SUPPORTING INFORMATION

Ketone Enolization with Sodium Hexamethyldisilazide: Solvent-and Substrate-Dependent E-Z Selectivity and Affiliated Mechanisms

Ryan A. Woltornist and David B. Collum* Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853–1301, United States <u>dbc6@cornell.edu</u>

I. NMR, IR, and GC Characterization Data

Chart 1	Select solution structures of NaHMDS and substrates.	S-9
Figure S1	GC trace for the enolization of 8 by LiHMDS in neat THF at -78 °C.	S-10
Figure S2	GC trace for the enolization of 8 by LiHMDS in 1.5 M Et ₃ N at -78 °C.	S-11
Figure S3	GC trace for the enolization of 8 by NaHMDS in 9.0 M THF at -78 °C.	S-12
Figure S4	GC trace for the enolization of 8 by NaHMDS in 6.0 M MTBE at -78 °C.	S-13
Figure S5	GC trace for the enolization of 8 by NaHMDS in 1.5 M PMDTA at -78 °C.	S-14
Figure S6	GC trace for the enolization of 8 by NaHMDS in 4.0 M Et ₃ N at -78 °C.	S-15
Figure S7	GC trace for the enolization of 8 by NaHMDS in 1.5 M DME at -78 °C.	S-16
Figure S8	GC trace for the enolization of 8 by NaHMDS in neat toluene at -78 °C.	S-17
Figure S9	GC trace for the enolization of 8 by NaHMDS in 1.5 M diglyme at -78 °C.	S-18
Figure S10	GC trace for the enolization of 8 by 0.5 equiv NaHMDS in 4.0 M Et ₃ N at -78 °C.	S-19
Figure S11	GC trace for the enolization of 8 by 1.0 equiv NaHMDS in 4.0 M Et ₃ N at -78 °C.	S-20

Figure S12	GC trace for the enolization of 8 by NaHMDS in 4.0 M Et ₃ N at -78 °C using in situ trapping protocol.	S-21
Figure S13	GC trace for the enolization of 8 by NaHMDS in neat THF at -78 °C using in situ trapping protocol.	S-22
Figure S14	GC trace for the enolization of 8 by NaHMDS in 4.0 M Et ₃ N at -78 °C followed by the addition of THF to probe equilibration.	S-23
Figure S15	GC trace for the enolization of 8 by NaHMDS in neat THF at -78 °C followed by TMSOTf quench.	S-24
Figure S16	GC trace for the enolization of 8 by NaHMDS in 2.0 M DME at -78 °C followed by TMSOTf quench.	S-25
Figure S17	¹ H and ¹³ C{ ¹ H} NMR spectra of the product silyl enol ether following the enolization of 8 - d_3 by NaHMDS at -78 °C.	S-26
Figure S18	²⁹ Si{ ¹ H} NMR spectra of [¹⁵ N]NaHMDS in TMEDA showing complexation DMPU and ketone 8 - d_3 at -95 °C.	S-27
Figure S19	²⁹ Si{ ¹ H} NMR spectra for the titration of [¹⁵ N]NaHMDS in MTBE and Et ₃ N by ketone 8 - d_3 at -100 °C showing complexation.	S-28

II. IR Spectroscopy Rate Studies

Figure S20	Plot of absorbance vs time (s) for the enolization of $8-d_3$ by NaHMDS or LiHMDS (0.10 M) in either Et ₃ N or THF with toluene cosolvent at -78 °C measured with IR spectroscopy.	S-30
Figure S21	Emblematic enolization of $8-d_3$ to form enolate $9-d_2$ by 0.15 M NaHMDS in 4.0 M Et ₃ N/toluene.	S-31
Figure S22	Plot of k_{obsd} vs [Et ₃ N] (M) for the enolization of 8 by NaHMDS in toluene cosolvent at -78 °C measured with IR spectroscopy.	S-32
Figure S23	Plot of k_{obsd} vs [NaHMDS] (M) for the enolization of 8 by NaHMDS in 2.0 M Et ₃ N with toluene cosolvent at -78 °C measured with IR spectroscopy.	S-33
Figure S24	Plot of k_{obsd} vs [NaHMDS] (M) for the enolization of 8 by NaHMDS in 7.0 M Et ₃ N with toluene cosolvent at -78 °C measured with IR spectroscopy.	S-34
Figure S25	Plot of k_{obsd} vs [MTBE] (M) for the enolization of 8 by NaHMDS with toluene cosolvent at -78 °C measured with IR spectroscopy.	S-35
Figure S26	Plot of k_{obsd} vs [NaHMDS] (M) for the enolization of 8 by NaHMDS in 4.0 M MTBE with toluene cosolvent at -78 °C measured with IR spectroscopy.	S-36

Figure S27	Plot of k_{obsd} vs [THF] (M) for the enolization of 8 - d_3 by NaHMDS with toluene cosolvent at -78 °C measured with IR spectroscopy.	S-37
Figure S28	Plot of k_{obsd} vs [NaHMDS] (M) for the enolization of 8 - d_3 by NaHMDS in 4.0 M THF with toluene cosolvent at -78 °C measured with IR spectroscopy.	S-38
Figure S29	Plot of k_{obsd} vs [ketone] (M) for the enolization of 8 - d_3 by NaHMDS in 4.0 M THF with toluene cosolvent at -78 °C measured with IR spectroscopy.	S-39
Figure S30	Plot of k_{obsd} vs [THF] (M) for the enolization of 11 - d_3 by NaHMDS with toluene cosolvent at -78 °C measured with IR spectroscopy.	S-40
Figure S31	Plot of k_{obsd} vs [NaHMDS] (M) for the enolization of 11 - d_3 by NaHMDS in 4.0 M THF with toluene cosolvent at -78 °C measured with IR spectroscopy.	S-41
Figure S32	Plot of k_{obsd} vs [PMDTA] (M) for the enolization of 8 - d_3 by NaHMDS with toluene cosolvent at -78 °C measured with IR spectroscopy.	S-42
Figure S33	Plot of k_{obsd} vs [amine] (M) for the enolization of 8 - d_3 by NaHMDS in at constant [PMDTA] (M) varying [TMEDA] (M) or [DMEA] (M) with toluene cosolvent at -78 °C measured with IR spectroscopy.	S-43
Figure S34	Plot of k_{obsd} vs [NaHMDS] (M) for the enolization of 8 - d_3 by NaHMDS in 2.0 M PMDTA with toluene cosolvent at -78 °C measured with IR spectroscopy.	S-44
Figure S35	Plot of k_{obsd} vs [NaHMDS] (M) for the enolization of 8 - d_3 by NaHMDS with 1.2 equiv PMDTA (constant) and 1.5 M TMEDAwith toluene cosolvent at -78 °C measured with IR spectroscopy.	S-45
Figure S36	Plot of k_{obsd} vs [NaHMDS] (M) for the enolization of 8 - d_3 by NaHMDS in 0.75 M TMEDA with toluene cosolvent at -78 °C measured with IR spectroscopy.	S-46
Figure S37	Plot of k_{obsd} vs [TMEDA] (M) for the enolization of 8 - d_3 by NaHMDS with toluene cosolvent at -78 °C measured with IR spectroscopy.	S-47

III. Derivations

Derivation 1 NaHMDS-mediated enolization: Et₃N order

IV. Computations

Geometric coordinates and thermal corrected single point energies for 2-methyl-3-pentanone.	S-52
Geometric coordinates and thermal corrected single point energies for 2-methyl-cyclohexanone	S-53
Geometric coordinates and thermal corrected single point energies for toluene.	S-54
Geometric coordinates and thermal corrected single point energies for triethylamine.	S-55
Geometric coordinates and thermal corrected single point energies for 1,2-dimethoxyethane (DME).	S-56
Geometric coordinates and thermal corrected single point energies for diglyme.	S-57
Geometric coordinates and thermal corrected single point energies for MTBE.	S-58
Geometric coordinates and thermal corrected single point energies for PMDTA.	S-59
Geometric coordinates and thermal corrected single point energies for TMEDA.	S-60
Geometric coordinates and thermal corrected single point energies for hexamethyldisilazane.	S-61
Geometric coordinates and thermal corrected single point energies for triethylamine-HMDS complexation.	S-62
Geometric coordinates and thermal corrected single point energies for a mixed solvated NaHMDS dimer (1x 2-methyl-3 pentanone; 1x MTBE).	S-64
Geometric coordinates and thermal corrected single point energies for a mixed solvated NaHMDS dimer (1x 2-methylcyclohexanone; 1x MTBE).	S-66
Geometric coordinates and thermal corrected single point energies for a mixed solvated NaHMDS dimer (1x 2-methyl-3-pentanone; 1x triethylamine).	S-68
Geometric coordinates and thermal corrected single point energies for a mixed solvated NaHMDS dimer (1x 2-methyl-3-pentanone; 1x toluene).	S-71
Geometric coordinates and thermal corrected single point energies for a mixed solvated NaHMDS dimer (1x 2-methylcyclohexanone; 1x toluene).	S-73
	 Geometric coordinates and thermal corrected single point energies for 2-methyl-3-pentanone. Geometric coordinates and thermal corrected single point energies for tolucne. Geometric coordinates and thermal corrected single point energies for triethylamine. Geometric coordinates and thermal corrected single point energies for 1,2-dimethoxyethane (DME). Geometric coordinates and thermal corrected single point energies for diglyme. Geometric coordinates and thermal corrected single point energies for MTBE. Geometric coordinates and thermal corrected single point energies for MTBE. Geometric coordinates and thermal corrected single point energies for PMDTA. Geometric coordinates and thermal corrected single point energies for TMEDA. Geometric coordinates and thermal corrected single point energies for TMEDA. Geometric coordinates and thermal corrected single point energies for TMEDA. Geometric coordinates and thermal corrected single point energies for triethylamine-HMDS complexation. Geometric coordinates and thermal corrected single point energies for a mixed solvated NaHMDS dimer (1x 2-methyl-3 pentanone; 1x MTBE). Geometric coordinates and thermal corrected single point energies for a mixed solvated NaHMDS dimer (1x 2-methyl-3-pentanone; 1x triethylamine). Geometric coordinates and thermal corrected single point energies for a mixed solvated NaHMDS dimer (1x 2-methyl-3-pentanone; 1x triethylamine).

Table S17	Geometric coordinates and thermal corrected single point energies for a mixed solvated NaHMDS dimer (2x 2-methylcyclohexanone).	S-75
Table S18	Geometric coordinates and thermal corrected single point energies for a mixed solvated NaHMDS dimer (2x 2-methyl-3-pentanone).	S-77
Table S19	Geometric coordinates and thermal corrected single point energies for a disolvated NaHMDS dimer (2x MTBE).	S-79
Table S20	Geometric coordinates and thermal corrected single point energies for a disolvated NaHMDS dimer (2x triethylamine).	S-81
Table S21	Geometric coordinates and thermal corrected single point energies for a disolvated NaHMDS monomer (2x DME).	S-84
Table S22	Geometric coordinates and thermal corrected single point energies for a trisolvated NaHMDS monomer (3x THF).	S-86
Table S23	Geometric coordinates and thermal corrected single point energies for a tetrasolvated NaHMDS monomer (4x THF).	S-88
Table S24	Geometric coordinates and thermal corrected single point energies for a monosolvated NaHMDS monomer (1x diglyme).	S-90
Table S25	Geometric coordinates and thermal corrected single point energies for a monosolvated NaHMDS monomer (1x PMDTA).	S-92
Table S26	Geometric coordinates and thermal corrected single point energies for the anionic fragment of a NaHMDS free ion.	S-94
Table S27	Geometric coordinates and thermal corrected single point energies for the sodium cation with κ^3 , κ^3 -PMDTA.	S-95
Table S28	Geometric coordinates and thermal corrected single point energies for the sodium cation with κ^3 , κ^3 -diglyme.	S-97
Table S29	Geometric coordinates and thermal corrected single point energies for the sodium cation with κ^2 , κ^2 , κ^2 -DME.	S-99
Table S30	Geometric coordinates and thermal corrected single point energies for the sodium cation with 5 THF.	S-101
Table S31	Geometric coordinates and thermal corrected single point energies for the sodium cation with 6 THF.	S-103
Table S32	Geometric coordinates and thermal corrected single point energies for the sodium cation with 4 MTBE.	S-105
Table S33	Geometric coordinates and thermal corrected single point energies for the sodium cation with κ^3 -PMDTA, κ^1 -DMEA.	S-107
Table S34	Geometric coordinates and thermal corrected single point energies for the sodium cation with κ^3 -PMDTA, κ^2 -TMEDA.	S-109

Table S35	Geometric coordinates and thermal corrected single point energies for the sodium cation with κ^2 , κ^2 -PMDTA.	S-111
Table S36	Geometric coordinates and thermal corrected single point energies for the sodium cation with $\kappa^3 \kappa^1$ -PMDTA.	S-113
Table S37	Geometric coordinates and thermal corrected single point energies for the sodium cation with κ^3 , κ^2 -PMDTA.	S-115
Table S38	Geometric coordinates and thermal corrected single point energies for the sodium cation with κ^2 , κ^2 -TMEDA.	S-117
Table S39	Geometric coordinates and thermal corrected single point energies for the sodium cation with 5 THF and 2-methyl-3-pentanone.	S-119
Table S40	Geometric coordinates and thermal corrected single point energies for the sodium cation with 5 THF and 2-methylcyclohexanone.	S-121
Table S41	Geometric coordinates and thermal corrected single point energies for NaHMDS tetrasolvated monomer with 3x THF and 1x 2-methyl-3- pentanone bound.	S-123
Table S42	Geometric coordinates and thermal corrected single point energies for NaHMDS tetrasolvated monomer with 3x THF and 1x 2-methylcyclohexanone bound.	S-125
Table S43	Geometric coordinates and thermal corrected single point energies for NaHMDS disolvated dimer with 1x TMEDA and 1x 2-methyl-3-pentanone bound.	S-127
Table S44	Geometric coordinates and thermal corrected single point energies for NaHMDS disolvated monomer with 1x κ^2 -TMEDA and 1x 2-methyl-3-pentanone bound.	S-130
Table S45	Geometric coordinates and single point energies for THF.	S-132
Table S46	Geometric coordinates and thermal corrected single point energies for NaHMDS-mediated enolization of 2-methyl-3-pentanone via a monosolvated triethylamine closed dimer transition structure poised to generate the E enolate.	S-133
Table S47	Geometric coordinates and thermal corrected single point energies for NaHMDS-mediated enolization of 2-methyl-3-pentanone via a monosolvated triethylamine closed dimer transition structure poised to generate the Z enolate.	S-136
Table S48	Geometric coordinates and thermal corrected single point energies for NaHMDS-mediated enolization of 2-methyl-3-pentanone via a disolvated triethylamine open dimer transition structure poised to generate the E enolate.	S-139

Table S49	Geometric coordinates and thermal corrected single point energies for NaHMDS-mediated enolization of 2-methyl-3-pentanone via a disolvated triethylamine open dimer transition structure poised to generate the Z enolate	S-142
Table S50	Geometric coordinates and thermal corrected single point energies for NaHMDS-mediated enolization of 2-methyl-3-pentanone via a free ion transition structure poised to generate the <i>E</i> enolate. Only the anionic fragment is present at the transition state.	S-145
Table S51	Geometric coordinates and thermal corrected single point energies for NaHMDS-mediated enolization of 2-methyl-3-pentanone via a free ion transition structure poised to generate the <i>Z</i> enolate. Only the anionic fragment is present at the transition state.	S-147
Table S52	Geometric coordinates and thermal corrected single point energies for NaHMDS-mediated enolization of 2-methyl-3-pentanone via a free ion transition structure poised to generate the E enolate. Only the anionic fragment is present at the transition state. State-of-the-art functionals were used.	S-149
Table S53	Geometric coordinates and thermal corrected single point energies for NaHMDS-mediated enolization of 2-methyl-3-pentanone via a free ion transition structure poised to generate the Z enolate. Only the anionic fragment is present at the transition state. State-of-the-art functionals were used	S151
Table S54	Geometric coordinates and thermal corrected single point energies for NaHMDS-mediated enolization of 2-methylcyclohexanone via a trisolvated THF monomer transition structure.	S-153
Table S55	Geometric coordinates and thermal corrected single point energies for NaHMDS-mediated enolization of 2-methyl-3-pentanone via a pentasolvated THF contact ion pair transition structure that is poised to form the <i>Z</i> enolate.	S-155
Table S56	Geometric coordinates and thermal corrected single point energies for NaHMDS-mediated enolization of 2-methyl-3-pentanone via a disolvated $\kappa^1 \kappa^2$ -TMEDA dimer-based transition structure that is poised to form the <i>Z</i> enolate.	S-158
Table S57	Geometric coordinates and thermal corrected single point energies for NaHMDS-mediated enolization of 2-methyl-3-pentanone via a disolvated $\kappa^1 \kappa^2$ -TMEDA dimer-based transition structure that is poised to form the <i>E</i> enolate.	S-161

I. NMR, IR, and GC Characterization Data

Chart 1. Select solution structures of NaHMDS and substrates tested.

Figure S1. GC trace for the enolization of **8** (0.050 M) by 0.15 M LiHMDS in neat THF with decane internal standard at -78 °C. Samples for GC analysis were prepared by addition of TMSCl/Et₃N after 20 mins, standard aqueous workup, and dilution with pentane before loading sample.

Figure S2. GC trace for the enolization of **8**- d_0 (0.050 M) by 0.15 M LiHMDS in 1.5 M Et₃N with toluene cosolvent using decane as an internal standard at -78 °C. Samples for GC analysis were prepared by addition of TMSCl/Et₃N after 20 mins, standard aqueous workup, and dilution with pentane before loading sample.

Figure S3. GC trace for the enolization of **8**- d_0 (0.050 M) by 0.15 M NaHMDS in 9.0 M THF with toluene cosolvent using decane as an internal standard at -78 °C. Samples for GC analysis were prepared by addition of TMSCl/Et₃N after 20 mins, standard aqueous workup, and dilution with pentane before loading sample.

