [AnBN-n] gives 
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1 Though this statement may seem counter intuitive at first glance, one should 
note that the relationship between φn and gρ is exponential.   



Using eq 2 to compute [AnBN-n], the relative integration, In is given by 
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which is independent of the value C. 

Summing the number of A subunits in the whole ensemble gives the total 
number of A subunits.  Thus, the mole fraction of A, ΧA, is given by 
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 In general, no simple analytic expression for In as a function of ΧA and φn 
exists.  However, the values of ΧA and all In depend only on the ratio a/b and φn.  
Thus, for a given set of φn and value of ΧA, eq 4 uniquely determines a/b because 
ΧA is a strictly monotonic function of a/b and permits In and ΧA to be evaluated 
as functions of a/b.  This value of a/b can be substituted into eq 3 to calculate the 
value of any In.  Functions describing the specific cases of ensembles of dimers, 
tetramers, or hexamers follow. 
 The equilibrium mole fractions of different species depends only on the 
difference in chemical potential between A and B parameterized by the ratio a/b.  



For the purposes of calculation, the average chemical potential of A and B is such 
that  
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This assumption restricts the values of a and b to between 0 and 1 and has no 
effect on any calculated quantity because eqs 3 and 4 depend only on the ratio of 
a/b. 
 
 
a.3.  Equations for Dimers 
 
 Consider an ensemble of dimers 
 

A2, AB, and B2 
 

where N = 2.  The total mole fraction of A for an ensemble of dimers is 
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where M0 = 1, M1 = 2, and M2 = 1.  The experimentally measured In are 
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a.4.  Equations for Tetramers 
  
 For an ensemble of tetramers (N = 4) 
 

A4, A3B1, A2B2, A1B3, and B4 

 
the total mole fraction of A is  
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where M0 = 1, M1 = 4, M2 = 6, M3 = 4, M4 = 1.  The experimentally measured 
relative integrations, In, are 
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a.5.  Equations for Hexamers 
 
 When N = 6 as in the case for an ensemble of hexamers 
 

A6, A5B1, A4B2, A3B3, A2B4, A1B5, and B6 
 
the total mole fraction of A is defined as 
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where M0 = 1, M1 = 6, M2 = 15, M3 = 20, M4 = 15, M5 = 6, and M6 = 1.  The 
experimentally measured relative integrations, In, are 
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a.6.  Maximum of In as a function of ΧA 
 
 In depends on ΧA and has a maximum at a particular value of ΧA.  When 
all aggregates in the ensemble have the same aggregation number, the maximum 
occurs when ΧA = n/N as shown by examining eq 3.  The maximum value of In 
occurs when the derivative of eq 3 with respect to a/b is zero.  The derivative is 
given by 
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Setting the derivative equal to zero 
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the maximum value of In occurs when ΧA = n/N.  This derivation requires that all 
aggregates have the same aggregation number. 
 
 
 
 
 
 
 
 



b.  Ensembles of Aggregates with Different Aggregation Numbers 
 
b.1.  General Description 
 

Until this point, ensembles in which all aggregates are of the same 
aggregation number have been discussed.  However, ensembles in which the 
homoaggregates are of different aggregation numbers could exist.  For example, 
a mixture of subunits A and B could yield an ensemble of monomers and dimers 

 
A, B, A2, AB, and B2 

 
or an ensemble of dimers and tetramers 

 
A2, AB, B2, A4, A3B1, A2B2, A1B3, and B4 

 
Ensembles of these types have yet to be experimentally observed or explored, but 
they are plausible.   

For ensembles of more than one aggregation number, the absolute 
concentration of the subunits impacts the equilibrium concentration of the 
various aggregates as a direct result of the equilibrium between the two 
aggregation states.  Consequently, the maximum of the curve for a particular 
aggregate in the Job plot does not necessarily occur at the stoichiometry of the 
aggregate (Figure 1).  In these ensembles, the position of the maximum depends 
on both the a/b ratio and the absolute subunit concentration.  Conversely, for 
ensembles of a single aggregation number, the absolute concentration of the 
subunits affects all aggregates equally and, therefore, does not need to be 
considered in the mathematical descriptions of the ensembles. 

 
 

 
 
Figure 1. Job plots of a monomer/dimer ensemble of A, AB, and B2 at different 
absolute total subunit concentrations.   

