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ABSTRACT: 29Si NMR spectroscopy, the method of continuous variations, and density functional theory computations show that
sodium hexamethyldisilazide (NaHMDS) is a disolvated dimer in toluene, a mixture of disolvated dimer and tetrasolvated monomer
in THF/toluene, and exclusively monomer in neat THF. The dioxane-solvated NaHMDS only partially deaggregates to monomer
even in neat dioxane. 15N−29Si coupling constants and 29Si chemical shifts show a high and dependable correlation with the
aggregation state. Monitoring either chemical shift or coupling constant versus THF concentration even in the high-temperature,
rapid-exchange limit affords the solvation numbers consistent with DFT computations. The preparation of 15N-labeled NaHMDS
has been improved.

A select few groups have been hailing the organic chemistry
community to pay more attention to organosodium

chemistry. We joined in only recently and possibly may not be
the last to do so. To this end, sodium hexamethyldisilazide
(NaHMDS) is arguably the preeminent organosodium reagent
in both academic and industrial laboratories.1 Despite its
prominence, studies of its properties in solution are restricted
to a couple of NMR spectra2,3 and a handful of computations.4

We have embarked on an extensive study using a
combination of methods to determine the structure of
NaHMDS in over 30 commonly employed organic solvents
to begin to study how aggregation and solvation influence
reactivity and selectivity.5 An unexpectedly important protocol
revolves around the interrogation of structure using 15N−29Si
coupling observed in 15N-labeled NaHMDS. Lukevics and co-
workers used natural abundance to examine 1JN−Si coupling in
a series of disilazanes including NaHMDS in benzene.3

Unaided by additional data, their suggestion that NaHMDS
is tetrameric in benzene was suspect,2a,b but the tactic had
merit.
We find a highly predictable correlation of 15N−29Si

coupling with aggregation state. The high sensitivity,
resolution, and quantitation offered by 29Si NMR spectroscopy
and the low cost of the 15N label (7% the cost of an NMR
tube) render this of potential interest to those studying M−
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Figure 1. DFT-computed, toluene-complexed dimer 1a.

Figure 2. 29Si NMR spectra of (a) [15N]NaHMDS (0.20 M) in
toluene at −80 °C showing homodimer 1a, (b) NaTMDS (0.20 M)
in toluene at −80 °C showing homodimer 2a, and (c) a 1:1 mixture
of [15N]NaHMDS and NaTMDS (0.20 M total titer) in toluene
recorded at −80 °C showing homo- and heterodimers 1a and 3a. (d)
29Si NMR spectrum of 0.15 M [15N]NaHMDS in 0.75 M THF with
Me2NEt (DMEA) as cosolvent recorded at −120 °C shows dimer 1b
and monomer 4.
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N(SiR3)2 and M−N(SiR3)(R) derivatives. We present herein
preliminary studies that focus on three prominent solvents:
toluene, THF, and dioxane.
A 29Si{1H} INEPT experiment circumvented the problems

posed by background signal from glass NMR tubes and NOE
effects,6 allowing the relative integrations to be ascertained.
[15N]NaHMDS was prepared in 45% overall yield from
15NH4Cl by an optimized protocol.7 1H and 13C NMR spectra
are archived Supporting Information. Density functional theory
(DFT) computations were carried out at the M06-2X level of
theory8,9 for geometry optimizations and single-point calcu-
lations.10 The standard Def2-SVP basis set was used for
geometry optimizations, and the expanded basis set Def2-
TZVP for single point calculations.11,12

The high solubility of NaHMDS in toluene and insolubility
in hexane implicated an explicit π complexation, as observed

crystallographically for many metals, including sodium.13 The
29Si NMR spectrum shows a doublet with 1JN−Si = 7.9 Hz akin
to that for the benzene solvate noted by Lukevics, which
proves to be characteristic of dimeric NaHMDS (Figure 1).
The dimer assignment was secured using the method of

continuous variations (MCV).14 Mixtures of NaHMDS and
the structurally similar sodium tetramethyldisilazide
[NaTMDS; (HMe2Si)2NNa]