Figure S4. GC trace for the enolization of **8**- d_0 (0.050 M) by 0.15 M NaHMDS in 6.0 M MTBE with toluene cosolvent using decane as an internal standard at -78 °C. Samples for GC analysis were prepared by addition of TMSCl/Et₃N after 20 mins, standard aqueous workup, and dilution with pentane before loading sample.

Figure S5. GC trace for the enolization of **8**- d_0 (0.050 M) by 0.15 M NaHMDS in 1.5 M PMDTA with toluene cosolvent using decane as an internal standard at –78 °C. Samples for GC analysis were prepared by addition of TMSCl/Et₃N after 20 mins, standard aqueous workup, and dilution with pentane before loading sample.

Figure S6. GC trace for the enolization of **8**- d_0 (0.050 M) by 0.15 M NaHMDS in 4.0 M Et₃N with toluene cosolvent using decane as an internal standard at -78 °C. Samples for GC analysis were prepared by addition of TMSCl/Et₃N after 45 mins, standard aqueous workup, and dilution with pentane before loading sample.

Figure S7. GC trace for the enolization of **8**- d_0 (0.050 M) by 0.15 M NaHMDS in 1.5 M DME with toluene cosolvent using decane as an internal standard at -78 °C. Samples for GC analysis were prepared by addition of TMSCl/Et₃N after 45 mins, standard aqueous workup, and dilution with pentane before loading sample.

Figure S8. GC trace for the enolization of **8**- d_0 (0.050 M) by 0.15 M NaHMDS in toluene using decane as an internal standard at -78 °C. Samples for GC analysis were prepared by addition of TMSCl/Et₃N after 45 mins, standard aqueous workup, and dilution with pentane before loading sample.

Figure S9. GC trace for the enolization of **8**- d_0 (0.050 M) by 0.15 M NaHMDS in 1.5 M diglyme with toluene cosolvent using decane as an internal standard at -78 °C. Samples for GC analysis were prepared by addition of TMSCl/Et₃N after 45 mins, standard aqueous workup, and dilution with pentane before loading sample.

Figure S10. GC trace for the enolization of **8**- d_0 (0.050 M) by 0.025 M NaHMDS in 4.0 M Et₃N with toluene cosolvent using decane as an internal standard at -78 °C. Samples for GC analysis were prepared by addition of TMSCl/Et₃N after 1 h, standard aqueous workup, and dilution with pentane before loading sample.

Figure S11. GC trace for the enolization of **8**- d_0 (0.050 M) by 0.050 M NaHMDS in 4.0 M Et₃N with toluene cosolvent using decane as an internal standard at -78 °C. Samples for GC analysis were prepared by addition of TMSCl/Et₃N after 1 h, standard aqueous workup, and dilution with pentane before loading sample.

Figure S12. GC trace for the enolization of **8**- d_0 (0.050 M) by 0.15 M NaHMDS in 4.0 M Et₃N with toluene cosolvent in the presence of 180 µL of 4:1 TMSCl/Et₃N using decane as an internal standard at -78 °C. Samples for GC analysis were prepared after stirring 1 h, standard aqueous workup, and dilution with pentane before loading sample.

DA 1	TANU003172102.0)			THE PARTY OF THE P	网络动物植物动物和植物		AND TABLE	Marsh Marine M. W.	er a Carlo
Marph and Mark	فتريد المالية المحالية المتوجع يتعلقون			和小林		M. M. H		1	
Contra Martin	et al all all all all as					The Part		f	
AFA PART ANT ANT						ALC: NO.		N. M. C.	
400 -					C.M. A	(Me	$_{3}SI)_{3}$	N	
Call Stander		der	ane	5	AND SHE	Section Section	J - 75		
200	and and and the second	ueu	and			입다 지지?			
300 -	and the second second second		474		ALL THE				
And the part of the first	and the second second second	C. A. C. A. C. A.	Ê				1. 1. 1.		
200	A CONTRACT OF				R. M. W. L. M.				
200]	and the second	ALC: ALC: ALC: ALC: ALC: ALC: ALC: ALC:						and the second	
Particulate Participant	and the said of the said of the said			AL ART	enner en e	MART SA	and the second	and a start	
100	and the second					WAY TO THE REAL			
a provide the state	and the second						and the second	See States	
align paliphing of the second	and the second	A STATE OF STATE OF STATE OF STATE							
and provide and an	A REAL PROPERTY AND A REAL	A REAL PROPERTY AND A REAL	1		的考虑出版			1 Julie	
NU dalle de la deservició de la mereo	8	10	New Pre-	2	小批性人工	14	ansered.	18	· · ·
They be an	Construction of the second		A CONTRACTOR OF THE OWNER	CONTRACTOR OF THE OWNER	Contraction of the second sector and sector and particular	AND TALK AND AN ADDRESS OF A REAL PROCESSING OF A REAL PROPERTY.			
A State of the sta	and a state of the		Stell Country	Statistics in the		and the second second		Salah Sa	AND AND
			#	Time	A	Haiabi		C	
	File Information		#	Time 2.354	Area 51	Height 24	Width	Symmetry	
GC-File File Path	File Information 03172102.D C14PCHEM122DATA\BYANWA		#	Time 2.354 2.454	Area 5.1 160.8	Height 2.4 152.4	Width 0.0305 0.0171	Symmetry 0.597 1.05	
GC·File File Path Date	File Information 03172102.D C:\HPCHEM\2\DATA\RYANW\ 17/03/2021 11:34:30 FM		# 1 2 3	Time 2.354 2.454 2.488	Area 5.1 160.8 197300.3	Height 2.4 152.4 125589.2	Width 0.0305 0.0171 0.0262	Symmetry 0.597 1.05 0.329	Antonination
GC-File File Path Date Sample	File Information 03172102.D C:\HPCHEM\2\DATA\RYANW\ 17/03/2021 11:34:30 PM THF/n stu		# 1 2 3 4	Time 2.354 2.454 2.488 2.567	Area 5.1 160.8 197300.3 24.1	Height 2.4 152.4 125589.2 18.6	Width 0.0305 0.0171 0.0262 0.0216	Symmetry 0.597 1.05 0.329 0.402	
GC-File File Path Date Sample Sample Info	File Information 03172102.D C:\HPCHEM\2\DATA\RYANW\ 17/03/2021 11:34:30 PM THF/in situ	<u>}</u>	# 1 2 3 4 5	Time 2.354 2.454 2.488 2.567 2.724	Area 5.1 160.8 197300.3 24.1 2834.7	Height 2.4 152.4 125589.2 18.6 1286.6	Width 0.0305 0.0171 0.0262 0.0216 0.0369	Symmetry 0.597 1.05 0.329 0.402 1.413	
GC-File File Path Date Sample Sample Info Barcode	File Information 03172102.D C:\HPCHEM\2\DATA\RYANW\ 17/03/2021 11:34:30 PM THF/in situ		# 1 2 3 4 5 6	Time 2.354 2.454 2.488 2.567 2.724 2.789	Area 5.1 160.8 197300.3 24.1 2834.7 47	Height 2.4 152.4 125589.2 18.6 1286.6 29.5	Width 0.0305 0.0171 0.0262 0.0216 0.0369 0.025	Symmetry 0.597 1.05 0.329 0.402 1.413 0.858	
GC-File File Path Date Sample Info Barcode Operator	File Information 03172102.D C:\HPCHEM\2\DATA\RYANW\ 17/03/2021 11:34:30 PM THF/in situ RyanW	2011-001 	# 1 2 3 4 5 6 7 7	Time 2.354 2.454 2.488 2.567 2.724 2.789 2.869 2.829	Area 5.1 160.8 197300.3 24.1 2834.7 47 148.5	Height 2.4 152.4 125589.2 18.6 1286.6 29.5 93.9 2004 5.2	Width 0.0305 0.0171 0.0262 0.0216 0.0369 0.025 0.0248 0.0248	Symmetry 0.597 1.05 0.329 0.402 1.413 0.858 0.846 0.846	
GC:File File Path Date Sample Info Barcode Operator Method	File Information 03172102.D C:\HPCHEM\2\DATA\RYANW\ 17/03/2021 11:34:30 PM THF/in situ ByanW RAW.M		# 1 2 3 4 5 6 7 8	Time 2.354 2.454 2.458 2.567 2.724 2.789 2.869 3.073 2.251	Area 5.1 160.8 197300.3 24.1 2834.7 47 148.5 35507.7	Height 2.4 125589.2 18.6 1286.6 29.5 93.9 20215.3	Width 0.0305 0.0171 0.0262 0.0216 0.0369 0.025 0.0248 0.0277 0.0205	Symmetry 0.597 1.05 0.329 0.402 1.413 0.858 0.846 1.119	
GC:File File Path Date Sample Info Barcode Operator Method	File Information 03172102.D C:\HPCHEM\2\DATA\RYANW\ 17/03/2021 11:34:30 PM THF/in situ RyanW RAW.M		# 1 2 3 4 5 6 7 8 9 9	Time 2.354 2.454 2.458 2.567 2.724 2.789 2.869 3.073 3.351 2.471	Area 5.1 160.8 197300.3 24.1 2834.7 47 148.5 35507.7 2.6 2.6	Height 2.4 152.4 125589.2 18.6 1286.6 29.5 93.9 20215.3 1.4 99.9	Width 0.0305 0.0171 0.0262 0.0216 0.0363 0.025 0.0248 0.0277 0.0305 0.0262	Symmetry 0.597 1.05 0.329 0.402 1.413 0.858 0.846 1.119 0.611 0.915	

Figure S13. GC trace for the enolization of **8**- d_0 (0.050 M) by 0.15 M NaHMDS in neat THF in the presence of 180 µL of 4:1 TMSCl/Et₃N using decane as an internal standard at -78 °C. Sample for GC analysis was prepared after stirring 1 h, a standard aqueous workup, and dilution with pentane before loading sample.

Figure S14. GC trace for the enolization of **8**- d_0 (0.050 M) by 0.15 M NaHMDS in 4.0 M Et₃N with toluene cosolvent using decane as an internal standard. The reaction was allowed to stir for 1 h at -78 °C followed by the addition of 0.5 mL THF. The reaction was then brough to 0 °C immediately followed by stirring in an ice bath for 15 mins. Sample for GC analysis was prepared by a standard aqueous workup and dilution with pentane before loading sample.

Figure S15. GC trace for the enolization of **8**- d_0 (0.050 M) by 0.15 M NaHMDS in neat THF using decane as an internal standard at -78 °C. The reaction was followed using IR spectroscopy to ensure all starting ketone had been consumed before quenching the TMSOTf. After the complete disappearance of **8** (4 min), TMSOTf (200 µL) was added at -78 °C. Complete conversion of enolate to silyl enol ether was achieved after 1 min. The reaction was then brough to room temperature and allowed to stir for 15 mins. Sample for GC analysis was prepared by a standard aqueous workup and dilution with pentane before loading sample.

Figure S16. GC trace for the enolization of **8**- d_0 (0.050 M) by 0.15 M NaHMDS in 2.0 M DME using decane as an internal standard at -78 °C. The reaction was followed using IR spectroscopy to ensure all starting ketone had been consumed before quenching the TMSOTf. After the complete disappearance of **8**, TMSOTf (200 µL) was added at -78 °C. The reaction was then brough to room temperature and allowed to stir for 15 mins. Sample for GC analysis was prepared by a standard aqueous workup and dilution with pentane before loading sample.

Figure S17. ¹H (500 MHz) and ¹³C{¹H} (125 MHz) NMR spectra of the silyl enol ether resulting from the enolization of **8**-*d*₃ (0.050 M) by 0.15 M NaHMDS in neat THF and 2.0 M hexamethyldisilazane with toluene cosolvent at -78 °C followed by the addition of TMSCl/Et₃N. The reaction was worked using standard aqueous washes, dried using Na₂SO₄, and solvent removed. The crude silyl enol ether was then dissolved in CDCl₃ and spectra were recorded. The insets shows clean deuterium retention.

Figure S18. ²⁹Si {¹H} NMR spectra of showing (a) [¹⁵N]NaHMDS (0.15 M) in 1.50 M TMEDA with toluene- d_8 cosolvent at -95 °C, (b) [¹⁵N]NaHMDS (0.15 M) in 1.50 M TMEDA and 0.075 M DMPU with toluene- d_8 cosolvent at -95 °C, and (c) [¹⁵N]NaHMDS (0.15 M) in 1.50 M TMEDA and 0.05 M **8**- d_3 with toluene- d_8 cosolvent at -95 °C.

Figure S19. ²⁹Si {¹H} NMR spectra of titrating **8**-*d*₃ into an NMR tube that contains 0.10 M [¹⁵N]NaHMDS in either 4.0 M Et₃N (spectra on the left) or 8.0 M MTBE (spectra on the right) with toluene-*d*₈ cosolvent at -100 °C. The number of equiv of **8**-*d*₃ for each spectra are as follows: Et₃N (a) 0.0 equiv (b) 0.5 equiv (c) 1.0 equiv and (d) 2.0 equiv; MTBE (a) 0.0 equiv (b) 0.5 equiv and (c) 1.5 equiv.

II. IR Spectroscopy Rate Studies

Figure S20. Plot of absorbance vs time (s) for the enolization of 2-methyl-3-pentanone- d_3 (8- d_3 , 0.005 M) by NaHMDS or LiHMDS (0.10 M) in either Et₃N or THF with toluene cosolvent at – 78 °C measured with IR spectroscopy.

Figure S21. Emblematic enolization of 8- d_0 (0.050 M; 1712 cm⁻¹) to form enolate 9- d_2 (1599 cm⁻¹) by 0.15 M NaHMDS in 4.0 M Et₃N/toluene.

Figure S22. Plot of k_{obsd} vs [Et₃N] (M) for the enolization of 2-methyl-3-pentanone (**8**- d_0 , 0.005 M) by NaHMDS (0.10 M) in toluene cosolvent at -78 °C measured with IR spectroscopy (1712 cm⁻¹). The curve is fit to the function described in the section title "Derivations".

$[Et_3N](M)$	$k_{\rm obsd}^{1}$ (s ⁻¹) x 10 ⁴	$k_{\rm obsd}^2$ (s ⁻¹) x 10 ⁴	$k_{\rm obsd}^{\rm avg}$ (s ⁻¹) x 10 ⁴
0.00	0.714*	_	0.714
0.15	2.63	2.08	2.3 ± 0.4
0.60	3.54	_	3.54
1.20	3.53	3.71	3.6 ± 0.1
2.00	3.54	3.27	3.4 ± 0.2
4.00	3.97	4.60	4.3 ± 0.5
6.00	5.3	_	5.3
7.04	4.97	6.53	6 ± 1

*Pseudo-first-order rate constant converted from initial rate

Figure S23. Plot of k_{obsd} vs [NaHMDS] (M) for the enolization of 2-methyl-3-pentanone (8- d_0 , 0.005 M) by NaHMDS in 2.0 M Et₃N with toluene cosolvent at -78 °C measured with IR spectroscopy (1712 cm⁻¹). The curve depicts an unweighted least-squares fit to y = ax + b [$a = (2.1 \pm 0.9) \times 10^4$; $b = (3.2 \pm 0.2) \times 10^4$].

[NaHMDS] (M)	$k_{\rm obsd}^{1}$ (s ⁻¹) x 10 ⁴	$k_{\rm obsd^2}$ (s ⁻¹) x 10 ⁴	$k_{\text{obsd}}^{\text{avg}}$ (s ⁻¹) x 10 ⁴
0.05	3.33	_	3.33
0.10	3.54	3.27	3.4 ± 0.2
0.20	3.37	_	3.37
0.30	3.92	_	3.92

Figure S24. Plot of k_{obsd} vs [NaHMDS] (M) for the enolization of 2-methyl-3-pentanone (**8**- d_0 , 0.005 M) by NaHMDS in 7.04 M Et₃N with toluene cosolvent at -78 °C measured with IR spectroscopy (1712 cm⁻¹). The curve depicts an unweighted least-squares fit to y = ax + b [$a = (-1 \pm 5) \ge 10^4$; $b = (6.0 \pm 0.7) \ge 10^4$].

[NaHMDS] (M)	$k_{\rm obsd}^{1}$ (s ⁻¹) x 10 ⁴	$k_{\rm obsd}^2 ({\rm s}^{-1}) \ge 10^4$	$k_{\text{obsd}}^{\text{avg}}$ (s ⁻¹) x 10 ⁴
0.05	5.6	_	5.6
0.10	4.97	6.53	6 ± 1
0.15	6.4	_	6.4
0.20	5.3	_	5.3

Figure S25. Plot of k_{obsd} vs [MTBE] (M) for the enolization of 2-methyl-3-pentanone (8- d_0 , 0.005 M) by NaHMDS (0.10M) in toluene cosolvent at -78 °C measured with IR spectroscopy. The curve depicts an unweighted least-squares fit to $y = ax^b + c$ [$a = (1.9 \pm 0.5) \times 10^4$; $b = 1.6 \pm 0.1$; $c = (1.3 \pm 0.9) \times 10^4$].

[MTBE] (M)	$k_{\rm obsd}^{1}$ (s ⁻¹) x 10 ³	$k_{\rm obsd}^2$ (s ⁻¹) x 10 ³	$k_{\rm obsd}^{\rm avg}({\rm s}^{-1}) \ge 10^3$
0.15	0.172*	_	0.172
0.30	0.182*	_	0.182
0.60	0.324*	_	0.324
0.90	0.350*	_	0.350
1.20	0.234*	_	0.234
1.50	0.474*	_	0.474
2.00	0.546*	_	0.546
4.00	1.51	1.76	1.6 ± 0.1
5.00	2.24	_	2.24
7.00	4.30	_	4.30
8.39	5.04	_	5.04

*Pseudo-first-order rate constant converted from initial rate

Figure S26. Plot of k_{obsd} vs [NaHMDS] (M) for the enolization of 2-methyl-3-pentanone (**8**- d_0 , 0.005 M) by NaHMDS in 4.0 M MTBE in toluene at -78 °C measured with IR spectroscopy. The curve depicts an unweighted least-squares fit to $y = ax^b$ [$a = (2.7 \pm 0.2) \times 10^3$; $b = 0.25 \pm 0.03$]. The lowest concentration point (0.0125 M NaHMDS) is excluded from the fit due to the departure from pseudo-first-order conditions.