 
 
 
 
 



b.2.  Ensemble of Monomers and Dimers 
 
  An ensemble of monomers and dimers 
 

A, B, A2, AB, and B2 
 

accounts for the simultaneous presence of all aggregates in the ensemble.  A 
discussion of how to apply this general description to a specific ensemble 
follows. 
            The effective variables are defined as 
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where the designation Nn refers to an aggregate of N total subunits with n 
subunits of type A.  The total subunit concentration in the ensemble is 
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 For ensembles with only one aggregation number, ΧA and In are uniquely 
determined by φn and a/b and are independent of the total subunit concentration.  
In contrast, the total subunit concentration is important for ensembles with more 
than one aggregation number, and ΧA and INn depend on φΝn, a, and b.  For 
convenience, the value of a and b can be expressed as 
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where χ can be thought of as the sum of the activities of A and B, and α is the 
proportion of χ resulting from a.  By substitution 
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Using the quadratic equation to solve for χ, 
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where only the positive result is accepted because a negative chemical potential 
is not physically possible.  The above equations can be used to describe ΧA such 
that 
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The relative integrations of all possible aggregated species are defined as 
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 Although the theoretical monomer/dimer ensemble is 
 

A, B, A2, AB, and B2 
 
where all aggregation states are populated, simpler ensembles that are more 
probable based on known aggregation behaviors include 
 



A, B and AB 
 

A, AB, and B2 
 

In these systems, the general derivation above still applies.  Missing aggregates 
are accounted for by assigning the appropriate φNn as zero, indicating that the 
corresponding species have no free energies. 
 
b.3.  Ensembles of Dimers and Tetramers 
 
 The following ensemble of dimers and tetramers  
 

A2, AB, B2, A4, A3B1, A2B2, A1B3, and B4 
 
includes all possible dimers and tetramers.  Such a complex ensemble seems 
most likely if both subunits form dimer and tetramer homoaggregates when 
separate.  Simpler, perhaps more deceptive to the experimentalist ensembles in 
which only one homoaggregate is of a different aggregation number are 
 

A4, AB, and B2 
 

A4, A3B1, A2B2, A1B3, and B2 
 
As in the monomer/dimer examples, missing aggregates are accounted for by 
assigning the corresponding φNn to zero.   

The effective variables remain defined as 
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where the designation Nn refers to an aggregate of N total subunits with n 
subunits of type A.  To account for the effect of total subunit concentration on the 
equilibrium concentration of each aggregate in the ensemble 
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From eq 2, the concentration of dimers is given by 
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Similarly, the concentration of the tetramers is given by 
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As described above 
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As the total concentration of subunits increases, χ2  increases changing the 
relative concentrations of dimers and tetramers.  The relationship is quadratic.  
Solving for χ2 by using the quadratic equation gives 
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The above equations can be used to describe ΧA, 
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The relative integrations of the aggregated species are defined as follows 
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VII.  Simulated Ensembles: Influence of Aggregate Stability 
 
Introduction.   
 We carried out detailed simulations of Job plots hoping to understand: (1) 
how changes in the relative aggregate stabilities deviate from statistical and 
influence the appearance of the Job plots; (2) how alternative (more complex) 
aggregate distributions might masquerade as simpler ensembles; (3) how 
erroneous models would be detected in an experimental setting.   The headings 
in the following sections are based on the model used to simulate the data.  
Within these sections we will consider the influence of relative aggregate 
energies (φ), changes in absolute concentrations, and consequences of fitting the 
data to incorrect models. 

 
a.  Ensemble: A2-AB-B2. 
 Figure 1 presents curves I-III which represent simulated A2-AB-B2 data at 
low (I), intermediate (II), and high (III) relative stability of AB (φ1).  By 
definition, any combination of φ values results in a plot that exhibits symmetry 
about the x-axis at XA = 0.5 and the maximum of the AB curve at XA = 0.5.   The 
appearance of the plot will be independent of the absolute concentrations of the 
subunits. 
 One might ask how to rule out alternative models in which one of the 
homoaggregates (A for illustration) is a monomer or tetramer (A or A4, 
respectively.)  Can a least-squares fit to models based on A-AB-B2 or A4-AB-B2 
ensembles rule out such a possibility?  To explore the ability of least-squares fits 
to distinguish between the models, theoretical data from A2-AB-B2 at low, 
intermediate and high values of φ1 were fit to alternative models A-AB-B2 and 
A4-AB-B2.  The choice of absolute concentration is arbitrary and, at best, 
emblematic.  In each case, the goodness of fit was evaluated by the sum of the 
absolute values of the residuals, the absolute difference between the data and the 
fit summed over all curves.  Of course, fitting the A2-AB-B2 data to the correct A2-
AB-B2 model would give no residuals. 