15 in toluene show two homo-
dimers along with a heterodimer manifesting a 29Si singlet
corresponding to the TMDS fragment and a doublet with
coupling characteristic of dimers (1JN−Si = 8.9 Hz; Figure 2c).
Plotting the proportions of homo- and heteroaggregates versus
measured16 mole fraction of NaHMDS (XNaHMDS) affords the
Job plot in Figure 3. Quantitative heterodimerization is
supported computationally (eq 1) and presumably derives
from steric relief in the NaHMDS homodimer 1. An analogous
Job plot is obtained in toluene with 5.0 equiv of THF,
conditions in which THF quantitatively displaces toluene to

Figure 3. Job plot showing relative integrations of the 29Si resonances
of NaHMDS homodimer 1a (red), NaTMDS-derived homodimer 2a
(blue), and heterodimer 3a (green; eq 1) versus the measured16 mole
fraction of NaHMDS (XNaHMDS) at 0.20 total molarity17 in neat
toluene-d8 at −80 °C.

Figure 4. DFT-computed, THF-complexed dimer 1a and monomer
4.

Figure 5. 29Si chemical shift (green) and 15N−29Si coupling constants
(black) plotted versus [THF] in 2:1 pentane/toluene as cosolvent
measured at −20 °C. The curves are fits to a model based on an
A2S2−AS4 equilibrium (Supporting Information).

Figure 6. 15N−29Si coupling constants plotted versus [THF] in 2:1
pentane/toluene as cosolvent measured at −20 °C (black), 20 °C
(green), and 50 °C (blue). The functions are fits to a model based on
an A2S2−AS4 equilibrium (Supporting Information).
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form 1b as shown by titrations.13 Dimer 1b has been
characterized crystallographically.2c

Titration of solutions of [15N]NaHMDS (0.15 M) in DMEA
to record 29Si NMR spectra with added THF at −120 °C
reveals a markedly upfield-shifted resonance displaying a large
coupling (1JN−Si = 13.4 Hz, Figure 2d) characteristic of
NaHMDS monomers (Figure 4). The monomer becomes the
sole observable form by 10 equiv (1.50 M).
Exchange of free and sodium-bound THF is rapid even at

−120 °C. Although computations are supportive of both di-
and tetrasolvated dimer, a host of other monodentate solvents
show disolvation to be the norm.5 Couplings and chemical
shifts are proxies for aggregation even in the high-temperature,
rapid-exchange limit as illustrated in Figure 5. Figure 6 shows
the temperature dependence of the deaggregation, revealing
the anticipated preference for monomer at lower temperatures.
Moreover, the curves in Figures 5 and 6 result from fits
according to the equilibrium in Figure 4 with tetrasolvated
monomer 4. Analogous fits assuming a trisolvated monomer
are decidedly inferior.
The correlation of coupling constant to aggregation state can

also be used to assign dimer−monomer ratios in solvents that
eluded assignment at lower temperatures. The prominent
ethereal solvent 1,4-dioxane produced a highly insoluble white
crystalline material at low temperature probably owing to a
polymeric network of monomers characterized crystallo-
graphically,18 precluding solution structural studies. 29Si
spectra in the rapid exchange limit at 20 °C show dioxane-
concentration-dependent coupling consistent with partial
deaggregation of dimer 5 to monomer 6 at 20 °C. In neat
dioxane, the 10.7 Hz coupling indicates that approximately

50% of the titer derives from monomer 6 (Figure 7). DFT
computations indicate monomer 6 is only trisolvated.
We have shown that chemical shift and 15N−29Si coupling

for the dimers (7.5−8.5 Hz) and monomers (13.0−13.5 Hz),
in conjunction with results from a much more broadly based
study,5 are highly diagnostic of aggregation state. From a single
spectrum, even at ambient temperatures, one can assess the
relative proportions of monomers and dimers. Ironically, in
over a dozen papers describing the structure of lithium
hexamethyldisilazide using 15N-labeled substrate in >100
solvents, we did not record a single 29Si NMR spectrum: we
did not need them. Belatedly, we find the analogous
[15N]LiHMDS/THF dimer and monomer 15N−29Si couplings
are 7.0 and 11.7 Hz, respectively. We suspect that other
organometallic complexes with silazide-based ligands are likely
to show diagnostic trends as well.
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