[NaHMDS] (M)	$k_{\rm obsd}^{1}$ (s ⁻¹) x 10 ³	$k_{\rm obsd}^2$ (s ⁻¹) x 10 ³	$k_{\rm obsd}^{\rm avg}({\rm s}^{-1}) \ge 10^3$
*0.0125	0.40	_	0.40
*0.025	1.00	_	1.00
0.05	1.30	_	1.30
0.10	1.51	1.76	1.6 ± 0.1
0.15	1.80	_	1.80
0.20	1.80	_	1.80
0.25	1.83	_	1.83

*No longer under pseudo-first-order conditions.

Figure S27. Plot of k_{obsd} vs [THF] (M) for the enolization of 2-methyl-3-pentanone- d_3 (8- d_3 , 0.005 M) by NaHMDS (0.10 M) in toluene cosolvent at -78 °C measured with IR spectroscopy. The curve depicts an unweighted least-squares fit to $y = ax^b$ [$a = (0.26 \pm 0.04) \times 10^3$; $b = 1.31 \pm 0.07$].

[THF] (M)	$k_{\rm obsd}^{1}$ (s ⁻¹) x 10 ³	$k_{\rm obsd}^2$ (s ⁻¹) x 10 ³	$k_{\rm obsd}^{\rm avg}({\rm s}^{-1}) \ge 10^3$
1.00	0.327*	0.222*	0.3 ± 0.1
4.00	1.58	_	1.58
6.00	2.67	_	2.67
9.00	4.80	_	4.80
10.00	5.20	_	5.20

*Pseudo-first-order rate constant converted from initial rate

Figure S28. Plot of k_{obsd} vs [NaHMDS] (M) for the enolization of 2-methyl-3-pentanone- d_3 (8- d_3 , 0.005 M) by NaHMDS in 4.0M THF with toluene cosolvent at -78 °C measured with IR spectroscopy. The curve depicts an unweighted least-squares fit to $y = ax^b$ [$a = (9.4 \pm 0.9) \times 10^3$; $b = 0.74 \pm 0.07$].

[NaHMDS] (M)	$k_{\rm obsd}({\rm s}^{-1})\ge 10^3$
0.00	0
0.05	0.820
0.10	1.58
0.15	2.23
0.20	3.20
0.30	4.10
0.40	4.50

Figure S29. Plot of k_{obsd} vs [ketone] (M) for the enolization of 2-methyl-3-pentanone- d_3 (8- d_3) by NaHMDS (0.10 M) in 4.0M THF with toluene cosolvent at -78 °C measured with IR spectroscopy. The curve depicts an unweighted least-squares fit to y = ax + b [$a = 0.013 \pm 0.003$; $b = (1.52 \pm 0.02) \times 10^3$].

[ketone] (M)	$k_{\rm obsd}({\rm s}^{-1}) \ge 10^3$
0.004	1.59
0.005	1.58
0.008	1.63
0.01	1.59

Figure S30. Plot of k_{obsd} vs [THF] (M) for the enolization of 2-methylcyclohexanone- d_3 (**8**- d_3 , 0.005 M) by NaHMDS (0.10 M) in THF with toluene cosolvent at -78 °C measured with IR spectroscopy. The curve depicts an unweighted least-squares fit to $y = ax^b [a = (4.3 \pm 0.3) \times 10^3; b = -0.8 \pm 0.1].$

[THF] (M)	$k_{\rm obsd}^{1}$ (s ⁻¹) x 10 ³	$k_{\rm obsd}^2$ (s ⁻¹) x 10 ³	$k_{\rm obsd}^{\rm avg}({\rm s}^{-1}) \ge 10^3$
1.00	4.10	_	4.10
2.00	2.82	_	2.82
3.00	2.68	_	2.68
4.00	1.22	1.17	1.19 ± 0.04
6.00	0.733	_	0.733
8.00	0.60	-	0.60

Figure S31. Plot of k_{obsd} vs [NaHMDS] (M) for the enolization of 2-methylcyclohexanone- d_3 (**8**- d_3 , 0.005 M) by NaHMDS in 4.0M THF with toluene cosolvent at -78 °C measured with IR spectroscopy. The curve depicts an unweighted least-squares fit to $y = ax^b$ [$a = 0.013 \pm 0.001$; $b = 0.99 \pm 0.07$].

[NaHMDS] (M)	$k_{\rm obsd}({\rm s}^{-1})\ge 10^3$	$k_{\rm obsd}^2$ (s ⁻¹) x 10 ³	$k_{\rm obsd}^{\rm avg}$ (s ⁻¹) x 10 ³
0.05	0.800	_	0.800
0.10	1.22	1.17	1.19 ± 0.04
0.20	2.66	_	2.66
0.30	3.60	_	3.60
0.40	5.21	_	5.21

Figure 32. Plot of k_{obsd} vs [PMDTA] (M) for the enolization of 2-methyl-3-pentanone- d_3 (8- d_3 , 0.005 M) by NaHMDS (0.10 M) with toluene cosolvent at -78 °C measured with IR spectroscopy. The curve depicts an unweighted least-squares fit to y = ax^b [$a = (4.1 \pm 0.1) \times 10^4$; $b = 0.48 \pm 0.04$].

[PMDTA] (M)	$k_{\rm obsd}({\rm s}^{-1}) \ge 10^4$	$k_{\rm obsd}^2$ (s ⁻¹) x 10 ⁴	$k_{\rm obsd}^{\rm avg}$ (s ⁻¹) x 10 ⁴
0.00	0.0714	_	0.0714
0.12	1.85 ± 0.04	1.75 ± 0.03	1.80 ± 0.07
0.30	2.14 ± 0.02	2.45 ± 0.05	2.3 ± 0.2
0.70	3.30 ± 0.04	3.25 ± 0.08	3.28 ± 0.04
1.20	5.1 ± 0.1	4.8 ± 0.1	4.9 ± 0.2
1.50	5.3 ± 0.1	4.7 ± 0.1	5.0 ± 0.4
2.00	5.7 ± 0.2	7.3 ± 0.3	6 ± 1

Figure 33. Plot of k_{obsd} vs [amine] (M) for the enolization of 2-methyl-3-pentanone- d_3 (8- d_3 , 0.005 M) by NaHMDS (0.10 M) in 0.12 M PMDTA with toluene cosolvent at -78 °C measured with IR spectroscopy. The concentration of amine corresponds to the concentration of either TMEDA or DMEA. The TMEDA curve depicts an unweighted least-squares fit to $y = ax^b + c$ [$a = (8.0 \pm 0.2) \times 10^{-4}$; $b = 1.87 \pm 0.05$; $c = (1.8 \pm 0.1) \times 10^{-4}$]. The Me₂NEt curve depicts an unweighted least-squares fit to y = ax + b [$a = (7 \pm 1) \times 10^{-5}$; $b = (1.7 \pm 0.1) \times 10^{-4}$].

TMEDA k_{obsd} (s ⁻¹) x 10 ⁴	DMEA k_{obsd} (s ⁻¹) x 10 ⁴
1.80	1.80
4.58	1.99
11.10	2.44
16.40	2.81
	$ TMEDA k_{obsd} (s^{-1}) x 10^4 1.80 4.58 11.10 16.40 $

Figure S34. Plot of k_{obsd} vs [NaHMDS] (M) for the enolization of 2-methyl-3-pentanone- d_3 (8- d_3 , 0.005 M) by NaHMDS in 2.0 M PMDTA with toluene cosolvent at -78 °C measured with IR spectroscopy. The curve depicts an unweighted least-squares fit to $y = ax^b$ [$a = (3.0 \pm 0.1) \times 10^3$; $b = 0.59 \pm 0.03$].

[NaHMDS] (M)	$k_{\rm obsd}({\rm s}^{-1})\ge 10^3$
0.00	0
0.025	0.38
0.05	0.47
0.10	0.77
0.20	1.15
0.30	1.40
0.40	1.78

Figure S35. Plot of k_{obsd} vs [TMEDA] (M) for the enolization of 2-methyl-3-pentanone- d_3 (8- d_3 , 0.005 M) by NaHMDS (0.10 M) in TMEDA and toluene cosolvent with 1.2 equiv PMDTA relative to [NaHMDS] at -78 °C measured with IR spectroscopy. The curve depicts a weighted least-squares fit to y = ax^b [$a = 0.671 \pm 0.002$; $b = 2.067 \pm 0.003$].

[TMEDA] (M)	$k_{\rm obsd}^{1}$ (s ⁻¹) x 10 ³	$k_{\rm obsd}^2$ (s ⁻¹) x 10 ³	$k_{\rm obsd}^{\rm avg}({ m s}^{-1}) \ge 10^3$
0.025	0.65	_	0.65
0.050	1.76	_	1.76
0150	13.30	_	13.30
0.200	17 ± 1	39 ± 5	30 ± 10

Figure 36. Plot of k_{obsd} vs [NaHMDS] (M) for the enolization of 2-methyl-3-pentanone- d_3 (**8**- d_3 , 0.005 M) by NaHMDS in 0.75 M TMEDA with toluene cosolvent at -78 °C measured with IR spectroscopy. The curve depicts an unweighted least-squares fit to y = ax + b [$a = (3 \pm 3) \times 10^{-4}$; $b = (1.57 \pm 0.04) \times 10^{-3}$].

[NaHMDS] (M)	$k_{\rm obsd}({\rm s}^{-1})\ge 10^3$
0.05	1.54
0.10	1.57
0.15	1.50
0.20	1.51

Figure 37. Plot of k_{obsd} vs [TMEDA] (M) for the enolization of 2-methyl-3-pentanone- d_3 (8- d_3 , 0.005 M) by 0.10 M NaHMDS in toluene cosolvent at -78 °C measured with IR spectroscopy. The curve depicts an unweighted least-squares fit to y = ax + b [$a = (2.2 \pm 0.2) \times 10^{-3}$; $b = (3 \pm 2) \times 10^{-4}$]. Fitting it to y = ax^n as an adjustable parameter gives an order $n = 0.9 \pm 0.1$.

[TMEDA] (M)	$k_{\rm obsd}({\rm s}^{-1})\ge 10^3$
0.19	0.83
0.38	1.24
0.75	1.52
1.00	2.50
1.25	3.10
1.50	3.80

III. Derivations

Derivation 1. NaHMDS-mediated enolization: Et₃N order

The function derived to produce the fit above is based on (1) the basal rate of the toluene solvate, (2) the near quantitative displacement of toluene by Et_3N , and (3) the equilibrium between the diketone solvated dimer and the mixed Et_3N /ketone solvated dimer. Due to the quantitative binding of **8**-*d*₃ couple with being under pseudo-first-order conditions it can be assumed no free ketone is present. The equilibrium expressions and final fitting function are shown below.

rate = toluene basal rate + $k_1[A_2NK] + k_2[A_2NK][Et_3N]$

Where $[A_2NK] = Et_3N/ketone$ mixed solvated dimer.

The equilibrium expression below is derived from the toluene ([T] = toluene)/Et₃N equilibrium. Accounting for mass balance of the total ketone concentration $[K]_T$ one can solve for $[A_2NK]$ in terms of $[K]_T$ and $[Et_3N]$.

$$K_{eq} = [A_2NK][T]/[A_2TK][Et_3N]$$
(1)

$$[K]_{T} = [A_{2}NK] + [A_{2}TK]$$
(2)

Rearranging eq 2 gives:

$$[K]_{T} - [A_{2}NK] = [A_{2}TK]$$
(3)

Substituting eq 3 into eq 1 gives:

$$K_{eq} = [A_2NK][T]/([K]_T - [A_2NK])[Et_3N]$$
(4)

Solving for [A₂NK] and assuming [T] is constant due to it being present in large excess gives:

$$[A_2NK] = [Et_3N][K]_T K_{eq} / 1 + [Et_3N] K_{eq}$$
(5)

Substituting eq 5 into the original rate equation above and inputting the known toluene basal rate gives the final fitting function:

rate =
$$(7.14 \times 10^{-5} + [Et_3N]K_{eq} (7.14 \times 10^{-5} + [K]_T (k_1 + k_2[Et_3N]))) / (1 + [Et_3N]K_{eq})$$
 (6)

IV. Computations

IV. Computations

DFT calculations were performed with the Gaussian 09 program package. Geometry optimizations and single point energies were computed at the M06-2X/def2-SVP level of theory and M06-2X/def2-TZVP level of theory respectively. A pruned (99,590) integration grid was used for all computations as well. CYLview Visualization Software was used for all ball-and-stick structures. Goodvibes (v3.0.1) was also used to streamline the extraction of thermochemical data. Thermal corrected single point energies (denoted as G(T)_SPC) are listed as well as other thermochemical data extracted using Goodvibes. For computed transition structures, the single imaginary frequency for each structure was extracted using Goodvibes and is included in the table as proof of a legitimate saddle point. All energies are in Hartrees and thermal corrections correspond to frequency calculations conducted at T = 195 K.

Table S1.Geometric coordinates and thermal corrected single point energies for 2-methyl-3-
pentanone.

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-311.061	7 -310.70521	0.170173	-310.88636	0.024858	0.02444	-310.91122	-310.9108
			-	•			-
Atom	X	Y	Z	Atom	X	Y	Z
С	1.1252130	0.2409210	0.406613	0			
Н	1.0398250	0.6811990	1.414032	0			
С	-0.2558580	-0.2575240	-0.00815	70			
С	-1.4504810	0.4637770	0.586354	0			
Н	-1.4417900	0.2424510	1.668291	0			
Н	-1.2689940	1.5493080	0.514783	0			
С	-2.7679800	0.0590900	-0.051832	20			
Н	-2.9149990	-1.0254870	0.031367	0			
Н	-3.6143730	0.5692520	0.426201	0			
Н	-2.7713490	0.3037170	-1.12268	00			
0	-0.3874450	-1.1659120	-0.79037	60			
С	2.1338680	-0.9015880	0.412602	0			
Н	3.1392800	-0.5323510	0.658807	0			
Н	1.8587420	-1.6748830	1.143436	0			
Н	2.1605210	-1.3747880	-0.57836	50			
С	1.5411320	1.3480060	-0.57234	60			
Н	1.6156370	0.9373430	-1.590102	20			
Н	0.8196380	2.1778730	-0.58922	60			
Н	2.5220640	1.7575790	-0.29294	00			

 Table S2.
 Geometric coordinates and thermal corrected single point energies for 2-methyl-cyclohexanone.

E_SPC	E E	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-349.174	04 -348.7793	0.179991	-348.98972	0.023135	0.023101	-349.01285	-349.01282
Atom	X	Y	Z	Atom	X	Y	Z
С	-1.6223050	-1.1299090	0.0868430	Н	-0.0468700	-1.396445	0 -1.3688130
С	-1.9617780	0.3095390	-0.2955480	0 Н	0.0683440	-2.498843	0 0.0079380
С	-0.9972490	1.2994560	0.3704190	Н	-1.1384630	1.2606650	1.4645150
С	0.4479860	0.9344210	0.0826240	Ο	1.2365780	1.7258580	-0.3696200
С	0.8290210	-0.5089960	0.3947820	С	2.2704160	-0.800691	0 0.0113900
С	-0.1762910	-1.4634060	-0.274233	0 Н	2.9586140	-0.106479	0 0.5101540
Н	-1.1617090	2.3329230	0.0396190	Н	2.5440770	-1.830355	0 0.2809390
Н	-1.8898430	0.4195960	-1.390340	0 Н	2.4085760	-0.673532	0 -1.0719410
Н	-2.9980090	0.5544490	-0.020779	0			
Н	-1.7686860	-1.2650010	1.1725980	1			
Н	-2.3089190	-1.8287490	-0.4134370	0			
Н	0.7014630	-0.6175770	1.4888380	1			

Table S3.Geometric coordinates and thermal corrected single point energies for toluene.

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-271.5343	38 -271.23533	0.128724	-271.40194	0.022077	0.021686	-271.42402	-271.42363
Atom	X	Y	Z	Atom	X	Y	Z
С	2.4199700	0.0001370	0.0094220	0			
С	0.9133230	0.0003670	-0.011904	40			
С	0.1953080	-1.2010320	-0.009082	20			
С	-1.1984960	-1.2041830	0.002112	0			
С	-1.9016160	-0.0002670	0.008473	0			
С	-1.1991070	1.2038450	0.002109	0			
С	0.1948480	1.2013150	-0.009080	00			
Н	0.7380160	2.1492950	-0.018146	50			
Н	-1.7393190	2.1521350	0.002133	0			
Н	-2.9926080	-0.0005390	0.014345	0			
Н	-1.7383390	-2.1526870	0.002133	0			
Н	0.7389200	-2.1487830	-0.018161	10			
Н	2.7962350	-0.0161780	1.044213	0			
Н	2.8258640	-0.8824340	-0.503225	50			
Н	2.8258480	0.8981050	-0.475590)0			

Table S4.Geometric coordinates and thermal corrected single point energies for
triethylamine.

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-292.3664	-292.03338	0.206426	-292.15473	0.024956	0.024794	-292.17969	-292.17953
Atom	X	Y	Z	Atom	X	Y	Z
С	-1.3428320	0.3788900	0.4447400	Н	0.0341600	-2.277724	0 -1.4810030
Ν	-0.0000020	0.0000430	0.0292400	Н	-1.9811410	-0.515091	0 0.3952010
С	0.9994960	0.9736150	0.4445480	Н	-1.3525000	0.7017650	1.5098560
Н	0.5444500	1.9733820	0.3945760	C	-1.9561180	1.4559910	-0.4392370
Н	1.2837780	0.8208640	1.5097520	Н	-2.9781020	1.6931880	-0.1112760
С	2.2391170	0.9658090	-0.439170	0 Н	-1.3751730	2.3889020	-0.4135900
Н	2.9555350	1.7322610	-0.111194	0 Н	-1.9897120	1.1088200	-1.4810100
Н	2.7564110	-0.0038350	-0.413081	0			
Н	1.9555780	1.1682290	-1.481081	0			
С	0.3434160	-1.3523100	0.4445960)			
Н	1.4367600	-1.4581300	0.3945980)			
Н	0.0690520	-1.5221110	1.5098200)			
С	-0.2830800	-2.4219900	-0.439134	0			
Н	0.0223940	-3.4256490	-0.111067	0			
Н	-1.3814650	-2.3851970	-0.413242	0			

Table S5.Geometric coordinates and thermal corrected single point energies for 1,2-
dimethoxyethane (DME).