Figure 2 illustrates A2-AB-B2 data (symbols) at low (III), intermediate (I) 
and high (II) φ1 fit to the A-AB-B2 (line) model (derived on pp Sxx-Sxx).  In each 
fit, the maximum of the AB curve lies toward the A side of the plot.  Plot IV 
shows the sums of the residuals as a function of ΧA for plots I-III.  The fit is least 
able to distinguish between the two models when the AB aggregate is at an 
extreme.  The fit to the statistical A2-AB-B2 (Plot I) ensemble is the worst and 
clearly not the correct model.  Ensembles of A-AB-B2 are most likely to be 
misinterpreted as A2-AB-B2 when the mixed aggregate is in either high or low 
integrations relative to the homoaggregates. 
 Figure 3 demonstrates the analogous experiment when A2-AB-B2 data is 
fit as A4-AB-B2.  The resulting fits are near mirror images of the fits to A-AB-B2.  
The curve for the AB aggregate lies toward the B2 side of the plot.  The statistical 
A2-AB-B2 most obviously displays the mismatch of the models. 
 
 
 
 



b.  Ensemble: A, AB, B2.   
 
 The curves in Figure 4 were generated from a model in which a mixture of 
a monomer (A) and dimer (B2) afford a mixed dimer (AB).  The curves 
correspond to varying values of φ for dimer AB.   Unlike the ensemble of pure 
dimers, the curves lack symmetry about the x-axis at ΧA=0.5; the maximum of 
the AB aggregate does not appear at ΧA=0.5.  The curves appear most symmetric 
when the mixed AB aggregate is highly favored and most asymmetric when the 
relative stability of AB is low.  Consequently, at high populations of AB, a A-AB- 
B2 ensemble could easily masquerade a simpler A2-AB-B2 ensemble.  Fits of A-
AB- B2 theoretical data to A2-AB-B2 produce the inverse of the plots in Figure 2; 
the lines would be the data, the symbols the fit, and the residuals would remain 
the same.  Pairs of ensembles possess inherent differences that will reveal 
themselves regardless of which ensemble is the data and which is the model. 

Theoretical A-AB-B2 fit to the A2-AB-B4 model, however, present an 
important advisory (Figure 5). The subtle differences between the data and the 
incorrect model at all values of φ suggest difficulty distinguishing these two 
ensembles by Job plot experiments.  The residuals’ gradual and continuous 
decrease as the mole fraction of A increases offers the most visual clue to the 
incongruent fit.  As in the previous examples, the mismatched model is most 
evident when the mixed aggregate has a maximum intensity around 0.5. 

 
c.  Ensemble: A4-A3B1-A2B2-A1B3-B4.  
 
 Figure 6 presents curves I-III which represent simulated A4-A3B1-A2B2-
A1B3-B4 data at low (I), intermediate (II), and high (III) relative stability of A4 (φ4).  
The intermediate case, which is statistically distributed, is the only example 
which is symmetric about the x-axis at XA = 0.5.  Deviations from statistical 
distributions result in asymmetric plots; however, the maxima of the curves 
remain at the stoichiometry of the aggregate.   
 When characterizing an ensemble of tetrameric aggregates, one might 
consider whether the ensemble is actually A2-A3B1-A2B2-A1B3-B4.  Application of 
the A2-A3B1-A2B2-A1B3-B4 model to the A4-A3B1-A2B2-A1B3-B4 data (Figure 7) 
affords poor fits.  A plot (Plot IV) of the residuals reveals that as the dimeric 
aggregate increases in stability, the overall goodness of fit decreases. 
 

Conclusion.  The subtle complexities associated with the myriad of 
possible enolate ensembles draws attention to the importance of considering 
multiple models when assigning aggregation numbers to homoaggregated 
enolates.  Fits of ensembles cannot stand alone as unambiguous aggregation 
assignments although they are essential.  Though they may be technically 
difficult, control experiments such as varying the absolute lithium concentration 
and solvent swaps play vital roles by providing corroborating evidence for or 
against a particular model.  Unequivocal enolate aggregation assignments 
require a conglomeration of supporting evidence.  



 
 
Figure 1.  Plots of a dimer ensemble, A2-AB-B2 at low (I), intermediate (II), and 
high (III) φ1.  The curves for each aggregated species are grouped as indicated. 



 
 
Figure 2. A2-AB-B2 data (symbols) at low (III), intermediate (I) and high (II) φ1 fit 
to the A-AB-B2 (line) model.  The absolute residual is plotted as a function of 
mole fraction of A in plot IV.  Plot I) A2-AB-B2: φ0 = φ2 = 1, φ1 = 1; A-AB-B2 (0.10 
M): φ10 = 0,  φ11 = 0.542, φ20 = 0.549, φ21 = 1.886, φ22 = 0, rms = 0.030.  Plot II) A2-AB-
B2: φ0 = φ2 = 1, φ1 = 10; A-AB-B2 (0.10 M):  φ10 = 0,  φ11 = 0.167, φ20 = 0.177, φ21 = 
8.088, φ22 = 0, rms = 0.009.  Plot III) A2-AB-B2: φ0 = φ2 = 1, φ1 = 0.1; A-AB-B2 (0.10 
M): φ10 = 0,  φ11 = 1.272, φ20 = 1.673, φ21 = 0.532, φ22 = 0, rms = 0.011. 
 