E_SPC	E	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-308.8359	-308.47134	0.142981	-308.68841	0.023239	0.0231	-308.71165	-308.71151
Atom	X	Y	Z	Atom	X	Y	Z
С	0.8545320	1.0807780	-0.0333880) Н	-2.3453150	-1.186965	0.8423880
Н	1.4082410	1.5961330	0.7787710	Н	-2.9043750	-1.056969	-0.8538690
Н	0.6933360	1.8015900	-0.8470190) O	1.6140040	0.0440770	-0.5803980
С	-0.4922100	0.6499760	0.5210180	С	1.8299410	-1.040689	0 0.2708620
Н	-0.3631990	0.0258080	1.4291910	Н	2.5777850	-1.688846	0 -0.2031870
Н	-1.0482120	1.5558250	0.8379540	Н	2.2191200	-0.721618	0 1.2575770
0	-1.1877530	-0.0582110	-0.4594400) Н	0.9098240	-1.630736	0.4289980
С	-2.4357060	-0.5086350	-0.0274660)			
Н	-3.0965540	0.3302800	0.2617460				

Table S6.Geometric coordinates and thermal corrected single point energies for diglyme.

E_SPC	E	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-462.6614	-462.11801	0.205076	-462.44977	0.029049	0.028168	-462.47882	-462.47794
Atom	X	Y	Z	Atom	X	Y	Z
С	2.5518820	0.9555020	-0.316547	0 O	-3.1662040	-0.733010	0 0.1769020
Н	3.3256950	1.4871730	0.2751590	C	-4.0359690	0.3285350	-0.0920210
Н	2.4105220	1.5000100	-1.260547	0 Н	-4.2227440	0.4324610	-1.1767160
С	1.2557620	0.9885800	0.4744360	Н	-4.9885380	0.1150090	0.4086460
Н	1.3991070	0.5585950	1.4860960	Н	-3.6567330	1.2958290	0.2841660
Н	0.9567660	2.0461690	0.6189120	Ο	2.9805500	-0.325876	0 -0.6693740
0	0.2766470	0.2742170	-0.219828	0 C	3.1215370	-1.214454	0 0.3981120
С	-0.9563050	0.2246470	0.4374950	Н	3.6327440	-2.108176	0 0.0188110
Н	-1.3617120	1.2453200	0.5877830	Н	3.7306280	-0.783977	0 1.2167830
Н	-0.8605200	-0.2394720	1.4385500	Н	2.1446870	-1.522941	0 0.8110630
С	-1.9023340	-0.6098980	-0.412705	0			
Н	-1.9658070	-0.1670870	-1.424299	0			
Н	-1.4794720	-1.6190270	-0.518628	0			

Table S7.Geometric coordinates and thermal corrected single point energies for MTBE.

	E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
_	-272.9432	-272.62633	0.16431	-272.77491	0.021788	0.021812	-272.7967	-272.79673
	Atom	X	Y	Z	Atom	X	Y	Z
	С	2.0151930	-0.0000340	-0.1524300) Н	-0.3261930	2.1527210	0.2493820
	Н	2.1680520	0.8953560	0.4757110	Н	-1.4374530	1.3240370	1.3750840
	Н	2.1676800	-0.8949840	0.4764320	С	-0.4610360	-1.259734	0 0.8747900
	Ο	0.7780070	-0.0000200	-0.8005840) Н	-1.4381980	-1.324586	1.3740070
	С	-0.3938030	0.0000030	0.0075160	Н	-0.3277170	-2.152985	0 0.2473180
	С	-1.5345800	0.0008250	-1.0039380) Н	0.3112990	-1.261940	0 1.6573560
	Н	-2.5104760	0.0007890	-0.4988920) Н	2.7863910	-0.000512	0 -0.9335200
	Н	-1.4610540	0.8911200	-1.6436950)			
	Н	-1.4614830	-0.8888250	-1.6446410)			
	С	-0.4602520	1.2589600	0.8759730				
	Н	0.3119580	1.2598530	1.6586670				

Table S8.Geometric coordinates and thermal corrected single point energies for PMDTA.

	E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-	-520.9541	-520.3614	0.326472	-520.61974	0.031585	0.030796	-520.65132	-520.65053
	Atom	X	Y	Z	Atom	X	Y	Z
	С	2.6833450	-0.8495710	-0.392853	0 Н	-1.6367970	1.1773270	0.6878120
	Н	3.2989410	-1.1266260	-1.280941	0 N	-3.3218030	0.4562360	-0.2956520
	Н	2.9230330	-1.5917790	0.3863840	C	-4.1714280	1.4056090	0.3862310
	С	1.2199890	-0.9883810	-0.803526	0 Н	-5.0526770	1.6322550	-0.2309760
	Н	1.0584520	-0.4875470	-1.771912	0 Н	-4.5308690	1.0320940	1.3711990
	Н	1.0318590	-2.0728530	-0.981812	0 Н	-3.6248230	2.3434830	0.5592770
	Ν	0.2743120	-0.4290910	0.1413170	C	-4.0405990	-0.759763	0 -0.6056820
	С	0.4679140	-0.9189630	1.4894820	Н	-4.3430170	-1.321834	0 0.3069280
	Н	-0.2552300	-0.4486120	2.1684550	Н	-4.9514370	-0.517671	0 -1.1715430
	Н	0.3415250	-2.0227500	1.5663810	Н	-3.4300690	-1.426799	0 -1.2291420
	Н	1.4706880	-0.6420920	1.8383050	Ν	3.0391550	0.4562450	0.1189160
	С	-1.0837670	-0.6057560	-0.335828	0 C	4.4337430	0.5068040	0.4880520
	Н	-1.3630530	-1.6846760	-0.345512	0 Н	5.1158940	0.3797300	-0.3824810
	Н	-1.1321730	-0.2510200	-1.377918	0 Н	4.6644970	1.4719280	0.9613350
	С	-2.1054390	0.2081860	0.4552410	Н	4.6612410	-0.290508	0 1.2111100
	Н	-2.3377160	-0.2858710	1.4269520	C	2.6697610	1.5398530	-0.7636740
	Н	1.5790210	1.5664120	-0.883850	0 Н	2.9828230	2.4947980	-0.3181560
					Н	3.1471210	1.4607710	-1.7666180

Table S9.Geometric coordinates and thermal corrected single point energies for TMEDA.

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	$G(T)_SPC$	qh-G(T)_SPC
-347.6998	84 -347.30314	0.223895	-347.47051	0.025188	0.025127	-347.49569	-347.49563
Atom	X	Y	Z	Atom	X	Y	Z
С	0.7069220	0.2873500	0.9881320) N	1.4485050	0.0487130	-0.2313130
Н	1.2314030	-0.1316470	1.8791130) C	2.7719560	0.6196240	-0.1542410
Н	0.6634400	1.3778250	1.1455430	н	3.4050490	0.1394900	0.6255850
С	-0.7069200	-0.2873500	0.9881310	н	3.2859930	0.5139230	-1.1202870
Н	-0.6634390	-1.3778260	1.1455420	н	2.7063940	1.6921760	0.0813530
Н	-1.2314020	0.1316460	1.8791130) C	1.4765480	-1.341499	0 -0.6259150
Ν	-1.4485050	-0.0487120	-0.231313	0 Н	2.0665940	-1.446232	0 -1.5474700
С	-1.4765500	1.3415010	-0.625915	0 H	1.9342340	-2.000439	0 0.1464550
Н	-2.0665920	1.4462310	-1.547473	0 Н	0.4568220	-1.687156	0 -0.8389570
Н	-1.9342410	2.0004380	0.1464530)			
Н	-0.4568250	1.6871580	-0.838954	0			
С	-2.7719550	-0.6196250	-0.154241	0			
Н	-3.4050460	-0.1394960	0.6255900)			
Н	-3.2859950	-0.5139210	-1.120284	0			
Н	-2.7063920	-1.6921780	0.0813490)			

Table S10.Geometric coordinates and thermal corrected single point energies for
hexamethyldisilazane.

	E_SPC	E	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-	-873.8967	-873.34731	0.238269	-873.64974	0.03226	0.031787	-873.682	-873.68152
	Atom	X	Y	Z	Atom	X	Y	Z
	Н	0.0000050	-0.0050370	-1.8490480) Н	-2.8287040	-0.080008	0 -2.2510600
	Ν	-0.0000720	-0.0015390	-0.8322730) C	-2.0795720	-1.705896	0 0.5101990
	Si	-1.5821150	0.0083800	-0.0889400) Н	-1.3726200	-2.077725	0 1.2670530
	Si	1.5820250	-0.0085280	-0.0889760) Н	-2.0837260	-2.422457	0 -0.3250230
	С	-1.5723170	1.1846380	1.3807820	Н	-3.0846200	-1.697645	0 0.9594890
	Н	-0.8349240	0.8807770	2.1400220	С	2.0796060	1.7078920	0.5037640
	Н	-2.5582610	1.2069090	1.8695320	Н	3.0845690	1.7009450	0.9532680
	Н	-1.3242670	2.2071130	1.0585420	Н	1.3726640	2.0827460	1.2591270
	С	-2.8172520	0.5935680	-1.3802020) Н	2.0841550	2.4213380	-0.3341120
	Н	-2.5699870	1.6056240	-1.7335790) C	1.5728200	-1.179537	0 1.3849890
	Н	-3.8361690	0.6163900	-0.9654030) Н	2.5589310	-1.199914	0 1.8735060
	Н	3.8359460	-0.6196090	-0.9638050) Н	1.3249740	-2.203176	0 1.0662830
	Н	2.8277900	0.0709260	-2.2521110) Н	0.8355730	-0.873350	0 2.1434310
	Н	2.5696250	-1.6124340	-1.7270300) C	2.8168490	-0.598759	0 -1.3782580

Table S11.Geometric coordinates and thermal corrected single point energies for
triethylamine-HMDS complexation.

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-1166.275	-1165.3955	0.446872	-1165.8151	0.044339	0.042452	-1165.8595	-1165.8576
Atom	X	Y	Z	Atom	X	Y	Z
Ν	-2.2753640	-0.6303080	0.0016490	Н	-0.0288000	-0.359829	0 -0.2033040
С	-3.3890180	0.1402770	-0.544311	0 N	0.8875530	0.0943650	-0.2310810
Н	-4.3108460	-0.4847010	-0.574716	0 Si	2.2606590	-0.958649	0 -0.0244850
Н	-3.1455880	0.3802810	-1.588570	0 Si	0.6853190	1.8169110	-0.0444340
С	-2.0170200	-1.8177920	-0.809729	0 C	2.9641180	-0.845796	0 1.7224920
Н	-2.9068690	-2.4874220	-0.811541	0 Н	3.2858780	0.1814950	1.9541520
Н	-1.2063800	-2.3822370	-0.327497	0 Н	3.8350720	-1.506536	0 1.8528520
С	-2.4993970	-0.9788150	1.4014790	Н	2.2035720	-1.132834	0 2.4650210
Н	-2.7422070	-0.0529400	1.9400070	C	1.6708580	-2.720858	0 -0.3302280
Н	-3.3892510	-1.6416900	1.5006910	Н	0.9533620	-3.036759	0 0.4427120
С	-1.5877370	-1.5175250	-2.241107	0 Н	2.5166730	-3.424483	0 -0.3056250
Н	-2.4038110	-1.1146410	-2.855694	0 Н	1.1836210	-2.809584	0 -1.3135620
Н	-1.2455200	-2.4440260	-2.723341	0 C	3.6254220	-0.534133	0 -1.2476160
Н	-0.7542480	-0.7984700	-2.247300	0 Н	4.0514880	0.4603550	-1.0505970
С	-3.6842840	1.4449740	0.1843200	Н	3.2377620	-0.541124	0 -2.2772790
Н	-4.3835090	2.0471520	-0.412118	0 Н	4.4438070	-1.267598	0 -1.1816450
Н	-2.7631420	2.0294860	0.3225520	C	-0.0820450	2.1914010	1.6366700

Н	-4.1473610	1.2888450	1.1677420	Η	-0.3410320	3.2547610	1.7557940
С	-1.2991200	-1.6158790	2.0909370	Н	0.6153890	1.9137210	2.4424590
Η	-0.3965630	-1.0080830	1.9240060	Н	-0.9990630	1.5965510	1.7699710
Η	-1.1019360	-2.6398400	1.7446020	С	2.3613310	2.6640240	-0.1634010
Η	-1.4812660	-1.6703200	3.1730860	Н	2.2468350	3.7445300	0.0131180
Η	3.0724650	2.2794720	0.5839930	Н	2.8045600	2.5303960	-1.1613840
С	-0.4347530	2.4466800	-1.4191700				
Η	-0.7458890	3.4907310	-1.2622900				
Н	-1.3386080	1.8216770	-1.4789520				

Н 0.0822490 2.3802540 -2.3884520

Table S12.Geometric coordinates and thermal corrected single point energies for a mixed
solvated NaHMDS dimer (1x 2-methyl-3 pentanone; 1x MTBE).

E_SPC	E	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-2655.282	-2653.4268	0.795025	-2654.4595	0.07577	0.070151	-2654.5353	-2654.5296
Atom	X	Y	Z	Atom	X	Y	Z
Н	1.8629030	2.0726830	-1.8356500) Н	-0.6240640	-4.5789580	0 -2.5420300
С	0.8673780	2.0460190	-2.3118170) Н	0.4093920	-4.8373200	0 -1.1189900
Si	-0.4674030	2.8452260	-1.2062860) Н	-1.2927980	-4.3658240	0 -0.9041270
Ν	-0.7623620	1.8311930	0.1382550	С	-1.3173820	-1.4988470	0 -2.4944680
Na	-1.6454490	-0.3132670	0.0139650	Н	-2.2936780	-1.7158540	0 -2.0268170
Ν	0.2793560	-1.6600510	-0.0162580) Н	-1.1872320	-0.4024430	0 -2.5318550
Na	1.1627460	0.5138670	0.1030750	Н	-1.3731770	-1.8494630	0 -3.5361550
Si	0.8439860	-2.3886290	1.4192680	С	1.6382310	-2.2464790	0 -2.6458770
С	1.7388780	-1.0742030	2.4743020	Н	2.0058030	-1.2077210	0 -2.6935940
Н	2.6216150	-0.6571130	1.9607050	Н	2.4489510	-2.873166	0 -2.2406430
Н	1.0695300	-0.2335860	2.7275570	Н	1.4396230	-2.5828130	-3.6755680
Н	2.0887450	-1.4982980	3.4280990	Si	-1.3620240	2.3428750	1.6538040
С	-0.5283140	-3.0955710	2.5226440	С	-2.0032980	0.8141540	2.5999270
Н	-1.0427030	-3.9182860	1.9996440	Н	-2.8751030	0.3473940	2.1088020
Н	-0.1226220	-3.5016410	3.4627970	Н	-1.2171320	0.0454770	2.6956150
Н	-1.2789330	-2.3322180	2.7836260	Н	-2.3174140	1.0809280	3.6205490
С	2.0645350	-3.8284970	1.1755410	С	-2.8170430	3.5595710	1.5671020
Н	2.6503000	-4.0154290	2.0899010	Н	-3.1698810	3.8346180	2.5735560

Н	1.5197790	-4.7556640	0.9393770	Н	-2.5268440	4.4877170	1.0498600
Н	2.7693600	-3.6439180	0.3498900	Н	-3.6688780	3.1292010	1.0166180
Si	0.0911950	-2.3798560	-1.5531480	С	-0.0462390	3.1423740	2.7589930
С	-0.3980330	-4.2115510	-1.5285520	Н	0.3332720	4.0644990	2.2919210
Н	-6.5875330	0.5466090	0.4738480	Н	-0.4419070	3.4019910	3.7533480
Н	-6.0926620	-0.8773590	1.4095330	Н	0.8122010	2.4657700	2.9017790
Н	-5.1212530	0.6205660	1.4853710	С	-1.9838510	3.1209710	-2.3099720
С	-5.6947350	-1.3574230	-1.3164810	Н	-1.7656750	3.8276980	-3.1259430
Н	-5.0521850	-1.7616610	-2.1128430	Н	-2.3197360	2.1755330	-2.7645620
Н	-6.1787040	-2.1935740	-0.7919330	Н	-2.8215880	3.5282520	-1.7213030
Н	-6.4851140	-0.7541040	-1.7837170	С	0.2110560	4.5586040	-0.7553780
С	-4.3047910	0.7165670	-1.1109810	Н	-0.4951950	5.1238850	-0.1269420
Н	-3.6408200	1.3057120	-0.4576060	Н	1.1525740	4.4593180	-0.1918860
Н	-3.7243350	0.3804670	-1.9831520	Н	0.4147950	5.1609920	-1.6545980
Н	-5.1056460	1.3808040	-1.4640560	Н	0.9602560	2.5853470	-3.2670120
0	3.3691880	0.9245610	-0.0566900	Н	0.6284220	0.9968230	-2.5578480
С	4.3720760	0.2680030	-0.2666680	0	-3.7162550	-1.1920710	0.1008830
С	5.7122210	0.9705790	-0.4035350	С	-4.8786010	-0.4831770	-0.3669980
С	4.3232780	-1.2335450	-0.3778240	С	-3.8839110	-2.4897530	0.6217840
Н	6.4571930	0.2344620	-0.7439700	Н	-4.6344620	-2.5164010	1.4282830
С	5.5989440	2.1008100	-1.4276010	Н	-4.1682400	-3.2097770	-0.1621300
С	6.1234660	1.5058330	0.9739770	Н	-2.9142890	-2.7926850	1.0390200
Н	3.2696230	-1.5490830	-0.3342850	С	-5.7171610	-0.0254250	0.8247510
Н	4.7105920	-1.4979720	-1.3770710	Н	4.8372570	2.8229050	-1.1021680
С	5.1589910	-1.9309480	0.6997460	Н	5.3701420	2.2220120	1.3320690
Н	6.5604510	2.6232490	-1.5256110	Н	6.2132970	0.7006080	1.7172650
Н	5.3097790	1.7219120	-2.4183090	Н	7.0916640	2.0209380	0.9064570
Η	6.2140930	-1.6236380	0.6604390	Н	4.7700150	-1.7109270	1.7044820
				Н	5.1207520	-3.0190090	0.5604030

Table S13.Geometric coordinates and thermal corrected single point energies for a mixed
solvated NaHMDS dimer (1x 2-methylcyclohexanone; 1x MTBE).

E_SPC	E	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-2693.397	-2691.5048	0.804305	-2692.566	0.073251	0.068413	-2692.6392	-2692.6344
Atom	X	Y	Z	Atom	X	Y	Z
Н	-1.8956340	-0.9215900	-2.7196980	0 Н	-1.5371590	-4.376371	0 -2.6286320
С	-0.8800530	-1.2482590	-3.0013960	0 Н	-0.9612950	-1.713427	0 -3.9956020
Si	-0.1425330	-2.4762120	-1.7430340	Н О	-0.2497640	-0.349722	0 -3.1253150
Ν	0.1260910	-1.6666150	-0.2600500	O 0	-3.2478050	0.5744590	-1.0721930
Na	1.7767840	-0.0213470	0.0094310	С	-4.1549960	-0.068078	0 -0.5785300
Ν	0.5463370	1.9407110	-0.0452610	0 C	-3.9120030	-1.355954	0 0.1695320
Na	-1.0332520	0.3391100	-0.6606980	0 C	-5.5920210	0.4083230	-0.6418680
Si	-0.2119470	2.6042470	1.3330720	С	-4.5148930	-1.281888	0 1.5812750
С	-1.5868010	1.4141970	1.9293900	Н	-2.8328210	-1.575598	0 0.1907400
Н	-2.4607790	1.4788830	1.2583790	Н	-4.4110980	-2.163809	0 -0.3939920
Н	-1.2541810	0.3620360	1.9699960	С	-6.1548120	0.4562790	0.7934630
Н	-1.9377330	1.6835150	2.9376150	Н	-6.1433760	-0.384837	0 -1.1809310
С	0.9667730	2.8791770	2.7929130	С	-5.7257300	1.7321290	-1.3767260
Н	1.7652480	3.5804900	2.5001870	С	-5.9847450	-0.870916	0 1.5290780
Н	0.4473280	3.3060270	3.6650770	Н	-3.9463220	-0.543766	0 2.1717740
Η	1.4423060	1.9375420	3.1109410	Н	-4.3868260	-2.251764	0 2.0818680
С	-1.1038910	4.2503040	1.0285230	Н	-5.6301790	1.2547640	1.3469910

Н	-1.6091240	4.6095640	1.9389800	Н	-7.2143730	0.7489210	0.7468510
Н	-0.4078350	5.0375970	0.6994950	Н	-5.3240340	1.6643670	-2.3958560
Н	-1.8654260	4.1289200	0.2415240	Н	-6.7803970	2.0342980	-1.4314830
Si	1.3191920	2.8187830	-1.2903300	Н	-5.1642700	2.5188930	-0.8527280
С	2.4039550	4.2553900	-0.6910130	Н	-6.5681790	-1.6530640	1.0135350
Н	2.9057920	4.7609500	-1.5309270	Н	-6.3920300	-0.7923270	2.5474990
Н	1.8084600	5.0102180	-0.1542330	0	3.9312990	0.1627700	0.6066940
Н	3.1811230	3.8928190	0.0002740	С	4.9478750	-0.7893320	0.2527580
С	2.4950030	1.6421860	-2.2270220	С	4.2858870	1.2857780	1.3796860
Н	3.3411260	1.3435370	-1.5848170	Н	4.7492240	0.9973830	2.3371970
Н	1.9797510	0.7267870	-2.5707280	Н	4.9664060	1.9579120	0.8327810
Н	2.9172920	2.1256450	-3.1210390	Н	3.3542160	1.8300880	1.5891420
С	0.1110830	3.5181200	-2.5711150	С	5.3764410	-1.5779550	1.4886970
Н	-0.5046090	2.7141340	-3.0071330	Н	6.1180300	-2.3395350	1.2095040
Н	-0.5737140	4.2379730	-2.0962080	Н	5.8368230	-0.9275430	2.2459720
Н	0.6288680	4.0327920	-3.3954630	Н	4.5108250	-2.0851800	1.9387500
Si	0.3192870	-2.4553120	1.2455340	С	6.1387040	-0.0882610	-0.3973880
С	1.2854690	-1.3258950	2.4416350	Н	5.8001250	0.5567360	-1.2218080
Н	2.3398050	-1.1977140	2.1416380	Н	6.6983490	0.5234190	0.3243970
Н	0.8308430	-0.3236810	2.5185660	Н	6.8303960	-0.8377180	-0.8060900
Н	1.2944900	-1.7552780	3.4551790	С	4.2539230	-1.7025570	-0.7515540
С	1.3077690	-4.0765900	1.1718600	Н	3.3481690	-2.1492020	-0.3097640
Н	1.4028490	-4.5267070	2.1726630	Н	3.9637760	-1.1318180	-1.6466920
Н	0.8235500	-4.8180020	0.5171690	Н	4.9148670	-2.5226450	-1.0637530
Н	2.3245520	-3.9092690	0.7818460	С	1.4327920	-3.1631530	-2.5427200
С	-1.3106980	-2.8704240	2.1239470	Н	1.2110820	-3.7061900	-3.4748430
Н	-1.9487180	-3.5002840	1.4825920	Н	2.1324650	-2.3478900	-2.7872760
Н	-1.1308800	-3.4151410	3.0640330	Н	1.9479030	-3.8566910	-1.8591190
Н	-1.8721100	-1.9547600	2.3695310	С	-1.3785300	-3.9143170	-1.6416110
Н	-2.3553010	-3.5656640	-1.2708640	Н	-1.0266590	-4.7018430	-0.9568740

Table S14.Geometric coordinates and thermal corrected single point energies for a mixed
solvated NaHMDS dimer (1x 2-methyl-3-pentanone; 1x triethylamine).

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-2674.703	-2672.8287	0.838216	-2673.837	0.074271	0.069877	-2673.9113	-2673.9069
Atom	X	Y	Z	Atom	X	Y	Z
Н	0.1210780	1.3979330	-2.972732	Н 0	-0.8719570	2.6236380	-3.7831370
С	-0.8569850	1.9090280	-2.9453840	Н О	-1.6343150	1.1561260	-3.1497960
Si	-1.1649860	2.8092920	-1.299200	0 N	-4.1651340	-0.804135	0 0.1313020
Ν	-0.8600240	1.7700930	0.0268560	С	-4.4929190	-0.234714	0 1.4469370
Na	-1.7101070	-0.3916960	0.0523850	Н	-5.5109760	-0.557766	0 1.7540540
Ν	0.3301840	-1.7040260	0.0044760	Н	-3.7980600	-0.672022	0 2.1796720
Na	1.0732230	0.4957500	-0.331891	0 C	-4.3843070	1.2838020	1.5173270
Si	1.1448170	-2.2782460	1.3973470	Н	-5.2391460	1.7928000	1.0530130
С	2.1387920	-0.8735850	2.2199280	Н	-4.3489680	1.6039880	2.5681090
Н	2.8626570	-0.4171220	1.5235470	Н	-3.4654520	1.6358090	1.0201310
Н	1.4909050	-0.0692710	2.6005040	С	-4.2813000	-2.267506	0 0.1726730
Н	2.7125570	-1.2583330	3.0781860	Н	-5.2888950	-2.548744	0 0.5461630
С	-0.0124790	-2.9645520	2.7342770	Н	-4.2212420	-2.639243	0 -0.8597420
Н	-0.5556120	-3.8412510	2.3457550	С	-3.2110390	-2.963566	0 1.0032420
Н	0.5526890	-3.2865880	3.6233430	Н	-3.3367950	-4.052728	0 0.9276550
Н	-0.7585240	-2.2233210	3.0610720	Н	-2.1913160	-2.735004	0 0.6495040

С	2.4004450	-3.6788530	1.0868580	Η	-3.2653850	-2.7069400	2.0700960
Н	3.1214840	-3.7434630	1.9176740	С	-5.0480310	-0.2518730	-0.9040380
Н	1.8895570	-4.6515040	1.0218630	Η	-5.1184320	0.8302560	-0.7421390
Н	2.9697280	-3.5437610	0.1533160	Η	-6.0738090	-0.6579780	-0.7723250
Si	0.1468040	-2.6071420	-1.4373960	С	-4.5727670	-0.4699490	-2.3315070
С	-0.1481550	-4.4685770	-1.2219890	Η	-4.4975860	-1.5303220	-2.6085540
Н	-0.4623710	-4.9219400	-2.1755300	Η	-5.2799260	0.0031270	-3.0270770
Н	0.7623520	-4.9889460	-0.8908550	Η	-3.5873080	-0.0066890	-2.4856140
Н	-0.9370240	-4.6633920	-0.4781360	0	3.2117470	0.9876660	-0.7562100
С	-1.3747070	-1.9476870	-2.3629660	С	4.3033750	0.4560760	-0.6683920
Н	-2.2946430	-2.1136590	-1.7783590	С	5.5459480	1.3127900	-0.5139020
Н	-1.2832770	-0.8683770	-2.5675430	С	4.4384310	-1.0469230	-0.7115050
Н	-1.5184020	-2.4482740	-3.3326850	Η	6.4218550	0.7090150	-0.7992190
С	1.6002480	-2.4373670	-2.6506870	С	5.4599340	2.5582050	-1.3925500
Н	1.8591200	-1.3789170	-2.8235220	С	5.6613350	1.6896320	0.9722090
Н	2.4989410	-2.9458730	-2.2671230	Η	3.4238020	-1.4717250	-0.6800470
Н	1.3569390	-2.8859710	-3.6267760	Η	4.8477390	-1.2719110	-1.7137900
Si	-0.6315710	2.3280540	1.6302060	С	5.3361370	-1.6694800	0.3573580
С	-1.0702020	0.9256280	2.8422770	Η	6.3530970	3.1825820	-1.2535130
Н	-2.1621000	0.8415170	2.9568800	Η	5.3836090	2.2964230	-2.4572250
Н	-0.6889890	-0.0471950	2.4906860	Η	4.5730460	3.1470750	-1.1222290
Н	-0.6479770	1.0926470	3.8455350	Η	4.7825750	2.2782620	1.2744710
С	-1.6640320	3.8312580	2.1523930	Η	5.7229510	0.8058320	1.6224960
Н	-1.4435120	4.1034910	3.1967810	Η	6.5607920	2.2991640	1.1357540
Н	-1.4406560	4.7083720	1.5253810	Η	4.9173310	-1.5224750	1.3629080
Н	-2.7436090	3.6326590	2.0763840	Η	5.4155270	-2.7515010	0.1898330
С	1.1749320	2.8356790	1.9588800	Η	6.3531200	-1.2525190	0.3378130
Н	1.4240790	3.7102810	1.3367060	Н	-3.2287320	3.9703710	-0.4594690
Н	1.3326720	3.1131940	3.0132110	С	-0.0356900	4.3355990	-1.3377470
Н	1.9048220	2.0450690	1.7185910	Н	-0.1582410	4.9589510	-0.4381800
С	-2.9596420	3.4190900	-1.3739800	Н	1.0211490	4.0248000	-1.3839910

Н -3.1341460 4.0815070 -2.2362750 Н -0.2407100 4.9692310 -2.2148110

Н -3.6463280 2.5608030 -1.4625620

Table S15.Geometric coordinates and thermal corrected single point energies for a mixed
solvated NaHMDS dimer (1x 2-methyl-3-pentanone; 1x toluene).

	E_SPC	E	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-	-2653.865	-2652.0237	0.758695	-2653.0796	0.073467	0.068628	-2653.1531	-2653.1482
	Atom	X	Y	Z	Atom	X	Y	Z
	Н	-2.2678350	-0.9664050	-2.505953	О Н	-1.4165640	-2.036474	0 -3.6353090
	С	-1.3018090	-1.4610400	-2.704066	0 Н	-0.5551990	-0.673829	0 -2.9077880
	Si	-0.7858740	-2.5730110	-1.2424510	0 C	3.5306970	-2.245738	0 0.9196030
	Ν	-0.5824080	-1.5969720	0.1417000	С	4.1727950	-2.672970	0 -0.2462040
	Na	1.4910410	-0.5212050	0.1937720	С	5.1788580	-1.883629	0 -0.7994600
	Ν	0.9096940	1.6592620	-0.3312480	0 C	5.5344810	-0.673257	0 -0.2016560
	Na	-1.1376780	0.5733080	-0.5768020	0 C	4.9013940	-0.228918	0 0.9637800
	Si	0.5460600	2.8434520	0.8481230	С	3.8934930	-1.035150	0 1.5164300
	С	-1.0974780	2.4020580	1.7085410	Н	2.7464860	-2.864091	0 1.3660240
	Н	-1.9501240	2.4995340	1.0139960	Н	3.8855950	-3.614197	0 -0.7161220
	Н	-1.0968930	1.3762960	2.1139150	Н	5.6846670	-2.205721	0 -1.7109030
	Н	-1.2924630	3.0823760	2.5520740	Н	6.3173680	-0.057635	0 -0.6498010
	С	1.8707840	2.9738130	2.1998060	Н	3.3997730	-0.710228	0 2.4372610
	Н	2.8154860	3.3263590	1.7552260	С	5.3050230	1.0541880	1.6393290
	Н	1.5889700	3.6783660	2.9977370	Н	4.4240890	1.6610990	1.8909450
	Н	2.0605550	1.9923740	2.6653950	Н	5.8412920	0.8431450	2.5770180
	С	0.2957870	4.5906840	0.1548740	Н	5.9655350	1.6519630	0.9982400
	Н	0.0509260	5.3094910	0.9525500	Ο	-3.3161680	1.1095370	-0.6732610

Н	1.1979760	4.9564900	-0.3602550	С	-4.3485440	0.5614340	-0.3335530
Н	-0.5299140	4.5980370	-0.5742690	С	-5.4917020	1.3569590	0.2619310
Si	1.9086460	1.9207110	-1.6946160	С	-4.5251060	-0.9265380	-0.5011030
С	3.5013850	2.8813420	-1.3251380	Н	-6.4299760	0.8588320	-0.0350550
Н	4.1311970	2.9856990	-2.2226000	С	-5.3637650	1.2677430	1.7924520
Н	3.2896410	3.8922650	-0.9429630	С	-5.4820720	2.8031840	-0.2165390
Н	4.0861800	2.3492870	-0.5575240	Н	-3.5325500	-1.3951300	-0.4200930
С	2.4807680	0.2257650	-2.3537210	Н	-5.1631950	-1.3199030	0.3043790
Н	3.1622170	-0.2827950	-1.6481870	С	-5.1589380	-1.2268760	-1.8653200
Н	1.6308960	-0.4452540	-2.5634050	Н	-6.2093970	1.7842880	2.2670940
Н	3.0435800	0.3327300	-3.2937720	Н	-5.3490240	0.2284950	2.1507610
С	1.0241000	2.7921430	-3.1243960	Н	-4.4327980	1.7542230	2.1210310
Н	0.1261900	2.2294560	-3.4280020	Н	-4.5417450	3.2916570	0.0737810
Н	0.6970820	3.7975000	-2.8169000	Н	-5.5689700	2.8657060	-1.3100640
Н	1.6715650	2.8997040	-4.0085150	Н	-6.3170940	3.3588440	0.2316400
Si	-0.9093250	-1.9425810	1.7789880	Н	-4.5442920	-0.8224570	-2.6814020
С	0.3958950	-1.0925050	2.8826050	Н	-5.2454760	-2.3117790	-2.0105500
Н	1.3522690	-1.6395960	2.8326860	Н	-6.1654930	-0.7914230	-1.9467980
Н	0.5802800	-0.0402440	2.6049010	Н	-2.7849860	-0.2745990	2.0148260
Н	0.0885580	-1.0945880	3.9396590	С	0.8164110	-3.4493860	-1.7585660
С	-0.8460760	-3.7748640	2.2605650	Н	0.6839350	-4.0580020	-2.6668790
Н	-0.8910740	-3.8966530	3.3543980	Н	1.6307600	-2.7319990	-1.9534000
Н	-1.6896700	-4.3330340	1.8272560	Н	1.1453680	-4.1195270	-0.9468330
Н	0.0850330	-4.2455470	1.9051840	С	-2.0958400	-3.9416420	-1.1119740
С	-2.6061800	-1.3079020	2.3563390	Н	-1.7318150	-4.7655790	-0.4794040
Н	-3.4066880	-1.9451450	1.9480000	Н	-3.0398910	-3.5805270	-0.6735410
Н	-2.6966900	-1.3197240	3.4539250	Н	-2.3215710	-4.3609770	-2.1053350
Table S16.Geometric coordinates and thermal corrected single point energies for a mixed
solvated NaHMDS dimer (1x 2-methylcyclohexanone; 1x toluene).