 



 
 
Figure 3. A2-AB-B2 data (symbols) at low (III), intermediate (I) and high (II) φ1 fit 
to the A4-AB-B2 (line) model.  The absolute residual is plotted as a function of 
mole fraction of A in plot IV.  Plot I) A2-AB-B2: φ0 = φ1 = φ2 = 1; A4-AB-B2 (0.10 M):  
φ20 = 1.646,  φ21 = 0.526, φ22 = 0 φ40 = φ41 = φ42 = φ43 = 0, φ44 = 1.284, rms = 0.022.  Plot 
II) A2-AB-B2: φ0 = φ2 = 1, φ1 = 10; A4-AB-B2 (0.10 M):  φ20 = 0.551,  φ21 = 1.968, φ22 = 0 
φ40 = φ41 = φ42 = φ43 = 0, φ44 = 0.978, rms = 0.008.  Plot III) A2-AB-B2: φ0 = φ2 = 1, φ1 = 
0.1; A4-AB-B2 (0.10 M): φ20 = 7.939,  φ21 = 0.188, φ22 = 0 φ40 = φ41 = φ42 = φ43 = 0, φ44 = 
6.386, rms = 0.008.  



 
 
 
Figure 4. Plots of a monomer-dimer ensemble, A-AB-B2 at low (I), intermediate 
(II), and high (III) φ21.  The curves for each aggregated species are grouped as 
indicated. 



 
 
 
 
 
Figure 5. A-AB-B2 data (symbols) at low (III), intermediate (I) and high (II) φ21 fit 
to the A2-AB-B4 (line) model.  The absolute residual is plotted as a function of 
mole fraction of A in plot IV.  Plot I) A2-AB-B2: φ20 = φ11 = 1, φ21 = 5; A2-AB-B4 (0.10 
M): φ20 = 0,  φ21 = 0.52, φ22 = 1.44 φ40 = 1.34; φ41 = φ42 = φ43 = φ44 = 0, rms = 0.014. Plot 
II) A2-AB-B2: φ20 = φ11 = 1, φ21 = 25; A2-AB-B4 (0.10 M): φ20 = 0,  φ21 = 1.11, φ22 = 0.97 
φ40 = 1.01; φ41 = φ42 = φ43 = φ44 = 0, rms = 0.010.   Plot III) A2-AB-B2: φ20 = φ11 = 1, φ21 = 
1; A2-AB-B4 (0.10 M): φ20 = 0,  φ21 = 0.188, φ22 = 1.92 φ40 = 1.84; φ41 = φ42 = φ43 = φ44 = 
0, rms = 0.012. 



 
 
Figure 6. Plots of a tetramer ensemble, A4-A3B1-A2B2-A1B3-B4 at low (I), 
intermediate (II), and high (III) φ4.  The curves for each aggregated species are 
grouped as indicated. 
 
 



 
 
 
Figure 7. A4-A3B1-A2B2-A1B3-B4 data (symbols) at low (III), intermediate (I) and 
high (II) φ4 fit to the A2-A3B1-A2B2-A1B3-B4 (line) model.  The absolute residual is 
plotted as a function of mole fraction of A in plot IV.  Plot I) A4-A3B1-A2B2-A1B3-
B4: φ0 = φ1 = φ2 = φ3 = φ4 = 1; A2-A3B1-A2B2-A1B3-B4 (0.20 M): φ20 = φ21 = 0, φ22 = 0.207, 
φ40 = 0.932, φ41 = 1.026, φ42 = 1.098, φ43 = 0.959, φ44 = 0, rms = 0.020.  Plot II) A4-A3B1-
A2B2-A1B3-B4: φ0 = φ1 = φ2 = φ3 = 1, φ4 = 10; A2-A3B1-A2B2-A1B3-B4 (0.20 M): φ20 = φ21 
= 0, φ22 = 0.427, φ40 = 1.719, φ41 = 1.332, φ42 = 0.858, φ43 = 0.379, φ44 = 0, rms = 0.016.  
Plot III) A4-A3B1-A2B2-A1B3-B4: φ0 = φ1 = φ2 = φ3 = 1, φ4 = 0.1; A2-A3B1-A2B2-A1B3-B4 
(0.20 M): φ20 = φ21 = 0, φ22 = 0.080, φ40 = 0.320, φ41 = 0.583, φ42 = 1.066, φ43 = 1.933, φ44 
= 0, rms = 0.013. 
 
 
 