	E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-	-2691.980	-2690.1003	0.768324	-2691.1853	0.072711	0.067627	-2691.258	-2691.2529
	Atom	X	Y	Z	Atom	X	Y	Z
	Н	-2.3720780	-0.4602080	-2.3426790) Н	-2.2406030	-3.879673	0 -2.7028340
	С	-1.4132020	-0.8110010	-2.7574840) Н	-1.6138720	-1.170374	0 -3.7786610
	Si	-0.6728810	-2.2064470	-1.6882190) Н	-0.7522690	0.0662110	-2.8577260
	Ν	-0.2171620	-1.5951100	-0.1562800	0 0	-2.9760620	1.3341480	-0.3964950
	Na	1.8912720	-0.5395120	-0.1602270	0 C	-4.0420790	0.7512370	-0.3451690
	Ν	1.2913070	1.6972890	0.0019440	С	-4.1291510	-0.742015	0 -0.1438570
	Na	-0.8244700	0.6541400	-0.2332230	0 C	-5.3593860	1.4904410	-0.4777390
	Si	0.9781830	2.5042530	1.4786020	С	-5.0829590	-1.088819	0 1.0078440
	С	-0.6605780	1.8656650	2.2294950	Н	-3.1182180	-1.147130	0 0.0165940
	Н	-1.5311390	2.2067690	1.6425910	Н	-4.5232370	-1.173566	0 -1.0815580
	Н	-0.6925280	0.7650190	2.3050810	С	-6.2913700	1.0908370	0.6828100
	Н	-0.7961280	2.2569690	3.2493180	Н	-5.8119930	1.0943160	-1.4069660
	С	2.3020910	2.2410210	2.8115120	С	-5.1645400	2.9934110	-0.5972230
	Н	3.2028780	2.8334920	2.5894260	С	-6.4430320	-0.4229720	0 0.8134030
	Н	1.9314280	2.5572640	3.7992060	Н	-4.6399570	-0.744520	0 1.9567770
	Н	2.6019790	1.1832530	2.8856160	Н	-5.1776980	-2.181063	0 1.0863900
	С	0.7365580	4.3802810	1.3365420	Н	-5.8783730	1.5018650	1.6204040
	Н	0.5839920	4.8298070	2.3304840	Н	-7.2685410	1.5732890	0.5319540

Н	1.6069200	4.8735050	0.8766820	Н	-4.5104530	3.2438340	-1.4420910
Н	-0.1464850	4.6150990	0.7221160	Н	-6.1319380	3.4943670	-0.7378330
Si	1.7802670	2.3966910	-1.4785540	Н	-4.6955000	3.3928790	0.3134180
С	3.3556630	3.4524470	-1.4139090	Н	-6.9239250	-0.8240290	-0.0952970
Н	3.5409420	3.9476800	-2.3800810	Н	-7.1077860	-0.6638590	1.6556070
Н	3.2921570	4.2348420	-0.6419500	С	3.6911260	-2.4078400	1.0933050
Н	4.2337330	2.8280680	-1.1850770	С	3.7840110	-2.7479300	-0.2578190
С	2.1653950	1.0073800	-2.7268360	С	4.3490800	-1.8388500	-1.1562370
Н	3.0787270	0.4561030	-2.4513990	С	4.8090920	-0.6010540	-0.7039270
Н	1.3439750	0.2774370	-2.8153040	С	4.7096750	-0.2389120	0.6478690
Н	2.3353680	1.4209370	-3.7330220	С	4.1474820	-1.1642760	1.5387190
С	0.4312780	3.4609990	-2.2855720	Н	3.2514140	-3.1097850	1.8035590
Н	-0.5068650	2.8929480	-2.4056080	Н	3.4216150	-3.7145680	-0.6100800
Н	0.2061880	4.3415700	-1.6645470	Н	4.4277510	-2.0950160	-2.2143430
Н	0.7347020	3.8187130	-3.2819700	Н	5.2517580	0.1044470	-1.4112310
Si	-0.2570530	-2.4890960	1.3018510	Н	4.0636880	-0.9061040	2.5969250
С	0.7121660	-1.5864370	2.6851490	С	5.1559190	1.1208430	1.1075210
Н	1.3774870	-2.2744880	3.2304470	Н	4.3685180	1.8591820	0.8903160
Н	1.3272460	-0.7447780	2.3253180	Н	5.3416680	1.1383930	2.1891870
Н	0.0159200	-1.1635050	3.4263670	Н	6.0693020	1.4356260	0.5843250
С	0.4765910	-4.2377830	1.1537520	Н	-2.4538590	-1.7535030	2.2535110
Н	0.5678490	-4.7214390	2.1394820	С	0.8015870	-2.9186970	-2.6483810
Н	-0.1607920	-4.8811670	0.5275710	Н	0.5153460	-3.2664340	-3.6532880
Н	1.4737790	-4.2166230	0.6881590	Н	1.6046010	-2.1723380	-2.7698820
С	-2.0007650	-2.7294560	2.0140500	Н	1.2195090	-3.7772820	-2.0978290
Н	-2.6596520	-3.2495960	1.3005350	С	-1.9996790	-3.5656680	-1.6748890
Н	-1.9718510	-3.3209170	2.9430080	Н	-1.6637600	-4.4578040	-1.1247450
				Н	-2.9313090	-3.2162020	-1.2032040

Table S17.Geometric coordinates and thermal corrected single point energies for a mixed
solvated NaHMDS dimer (2x 2-methylcyclohexanone).

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-2769.62	79 -2767.655	0.81906	-2768.781	0.075244	0.069638	-2768.8562	-2768.8506
Atom	X	Y	Z	Atom	X	Y	Z
Н	-2.8111160	-0.2976870	-2.3028710) Н	-3.1337530	-3.674441	0 -2.6326540
С	-1.9328910	-0.7966620	-2.7467920) Н	-2.2255270	-1.137519	0 -3.7517430
Si	-1.3074910	-2.2397710	-1.6689120) Н	-1.1472720	-0.034262	0 -2.8865870
Ν	-0.8285370	-1.6214990	-0.1528450	0 0	-3.4654420	1.3732610	-0.1477180
Na	1.3215010	-0.6657860	-0.2020380	0 C	-4.5286360	0.7822860	-0.1389970
Ν	0.8286680	1.6209800	-0.1532270	0 C	-4.6043140	-0.723601	0 -0.0774730
Na	-1.3210770	0.6650040	-0.2028770	0 C	-5.8490430	1.5257840	-0.2032030
Si	0.7890340	2.4229710	1.3536380	С	-5.5824420	-1.194646	0 1.0071800
С	-0.7511400	1.8586870	2.3276040	Н	-3.5907450	-1.126774	0 0.0712360
Н	-1.6776050	2.2264540	1.8523280	Н	-4.9629680	-1.067772	0 -1.0646220
Н	-0.8183620	0.7608530	2.4142920	С	-6.7934120	1.0038130	0.8960730
Н	-0.7416920	2.2588710	3.3529710	Н	-6.2884540	1.2271760	-1.1745510
С	2.3049580	2.0407430	2.4332860	С	-5.6608000	3.0339160	-0.1647550
Н	3.1946930	2.5341820	2.0087250	С	-6.9416860	-0.515263	0 0.8600400
Н	2.1805640	2.4089200	3.4636610	Н	-5.1587030	-0.959313	0 1.9969890
Н	2.5106540	0.9582040	2.4816520	Н	-5.6773820	-2.289189	0 0.9595650
С	0.6707750	4.3132650	1.2761620	Н	-6.3935640	1.3121420	1.8777190
Н	0.5004270	4.7358010	2.2791160	Н	-7.7701640	1.4979470	0.7853950

Η	1.5955990	4.7584670	0.8793290	Н	-5.0002190	3.3728340	-0.9728010
Н	-0.1628640	4.6302810	0.6296400	Н	-6.6294440	3.5427310	-0.2621870
Si	1.3078530	2.2382910	-1.6696060	Н	-5.2023660	3.3387630	0.7869970
С	2.6879770	3.5445180	-1.6352970	Н	-7.4045930	-0.8162590	-0.0954690
Н	3.1343170	3.6718260	-2.6343850	Н	-7.6204410	-0.8473390	1.6589740
Н	2.2861100	4.5216160	-1.3268890	0	3.4658860	-1.3736780	-0.1462160
Н	3.4939250	3.2802350	-0.9324860	С	4.5287030	-0.7819990	-0.1380810
С	1.9332650	0.7944450	-2.7465160	С	4.6034650	0.7239070	-0.0762520
Н	2.8116840	0.2958710	-2.3025310	С	5.8495640	-1.5246100	-0.2031530
Н	1.1476830	0.0318590	-2.8855350	С	5.5816290	1.1952290	1.0082660
Н	2.2255420	1.1346240	-3.7518030	Н	3.5897080	1.1264350	0.0729100
С	-0.1225100	3.0347370	-2.6305240	Н	4.9616350	1.0685790	-1.0633990
Н	-0.9567430	2.3305100	-2.7851550	С	6.7939420	-1.0024550	0.8960440
Н	-0.5166830	3.8953900	-2.0667890	Н	6.2884520	-1.2252970	-1.1745140
Н	0.1938610	3.3956850	-3.6218490	С	5.6623390	-3.0328800	-0.1652430
Si	-0.7895450	-2.4223790	1.3546120	С	6.9412500	0.5167280	0.8605310
С	0.7498920	-1.8568760	2.3290560	Н	5.1583000	0.9593640	1.9981260
Н	1.6768480	-2.2247690	1.8548340	Н	5.6758860	2.2898430	0.9609330
Н	0.8166750	-0.7589380	2.4147810	Н	6.3945740	-1.3114100	1.8776880
Н	0.7398210	-2.2561110	3.3547870	Н	7.7709710	-1.4959330	0.7848900
С	-0.6709150	-4.3127180	1.2787690	Н	5.0016550	-3.3719100	-0.9731590
Н	-0.5004390	-4.7342450	2.2821290	Н	6.6312790	-3.5410160	-0.2632760
Н	-1.5957200	-4.7584330	0.8824660	Н	5.2044900	-3.3384180	0.7865680
Н	0.1627110	-4.6302700	0.6324990	Н	7.4037140	0.8183590	-0.0949920
С	-2.3061170	-2.0396450	2.4331720	Н	7.6200090	0.8489400	1.6594050
Н	-3.1955970	-2.5332420	2.0082620	С	0.1229850	-3.0368800	-2.6290940
Н	-2.1823700	-2.4073780	3.4637850	Н	-0.1932770	-3.3984690	-3.6202220
Н	-2.5118140	-0.9570760	2.4809270	Н	0.9572600	-2.3327860	-2.7840880
Н	-2.2855280	-4.5227690	-1.3242160	Η	0.5170430	-3.8971770	-2.0647390
Н	-3.4935870	-3.2812370	-0.9311570	С	-2.6875300	-3.5460490	-1.6336560

Table S18.Geometric coordinates and thermal corrected single point energies for a mixed
solvated NaHMDS dimer (2x 2-methyl-3-pentanone).

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-2693.400	-2691.5014	0.800532	-2692.5704	0.077774	0.071884	-2692.6482	-2692.6423
Atom	X	Y	Z	Atom	X	Y	Z
Н	2.0198350	2.3282730	-1.419925	0 H	-0.0296830	4.9545340	-1.8871830
С	1.1451550	2.0377910	-2.027677	0 H	1.2642330	2.5138790	-3.0132420
Si	-0.4791590	2.5860020	-1.191422	0 Н	1.1844480	0.9471820	-2.1895960
Ν	-0.7151730	1.6767230	0.2355280	Ο	3.5423470	1.1677980	0.3578190
Na	-1.2829230	-0.5797730	-0.004561	0 C	4.5177540	0.5271820	0.0108440
Ν	0.8268320	-1.6193950	0.1370130	С	5.6303410	1.1756660	-0.7868270
Na	1.3671030	0.6313740	0.5050070	С	4.6539780	-0.929292	0 0.3757460
Si	1.0367670	-2.3803610	1.6480250	Н	6.5753570	0.6958130	-0.4805180
С	1.5519270	-1.0530010	2.9158490	С	5.3848580	0.8496180	-2.2699790
Н	2.4970050	-0.5628270	2.6243840	С	5.6940130	2.6785300	-0.5477560
Н	0.7792580	-0.2709480	3.0133990	Н	3.6428400	-1.364754	0 0.4090690
Н	1.7025090	-1.4766540	3.9204310	Н	5.2362920	-1.456854	0 -0.3942220
С	-0.5585760	-3.1699400	2.3089740	С	5.3484470	-1.057677	0 1.7377080
Н	-0.8904650	-3.9664970	1.6237690	Н	6.2003940	1.2602160	-2.8812150
Н	-0.4174920	-3.6179240	3.3051740	Н	5.3252880	-0.232176	0 -2.4558030
Н	-1.3802490	-2.4389250	2.3891680	Н	4.4398370	1.3046900	-2.6036520
С	2.3489960	-3.7512890	1.7212610	Н	4.7479130	3.1496260	-0.8478560

Н	2.5848070	-4.0102130	2.7657500	Η	5.8617950	2.9102800	0.5130490
Н	1.9822020	-4.6642860	1.2280780	Η	6.5081670	3.1243710	-1.1354180
Н	3.2871810	-3.4596100	1.2231630	Η	4.7889250	-0.5189710	2.5148340
Si	0.9726670	-2.2681400	-1.4344580	Η	5.4097490	-2.1133760	2.0332420
С	0.8820140	-4.1574380	-1.5560910	Η	6.3705150	-0.6523190	1.7087610
Н	0.8342650	-4.4801760	-2.6081900	0	-3.4124940	-1.1512410	-0.4403190
Н	1.7657930	-4.6302840	-1.1015500	С	-4.4635770	-0.5606630	-0.6073430
Н	-0.0117540	-4.5454580	-1.0420470	С	-5.7215480	-1.3489360	-0.9322570
С	-0.4495330	-1.6143620	-2.5257570	С	-4.5566670	0.9382970	-0.4862810
Н	-1.4247570	-2.0080280	-2.1892060	Η	-6.5109000	-0.6382790	-1.2230260
Н	-0.5042530	-0.5121670	-2.5312050	С	-5.4469340	-2.3143570	-2.0855290
Н	-0.3239710	-1.9301950	-3.5727190	С	-6.1604650	-2.1007640	0.3312160
С	2.5926910	-1.7674590	-2.2950250	Η	-3.5450780	1.3331320	-0.3049000
Н	2.8029240	-0.6936450	-2.1582440	Η	-4.8903770	1.3165910	-1.4684540
Н	3.4363200	-2.3348760	-1.8704850	С	-5.5387410	1.3911660	0.5981030
Н	2.5638670	-1.9703970	-3.3771700	Η	-6.3487470	-2.8980380	-2.3160850
Si	-1.4179070	2.1841580	1.7043420	Η	-5.1400730	-1.7797880	-2.9957970
С	-2.2464580	0.6814530	2.5372300	Η	-4.6405830	-3.0069020	-1.8075270
Н	-3.0212260	0.2244900	1.8981530	Η	-5.3665100	-2.7942680	0.6434880
Н	-1.5020770	-0.0992800	2.7700960	Η	-6.3667520	-1.4160030	1.1662860
Н	-2.7266870	0.9557230	3.4893090	Η	-7.0716820	-2.6806560	0.1292430
С	-2.7338280	3.5494240	1.5550520	Η	-5.2132600	1.0541570	1.5928320
Н	-3.4021100	3.5610920	2.4309240	Η	-5.5923310	2.4871910	0.6216030
Н	-2.2515900	4.5372010	1.4946740	Η	-6.5537280	1.0090010	0.4166440
Н	-3.3534120	3.4314660	0.6519720	Η	-2.1001580	1.2782910	-2.6244630
С	-0.1465570	2.8393360	2.9514710	Η	-2.7863910	2.8429820	-2.1233040
Н	0.3579870	3.7266260	2.5366850	С	-0.3161260	4.4584540	-0.9462990
Н	-0.6142130	3.1310210	3.9050650	Η	-1.2640290	4.9041810	-0.6088460
Н	0.6307470	2.0913380	3.1791780	Η	0.4540130	4.6898520	-0.1933680
С	-1.8661380	2.3446380	-2.4685780	Н	-1.5996410	2.7787390	-3.4450600

Table S19.Geometric coordinates and thermal corrected single point energies for a disolvated
NaHMDS dimer (2x MTBE).

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-2617.168	-2615.3548	0.789152	-2616.3514	0.072665	0.068063	-2616.4241	-2616.4195
Atom	Х	Y	Z	Atom	X	Y	Z
Na	-1.4433530	-0.1752760	-0.0241910) C	-1.0603300	-4.366883	0 -0.9627860
Ν	0.2241610	-1.8108020	0.0521650	Н	-1.3309320	-4.895723	0 -1.8902370
Na	1.4425570	0.1778430	-0.0251580) Н	-0.4278420	-5.042409	0 -0.3657880
Ν	-0.2243980	1.8130770	0.0515340	Н	-1.9857830	-4.189060	0 -0.3923540
Si	-0.7965060	2.4574130	1.5277250	С	1.3023600	-3.136896	0 -2.4441000
С	-2.0504610	3.8719140	1.3434880	Н	2.0774500	-3.676396	0 -1.8765770
Н	-2.3960470	4.2281650	2.3267700	Н	1.0059220	-3.766318	0 -3.2977990
Н	-1.6130010	4.7315660	0.8120280	Н	1.7570950	-2.217427	0 -2.8458750
Н	-2.9359200	3.5488410	0.7728250	Si	0.7975900	-2.454875	0 1.5279820
С	-1.7077890	1.0895910	2.4963820	С	1.7061740	-1.085847	0 2.4973810
Н	-2.6444600	0.7849160	1.9991240	Н	2.6419180	-0.778486	0 2.0000320
Н	-1.0848670	0.1877170	2.6230670	Н	1.9791570	-1.433823	0 3.5053340
Н	-1.9795240	1.4373470	3.5047450	Н	1.0810110	-0.185684	0 2.6249790
С	0.5778110	3.1020940	2.6649230	С	-0.5752260	-3.102849	0 2.6650990
Н	1.2802000	2.2968260	2.9345870	Н	-0.1695680	-3.521597	0 3.5993460
Н	1.1487680	3.8972230	2.1588110	Н	-1.2784250	-2.298775	0 2.9362030
Н	0.1733760	3.5203460	3.5999180	Н	-1.1455350	-3.898129	0 2.1585200
Si	0.1769640	2.7293310	-1.3342940) C	2.0541390	-3.866961	0 1.3424110

С	1.3973280	1.7292950	-2.4085500	Η	1.6179250	-4.7269430	0.8104270
Н	2.3824020	1.6558840	-1.9167060	Н	2.9388030	-3.5419530	0.7715940
Н	1.0321790	0.7064040	-2.6120060	Н	2.4007620	-4.2234400	2.3252420
Н	1.5567710	2.2129720	-3.3842240	0	-3.6034500	-0.7769910	0.1528330
С	-1.3034150	3.1385730	-2.4443110	С	-4.6892360	0.0039960	-0.3761330
Н	-2.0780330	3.6783560	-1.8764160	С	-5.5782180	-0.8522550	-1.2754040
Н	-1.0076980	3.7674690	-3.2986400	Н	-6.1452420	-1.5985730	-0.7009890
Н	-1.7584950	2.2188550	-2.8451460	Н	-6.3030000	-0.2109580	-1.7955410
С	1.0609500	4.3683090	-0.9647210	Н	-4.9711610	-1.3723450	-2.0312890
Н	1.3315660	4.8965400	-1.8925180	С	-3.9945300	1.0888060	-1.1910600
Н	0.4292150	5.0445620	-0.3677710	Н	-3.2863630	1.6549580	-0.5642840
Н	1.9865390	4.1900600	-0.3946290	Н	-3.4391890	0.6386490	-2.0277060
0	3.6038850	0.7758080	0.1508790	Н	-4.7229310	1.8002120	-1.6037260
С	3.8979140	1.9914600	0.7986440	С	-5.4911120	0.6225610	0.7673930
Н	4.6005210	1.8529750	1.6362800	Н	-5.9582360	-0.1463180	1.3991580
Н	4.3077490	2.7373710	0.0988840	Н	-4.8422490	1.2490980	1.3961290
Н	2.9488180	2.3752440	1.1981850	Н	-6.2950410	1.2533680	0.3628360
С	4.6879190	-0.0084090	-0.3769690	С	-3.8944740	-1.9948100	0.7979080
С	5.5816230	0.8457790	-1.2735110	Н	-4.6016020	-1.8606980	1.6324300
Н	6.1508610	1.5888670	-0.6971040	Н	-4.2974930	-2.7418850	0.0954050
Н	6.3045410	0.2024130	-1.7936920	Н	-2.9453590	-2.3743950	1.2013830
Н	4.9776920	1.3695130	-2.0293900	Н	5.9534660	0.1351660	1.4013120
С	3.9908590	-1.0896690	-1.1945720	Н	4.8333820	-1.2569960	1.3935110
Н	3.2786130	-1.6533190	-0.5701480	Si	-0.1774270	-2.7275240	-1.3332890
Н	3.4395360	-0.6365410	-2.0322710	С	-1.3984920	-1.7281240	-2.4073140
Н	4.7173200	-1.8038650	-1.6058530	Н	-2.3834370	-1.6551090	-1.9152010
С	5.4854390	-0.6312840	0.7672560	Η	-1.0337590	-0.7050670	-2.6107190
Н	6.2883680	-1.2637960	0.3633720	Н	-1.5579020	-2.2117300	-3.3830250

Table S20.Geometric coordinates and thermal corrected single point energies for a disolvated
NaHMDS dimer (2x triethylamine).

E_SPC	E	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
 -2656.01	-2654.1576	0.875707	-2655.1063	0.072163	0.068697	-2655.1784	-2655.1749
Atom	X	Y	Z	Atom	X	Y	Z
С	-3.4658810	-0.9428330	-3.103177	0 Н	-2.2612200	3.4163620	-2.9169340
С	-3.8025220	-1.7030440	-1.826823	0 Si	0.6873490	-2.012052	0 2.0084050
Ν	-3.7759630	-0.8808980	-0.610857	0 C	1.5276890	-0.477867	0 2.7688710
С	-4.1438690	-1.6753740	0.5710010	Н	2.5940040	-0.444613	0 2.4970900
Н	-5.2325770	-1.8972810	0.5454100	Н	1.0569810	0.4622310	2.4401030
Н	-3.9785910	-1.0496200	1.4622450	Н	1.4770390	-0.489231	0 3.8687940
С	-3.3668130	-2.9727640	0.7302580	С	1.8091120	-3.481423	0 2.4417260
Н	-3.5504860	-3.3871960	1.7304830	Н	1.8615620	-3.600035	0 3.5357420
Н	-3.6686560	-3.7308480	-0.0046820	Н С	1.4210180	-4.423511	0 2.0239580
Н	-2.2803950	-2.8144060	0.6339290	Н	2.8359240	-3.349281	0 2.0703490
С	-4.6759870	0.2714880	-0.730076	0 C	-0.8969490	-2.329372	0 3.0119630
Н	-4.4676640	0.7708950	-1.683406	Н С	-1.2669990	-3.347528	0 2.8137020
Н	-5.7289220	-0.0805790	-0.779013	Н С	-0.6919820	-2.252113	0 4.0916470
С	-4.5099320	1.2974280	0.3779770	Н	-1.7133310	-1.625756	0 2.7818920
Н	-5.1185980	2.1852230	0.1560080	С	2.3900210	-3.455220	0 -1.1852210
Н	-4.8200640	0.9245760	1.3640620	Н	2.4485290	-4.202664	0 -1.9922630

Η	-3.4604990	1.6266180	0.4360460	Η	2.9886130	-2.5825200	-1.4930680
Н	-3.0651420	-2.5081550	-1.6972640	Η	2.8579290	-3.8872800	-0.2874280
Н	-4.7937290	-2.1948900	-1.9347720	С	-0.3787270	-4.5487920	-0.5664060
Н	-3.2292970	-1.6568030	-3.9036210	Η	-0.3175170	-4.8756340	0.4835420
Н	-4.2927590	-0.3126450	-3.4557380	Η	-1.4449830	-4.4275860	-0.8117220
Н	-2.5833820	-0.2994240	-2.9592100	Η	0.0125160	-5.3636430	-1.1955260
Н	-1.0309840	-1.8530140	-2.4744990	Η	-0.0766270	-3.1104720	-3.2861020
С	-0.0239160	-2.2929860	-2.5496850	Η	0.6455250	-1.5221040	-2.9626090
Si	0.5892630	-2.9390350	-0.8734500	Ν	3.8780980	0.6572240	-0.6057130
N	0.4042070	-1.7399360	0.3373000	С	4.5744880	0.2292390	0.6164570
Na	1.4327010	0.3450580	-0.0463710	Η	5.6364160	0.5551210	0.5782590
N	-0.4453970	1.8408250	0.2342980	Η	4.1186010	0.7621640	1.4620520
Na	-1.4606110	-0.2889920	0.1094240	С	4.4956490	-1.2672720	0.8883170
Si	-0.8628200	2.6053560	1.7167740	Η	5.1833870	-1.8541970	0.2654180
С	-1.6537440	1.3638480	2.9224760	Η	4.7523100	-1.4680540	1.9379860
Н	-2.5708870	0.9196710	2.4988930	Η	3.4755230	-1.6420550	0.7101890
Н	-0.9743560	0.5444750	3.1986180	С	3.9781920	2.1156170	-0.7571060
Н	-1.9496690	1.8717680	3.8539960	Η	5.0486350	2.4070830	-0.8181120
С	0.6155990	3.3832350	2.6187410	Η	3.5265750	2.3862570	-1.7227090
Н	1.0481990	4.1931420	2.0091720	С	3.2900860	2.9157580	0.3395580
Н	0.2997700	3.8188810	3.5797820	Н	3.3498150	3.9868570	0.1017170
Н	1.4150250	2.6553340	2.8265510	Η	2.2183050	2.6700250	0.4247680
С	-2.1283140	4.0196160	1.5725220	Η	3.7549300	2.7812440	1.3253130
Н	-2.2825560	4.4794460	2.5616200	С	4.4630480	-0.0110940	-1.7757740
Н	-1.7870300	4.8127930	0.8896420	Н	4.5773030	-1.0741110	-1.5321360
Н	-3.1080610	3.6709340	1.2132880	Н	5.4871120	0.3830220	-1.9500640
Si	-0.5177980	2.6708170	-1.2627110	С	3.6421400	0.0829780	-3.0511730
С	0.3173780	4.3748430	-1.3186580	Н	3.5101600	1.1135670	-3.4076990
Н	0.1691820	4.8430990	-2.3045880	Н	4.1464290	-0.4786180	-3.8497950
Н	-0.0867510	5.0611730	-0.5592650	Н	2.6463910	-0.3616640	-2.9068950
Н	1.4008250	4.2912920	-1.1465580	Н	0.3193930	2.0426430	-3.5686700

С	0.3960210	1.6199730	-2.5550890	С	-2.2743950	2.9173390	-1.9352030
Н	1.4716300	1.5635100	-2.3182780	Η	-2.7754770	1.9443330	-2.0598310
Н	0.0042960	0.5892810	-2.5975730	Н	-2.8844360	3.5261640	-1.2501010

Table S21.Geometric coordinates and thermal corrected single point energies for a disolvated
NaHMDS monomer (2x DME).

	E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-	-1653.31	8 -1652.0066	0.517145	-1652.7825	0.053589	0.051078	-1652.8361	-1652.8336
	Atom	X	Y	Z	Atom	X	Y	Z
	Na	0.9540170	-0.1797570	-0.2030820	0 C	1.4495280	-3.636692	0 -0.5759360
	Ν	-1.2844070	0.1294900	-0.0112860) Н	0.5270910	-4.241745	0 -0.5581580
	Si	-1.8667250	1.3877680	0.9593030	Н	1.6404440	-3.315196	0 -1.6066830
	С	-1.5237960	3.1097020	0.2163590	Н	2.2945280	-4.255119	0 -0.2256330
	Н	-0.4375080	3.2798060	0.1569800	Н	0.8156760	-1.633292	0 3.3964900
	Н	-1.9385060	3.1860530	-0.8020480) Н	-0.1290430	-1.082107	0 1.9679180
	Н	-1.9586580	3.9182820	0.8250700	С	3.1004850	-0.715989	0 2.4036190
	С	-3.7321590	1.3615760	1.3235350	Н	3.6850340	0.1989620	2.2429420
	Н	-4.0445370	0.3826710	1.7222820	Н	3.1296300	-0.972121	0 3.4772340
	Н	-3.9960720	2.1303450	2.0675390	Н	3.5671910	-1.533924	0 1.8284140
	Н	-4.3210450	1.5557310	0.4140130	Ο	1.5780620	0.4958210	-2.3461680
	С	-1.0208550	1.4240330	2.6673710	С	0.9935660	1.7804970	-2.2567770
	Н	-1.2515640	2.3535020	3.2123460	С	1.7491820	2.6657270	-1.2823990
	Н	-1.3622840	0.5804110	3.2899230	Н	1.2094940	3.6241820	-1.1756160
	Н	0.0740390	1.3428130	2.5692130	Н	2.7748330	2.8943980	-1.6326110
	Si	-2.0923440	-1.0630320	-0.8978510	0 0	1.8001980	1.9793740	-0.0564310
	С	-3.8176700	-0.6130620	-1.5533870	0 C	2.2527910	2.7466180	1.0279100
	Н	-4.1829560	-1.3800360	-2.2550760) Н	2.2337710	2.0982550	1.9126630

Н	-4.5488920	-0.5290550	-0.7353580	Н	3.2802570	3.1139090	0.8545590
Н	-3.7959940	0.3524380	-2.0838320	Н	1.5881080	3.6097670	1.2054130
С	-2.3126460	-2.6883770	0.0746510	Н	-0.0284960	1.6219200	-1.8737820
Н	-2.8648280	-2.5091700	1.0112930	Н	0.9413340	2.2546080	-3.2524630
Н	-2.8489730	-3.4614010	-0.4986020	С	2.7103860	0.4131180	-3.1693610
Н	-1.3217100	-3.0904750	0.3416670	Н	3.0293100	-0.6362820	-3.1912200
С	-1.0776190	-1.5532390	-2.4355520	Н	2.4717520	0.7311370	-4.1987120
Н	-0.9667750	-0.6986610	-3.1217760	Н	3.5465950	1.0282890	-2.7940410
Н	-0.0614290	-1.8787060	-2.1591080	С	1.1444730	-2.7704070	1.5881210
Н	-1.5537240	-2.3788720	-2.9883160	Н	2.0562860	-3.2632730	1.9777730
0	1.7869050	-0.4589700	1.9823030	Н	0.2984960	-3.4634990	1.7463840
С	0.8471530	-1.4660230	2.3048280	0	1.3093150	-2.4855800	0.2187450

Table S22.Geometric coordinates and thermal corrected single point energies for a
trisolvated NaHMDS monomer (3x THF).

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-1732.94	-1731.5512	0.584266	-1732.3374	0.059335	0.054748	-1732.3967	-1732.3921
Atom	X	Y	Z	Atom	X	Y	Z
Si	2.6181760	0.2198260	-0.0778390	0 C	-1.0667510	2.8823130	-2.3342300
Ν	1.2072890	0.0326850	0.8292400	Н	-2.1328400	2.8974330	-2.6071440
Si	0.9450640	-0.2339740	2.4778750	Н	-0.5188550	2.3218740	-3.1104070
С	0.9476500	-2.0787690	2.9487980	Н	-1.2653740	4.9837760	-1.8114850
Н	0.8029420	-2.2354240	4.0296130	Н	-0.0328050	4.6814290	-3.0579830
Н	0.1441020	-2.6180490	2.4200530	Н	1.4488230	3.6035090	-1.3992240
Н	1.9036260	-2.5464050	2.6620720	Н	0.7888710	4.9706070	-0.4654860
С	-0.7829020	0.4112840	2.9548240	Ο	-0.5442310	-2.092015	0 -1.3857020
Н	-1.5381780	-0.0392400	2.2889110	С	-0.9168940	-2.697209	0 -2.6077540
Н	-1.0583720	0.1723070	3.9940650	Н	-1.6133480	-3.532862	0 -2.4092490
Н	-0.8382780	1.5052070	2.8285600	Н	-1.4341820	-1.949546	0 -3.2235340
С	2.1920930	0.6121940	3.6327700	С	0.3978770	-3.209609	0 -3.2088340
Н	3.2085490	0.2240630	3.4556870	С	1.2918110	-3.441416	0 -1.9676670
Н	2.2156630	1.6981500	3.4494930	С	0.4275310	-2.950650	0 -0.7946880
Н	1.9503210	0.4482670	4.6948250	Н	-0.0923210	-3.794663	0 -0.3057780
Na	-0.5695990	0.0244650	-0.5599900) Н	0.9660530	-2.365290	0 -0.0358310
0	-2.7344970	-0.2461180	-0.0112950) Н	1.5731420	-4.494833	0 -1.8426960
С	-3.1491880	-1.4933770	0.5460960	Н	2.2179860	-2.856015	0 -2.0380590

Η	-3.5535860	-2.1291220	-0.2596750	Н	0.8377570	-2.4476650	-3.8664280
Н	-2.2725350	-1.9994080	0.9781560	Н	0.2468640	-4.1186620	-3.8049840
С	-4.2180570	-1.1415070	1.5773900	С	3.8684700	-1.2056140	0.0771410
С	-4.8333850	0.1196310	0.9687970	Н	3.3997710	-2.1818730	-0.1248030
С	-3.5989450	0.8113210	0.4001290	Н	4.7263990	-1.0889020	-0.6041310
Н	-3.8065580	1.4524490	-0.4674540	Н	4.2610370	-1.2421530	1.1065950
Н	-3.0892950	1.4161750	1.1695190	С	2.1189960	0.3340910	-1.9208540
Н	-5.5309890	-0.1458330	0.1598890	Н	2.9831450	0.4383290	-2.5948380
Н	-5.3693130	0.7415830	1.6969480	Н	1.5565030	-0.5634760	-2.2318360
Н	-3.7476170	-0.9038560	2.5431930	Н	1.4658690	1.2105970	-2.0789060
Н	-4.9389570	-1.9541090	1.7332540	С	3.6084720	1.7988420	0.2958920
0	-0.9050840	2.2096630	-1.0871480	Н	2.9728670	2.6952830	0.2157890
С	-0.2212400	3.0480970	-0.1465210	Н	3.9989130	1.7670500	1.3252850
Н	-0.9630190	3.5510360	0.4995990	Н	4.4640330	1.9231060	-0.3871570
Η	0.4231590	2.4018360	0.4696350	С	0.5235380	4.0552170	-1.0096980
				С	-0.4824540	4.2837000	-2.1392880

Table S23.Geometric coordinates and thermal corrected single point energies for a
tetrasolvated NaHMDS monomer (4x THF).

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-1965.389	-1963.7359	0.703682	-1964.6634	0.063849	0.059551	-1964.7272	-1964.7229
Atom	X	Y	Z	Atom	X	Y	Z
Na	0.2720600	-0.0111720	0.0803480	С	2.2404100	-1.275411	0 3.9934520
Ν	-2.0170340	0.1189060	-0.062590	0 C	1.6338570	-1.569976	0 2.6251780
Si	-2.4618490	0.0729410	-1.6876270	Н 0	2.2533750	-2.221164	0 1.9915160
С	-3.3094710	1.6454530	-2.3463720	0 Н	0.6362810	-2.030674	0 2.7171840
Н	-2.6641450	2.5306570	-2.2246320	0 Н	3.3365820	-1.201501	0 3.9206160
Н	-3.5689330	1.5606150	-3.413863	0 Н	1.9952420	-2.043231	0 4.7382510
Н	-4.2403770	1.8365570	-1.787914	0 Н	0.5943590	-0.020671	0 4.6404120
С	-0.8650260	-0.1098500	-2.7246020	0 Н	2.1874200	0.6613030	5.0634330
Н	-1.0566410	-0.2219500	-3.803085	0 O	0.5775490	-2.311392	0 -0.2180660
Н	-0.2428030	0.7924000	-2.589969	0 C	-0.6500470	-3.032620	0 -0.0781970
Н	-0.2686060	-0.9761650	-2.389271	Н 0	-0.5807050	-3.716734	0 0.7880520
С	-3.6265080	-1.3519880	-2.171138	0 Н	-1.4484670	-2.294469	0 0.0918820
Н	-3.2742380	-2.3176550	-1.7759410	0 C	-0.7823300	-3.810682	0 -1.3794300
Н	-4.6272550	-1.1749590	-1.746159	0 C	0.6725340	-4.198499	0 -1.6474710
Н	-3.7368360	-1.4447170	-3.2636040	0 C	1.4344110	-2.965843	0 -1.1467690
Si	-2.9042240	0.2396680	1.3698350	Н	2.3820280	-3.238094	0 -0.6523630
С	-3.1293510	2.0262530	1.9891950	Н	1.6648630	-2.258663	0 -1.9612300
Н	-3.7613210	2.0696920	2.8906150	Н	0.9429830	-5.084069	0 -1.0532930

Н	-2.1536430	2.4736830	2.2402500	Н	0.8822270	-4.4203140	-2.7017620
Н	-3.5970940	2.6556960	1.2147610	Н	-1.1601040	-3.1472810	-2.1718820
С	-1.9747930	-0.6463120	2.7777320	Н	-1.4589910	-4.6712230	-1.2979850
Н	-0.9462140	-0.2511650	2.8288730	0	0.6108770	2.2795930	0.3042880
Н	-2.4490440	-0.4981190	3.7608280	С	1.8142520	3.0076400	0.1502200
Н	-1.9095340	-1.7305300	2.5887320	Н	2.0573390	3.5306640	1.0925620
С	-4.6464450	-0.5151970	1.2957540	Н	2.6151280	2.2863340	-0.0629870
Η	-5.2697780	0.0207480	0.5612480	С	1.5668140	4.0223770	-0.9925200
Η	-4.6015880	-1.5708670	0.9838410	С	0.0822470	3.8090200	-1.3440600
Η	-5.1582150	-0.4661780	2.2700320	С	-0.4548730	3.1369880	-0.0859380
0	1.5023480	-0.2997290	1.9895600	Н	-0.6458180	3.8821870	0.7096380
С	1.6688760	0.7596220	2.9301230	Н	-1.3458030	2.5097980	-0.2207280
Н	2.6413130	1.2527810	2.7477890	Н	-0.4410450	4.7414660	-1.5914720
Н	0.8715130	1.4990420	2.7686930	Н	-0.0274020	3.1219380	-2.1969730
С	1.6351910	0.0943620	4.3029900	Н	2.2288740	3.8523470	-1.8526920
Н	2.0942180	1.5767590	-2.4300530	Н	1.7467050	5.0479180	-0.6424440
Н	2.1894660	-0.0732360	-3.0944770	0	2.2793230	0.0693820	-1.0340420
Н	4.4636560	1.6344470	-1.9424040	С	3.4553060	-0.3707210	-0.3654930
Η	4.5101760	0.5997450	-3.3906600	Н	3.7431340	0.3693620	0.4033560
Η	4.4105630	-1.4370960	-1.9908390	Н	3.2294720	-1.3145070	0.1483110
Н	5.5376900	-0.4076480	-1.0690670	С	4.5134160	-0.4796810	-1.4564920
				С	4.1154500	0.6809890	-2.3700460
				С	2.5912190	0.6003960	-2.3183910

Table S24.Geometric coordinates and thermal corrected single point energies for a
monosolvated NaHMDS monomer (1x diglyme).

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-1498.290	04 -1497.1594	0.433572	-1497.8407	0.051169	0.047577	-1497.8919	-1497.8883
Atom	X	Y	Z	Atom	Х	Y	Z
Si	-2.2425320	0.5847510	-1.2769620	0 Н	1.8909050	4.1927090	0.2247870
Ν	-1.3870850	0.0202350	0.0641940	Н	3.9164420	0.6732620	-0.9870560
Si	-1.7620900	-0.5669460	1.5996000	Н	4.8792450	0.4835000	0.5121670
С	-2.7942470	0.6006230	2.6829670	Н	3.0011550	-3.0176590	-1.5438930
Н	-3.7967870	0.7415320	2.2487880	Н	3.3485820	-1.3364330	-2.0015130
Н	-2.9214130	0.2154340	3.7071400	С	0.5455350	-2.6985410	-1.1011060
Н	-2.3192410	1.5926150	2.7424800	Н	0.7791040	-3.1894170	-0.1403460
С	-2.6613990	-2.2413570	1.6095560	Н	-0.4537770	-2.2477390	-1.0256950
Н	-2.0807190	-3.0028140	1.0644330	Н	0.5747080	-3.4490030	-1.9080090
Н	-2.8355640	-2.6130550	2.6319140	С	-3.2725740	2.1497320	-0.9643070
Н	-3.6392510	-2.1552860	1.1099380	Н	-4.0665640	1.9501830	-0.2275480
С	-0.1180740	-0.8532310	2.5349350	Н	-2.6415110	2.9550920	-0.5554520
Н	0.4499690	0.0884210	2.6369210	Н	-3.7502010	2.5218500	-1.8846620
Н	-0.2716150	-1.2530830	3.5492560	С	-0.9786400	1.0397800	-2.6342870
Н	0.5203990	-1.5753230	1.9947140	Н	-0.3599070	0.1643020	-2.8964420
Na	0.7989960	0.2225360	-0.1968220	Н 0	-1.4607110	1.3938080	-3.5587040
0	1.4492020	-1.6426660	-1.3747500	Н 0	-0.3038020	1.8458200	-2.2942070
С	2.8138390	-1.9641030	-1.2718630	0 C	-3.4237940	-0.6844600	-2.0530900
С	3.3173220	-1.6913490	0.1403950	Н	-2.8868370	-1.6094490	-2.3176410

Η	2.8206680	-2.3621980	0.8566440	Η	-4.2175310	-0.9568980
Н	4.4057440	-1.8679070	0.2076180	Η	-3.9073580	-0.2980900
0	2.9939190	-0.3797090	0.5527570			
С	3.8597490	0.6408430	0.1167150			
С	3.3097460	1.9522770	0.6284670			
Η	3.2607910	1.9273550	1.7326930			
Η	3.9760470	2.7807230	0.3264500			
0	2.0232420	2.1247650	0.0911280			
С	1.3565430	3.2822750	0.5438790			
Н	0.3500730	3.2759190	0.1077510			
Н	1.2693530	3.2789700	1.6433600			

-1.3394330

-2.9643530

Table S25.Geometric coordinates and thermal corrected single point energies for a
monosolvated NaHMDS monomer (1x PMDTA).

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-1556.590	-1555.4067	0.556246	-1556.0173	0.050697	0.048255	-1556.068	-1556.0656
Atom	X	Y	Z	Atom	X	Y	Z
Si	2.6891480	0.9874910	-0.6808380	0 Н	-2.7575290	-2.561591	0 -1.0861020
Ν	1.6217800	-0.1072420	0.0473230	Н	-3.4441650	-1.735119	0 -2.4925230
Si	1.9838610	-1.4142930	1.0565060	Н	-3.7101670	0.3490720	-1.1340370
С	2.8576040	-2.8770490	0.2197320	Н	-4.6716880	-1.012313	0 -0.5527300
Н	3.8527290	-2.5767000	-0.1429740	0 C	-3.5010750	0.7621220	1.3234820
Н	2.9903530	-3.7259920	0.9092590	С	-2.9211310	2.0509640	0.7450150
Н	2.2807570	-3.2271670	-0.6509900	0 N	-1.4695810	2.0601370	0.6717550
С	3.0052540	-0.9837930	2.5983140	С	-0.9785440	3.2089230	-0.0703230
Н	2.5137670	-0.1849450	3.1764590	Н	-1.4055600	3.2142280	-1.0838850
Н	3.1533310	-1.8506980	3.2615800	Н	-1.2397320	4.1677740	0.4232550
Н	4.0003130	-0.6119890	2.3047710	Н	0.1148840	3.1481360	-0.1583110
С	0.3305660	-2.1324720	1.7177570	С	-0.8257520	1.9766180	1.9758090
Н	-0.3210640	-2.4765260	0.8932980	Н	-1.1234300	1.0555260	2.4993620
Н	0.4971090	-3.0003620	2.3737800	Н	0.2648090	1.9341630	1.8372340
Н	-0.2245280	-1.3839830	2.3118540	Н	-1.0803570	2.8398850	2.6246460
Na	-0.6057500	-0.0843110	0.0706470	Н	-3.3029450	2.8977840	1.3567830
Ν	-3.0270010	-0.4558270	0.6694850	Н	-3.3051420	2.2160850	-0.2745000
С	-3.6320490	-0.6345170	-0.6502710	0 Н	-3.2365920	0.6917370	2.3886690

С	-2.8514420	-1.5757600	-1.5660940	Η	-4.6089230	0.8323670	1.2903690
Ν	-1.5126280	-1.0938980	-1.8628660	С	-3.2688750	-1.6153520	1.5163840
С	-0.6136020	-2.1409660	-2.3234870	Н	-2.8776200	-2.5262650	1.0452860
Η	0.4081100	-1.7381930	-2.3828560	Н	-2.7476240	-1.4961130	2.4759840
Η	-0.6035160	-2.9696500	-1.6011070	Н	-4.3504160	-1.7622870	1.7159920
Η	-0.9075970	-2.5420050	-3.3150840	С	4.3658890	0.2419820	-1.1752220
С	-1.5051400	0.0355570	-2.7775290	Н	4.9050640	-0.1351940	-0.2907420
Η	-2.0888530	0.8743170	-2.3696600	Н	4.2257110	-0.6053730	-1.8649950
Н	-0.4736160	0.3875400	-2.9152380	Н	5.0132530	0.9830110	-1.6704360
Н	-1.9251700	-0.2284190	-3.7704760	С	1.9528820	1.6968780	-2.2864070
Н	2.2137440	3.0638200	0.6952200	Н	0.9581800	2.1412680	-2.1172470
Н	3.5650530	2.1309090	1.3646910	Н	2.5963030	2.4753020	-2.7258620
Н	3.8198850	3.1688210	-0.0615700	Н	1.8417560	0.8936710	-3.0336040
				С	3.1094590	2.4811880	0.4245210

Table S26.Geometric coordinates and thermal corrected single point energies for the anionic
fragment of a NaHMDS free ion.

E_SPC	E	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-873.3101	-872.75122	0.223979	-873.07783	0.032322	0.031441	-873.11015	-873.10927
Atom	X	Y	Z	Atom	X	Y	Z
Si	-1.6059210	0.0133710	0.0725470	Н	3.7485460	-0.714015	0 1.2439530
Ν	0.0000000	0.0807800	0.4430140	Н	2.5370910	-0.095399	0 2.4036520
Si	1.6059140	0.0133600	0.0725510	Н	2.3565740	-1.726639	0 1.7264860
С	2.0649960	-1.0616790	-1.447944() C	-2.6737180	-0.696336	0 1.4916370
Н	1.7075810	-2.0944870	-1.3047190) Н	-2.5371700	-0.093134	0 2.4037030
Н	1.5768870	-0.6684620	-2.3548680) Н	-3.7487310	-0.712551	0 1.2445420
Н	3.1528410	-1.0947530	-1.6300200) Н	-2.3569730	-1.725021	0 1.7280120
С	2.4095610	1.7124070	-0.2986540) C	-2.4092280	1.7122440	-0.3002140
Н	2.2633060	2.3929140	0.5557570	Н	-3.4916120	1.6352460	-0.5000410
Н	3.4919380	1.6353660	-0.4985040) Н	-2.2628660	2.3935110	0.5535720
Н	1.9291920	2.1781060	-1.1746840) Н	-1.9287300	2.1770350	-1.1766570
С	2.6735310	-0.6978050	1.4910440	С	-2.0651380	-1.062982	0 -1.4469740
Н	-1.7081740	-2.0957880	-1.3025990) Н	-1.5766780	-0.670910	0 -2.3542010
Н	-3.1529610	-1.0958170	-1.6292310)			

Table S27.Geometric coordinates and thermal corrected single point energies for the sodium
cation with κ^3 , κ^3 -PMDTA.

	E_SPC	E	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-	-1204.120	-1202.8996	0.660607	-1203.4441	0.047308	0.045666	-1203.4914	-1203.4898
	Atom	X	Y	Z	Atom	X	Y	Z
	Na	-0.4940170	-0.1996320	0.1123120	Н	4.2387940	0.5358620	-1.9134650
	Ν	1.2943170	-1.1613720	-1.3580710	Н О	2.6624790	-0.898355	0 -2.9566250
	С	1.8726960	-2.3509430	-0.7398090	0 Н	1.8135120	0.5573360	-2.4111900
	С	0.8857040	-3.1742040	0.0740940	С	0.2495330	-1.528093	0 -2.3040120
	Ν	0.1714890	-2.4001780	1.0867160	Н	-0.5675980	-2.054933	0 -1.7941590
	С	-0.7222840	-3.2821440	1.8257180	Н	-0.1680800	-0.622087	0 -2.7663850
	Н	-1.2937800	-2.7078230	2.5676650	Н	0.6258020	-2.181773	0 -3.1168440
	Н	-1.4282250	-3.7673840	1.1364950	Ν	-1.4186380	1.7510820	-1.1499810
	Н	-0.1659480	-4.0782280	2.3591260	С	-1.5335630	2.8029730	-0.1322420
	С	1.0949280	-1.7403920	2.0039150	С	-0.3883960	2.7964840	0.8692520
	Н	1.6697280	-0.9546350	1.4873310	Ν	-0.3754470	1.6431990	1.7739980
	Н	0.5193390	-1.2709960	2.8135230	С	0.8853930	1.6452180	2.5135520
	Н	1.8072420	-2.4554030	2.4643840	Н	0.8751130	0.8620890	3.2821070
	Н	0.1404380	-3.6570990	-0.5765340	Н 0	1.7177530	1.4461650	1.8239700
	Н	1.4591080	-3.9980580	0.5493690	Н	1.0550090	2.6148490	3.0226010
	Н	2.6843410	-2.0349270	-0.0731990	0 C	-1.4915560	1.6843420	2.7121710
	Н	2.3285750	-3.0156560	-1.5041440	0 Н	-2.4541120	1.6622400	2.1844640
	С	2.3074900	-0.3598900	-2.0523540	0 Н	-1.4518550	0.8073880	3.3737340

С	3.5410570	0.0027030	-1.2351380	Н	-1.4663220	2.5949100	3.3433720
Ν	3.2685040	0.7924460	-0.0410750	Н	0.5680200	2.7972740	0.3242190
С	4.2788320	0.5803100	0.9829450	Н	-0.4206570	3.7396550	1.4536490
Н	4.3102670	-0.4806060	1.2716730	Н	-2.4864730	2.6966070	0.4008190
Н	5.2933670	0.8790120	0.6493590	Н	-3.2877330	-0.4945330	1.8081890
Н	4.0331840	1.1687460	1.8791060	С	-3.5301610	-1.1944540	0.9958450
С	3.1717610	2.2031600	-0.3707060	N	-2.9480100	-0.7341810	-0.2609880
Н	2.4042680	2.3651040	-1.1409840	С	-3.5506990	0.5399450	-0.6532560
Н	2.8949870	2.7890180	0.5178780	С	-2.7270600	1.3325470	-1.6586150
Н	4.1292370	2.6074690	-0.7590530	Н	-3.3215830	2.2075090	-1.9920950
Н	4.0726240	-0.9122130	-0.9407440	Н	-2.5554180	0.7208290	-2.5580630
Н	-1.5736050	3.7989550	-0.6143100	Н	-3.6980880	1.1366950	0.2591180
С	-0.5874930	2.2292410	-2.2497080	Н	-4.5645680	0.3811310	-1.0739610
Н	0.3966700	2.5415280	-1.8749210	С	-3.1604000	-1.7476390	-1.2882560
Н	-0.4348360	1.4363010	-2.9943700	Н	-2.7608620	-1.4156970	-2.2554300
Н	-1.0465240	3.0961650	-2.7639700	Н	-2.6468230	-2.6788750	-1.0070750
				Н	-4.2368520	-1.9746280	-1.4207690
				Н	-4.6324910	-1.2855860	0.9316740
				Н	-3.1234360	-2.1793620	1.2544720

Table S28.Geometric coordinates and thermal corrected single point energies for the sodium
cation with κ^3 , κ^3 -diglyme.

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-1087.53	-1086.431	0.415324	-1087.1107	0.04343	0.041575	-1087.1542	-1087.1523
Atom	X	Y	Z	Atom	X	Y	Z
Na	0.0001490	0.2279490	-0.0000940) Н	4.0703730	0.0242160	0.9556980
Ο	0.6920520	-1.3378920	-1.5404950) Н	2.7212630	-1.364644	0 -1.9385700
С	1.9629960	-1.9132290	-1.3488000) Н	1.9746990	-2.961981	0 -1.6963770
С	2.2675550	-1.8843820	0.1384450	С	0.2031710	-1.450804	0 -2.8596820
Н	3.2838960	-2.2700320	0.3273450	Н	0.1442380	-2.508500	0 -3.1658030
Н	1.5428640	-2.5219630	0.6639370	Н	-0.8033610	-1.015362	0 -2.8679640
0	2.1048720	-0.5940810	0.6880600	Н	0.8505470	-0.911532	0 -3.5714190
С	3.1450260	0.3255110	0.4341300	0	-0.6926860	-1.336950	0 1.5407340
С	2.6623820	1.6688250	0.9414850	С	-1.9639070	-1.911767	0 1.3492880
Н	2.4378610	1.5883210	2.0152480	С	-2.2685200	-1.883363	0 -0.1379550
Н	3.4395950	2.4385680	0.8080800	Н	-3.2850190	-2.268709	0 -0.3266400
Ο	1.4638320	2.0401540	0.2895040	Н	-1.5441250	-2.521485	0 -0.6632050
С	1.6338690	2.8705980	-0.8424490) ()	-2.1052920	-0.593394	0 -0.6881340
Н	2.2580940	2.3861250	-1.6127310) C	-3.1449080	0.3268640	-0.4344770
Н	0.6342060	3.0574940	-1.2530570) C	-2.6614680	1.6697840	-0.9421500
Н	2.0981480	3.8283030	-0.5580650) Н	-2.4368830	1.5888280	-2.0158560
Н	3.3648990	0.3824730	-0.6476090) Н	-3.4382790	2.4399960	-0.8090420

Η	-2.7218980	-1.3626180	1.9388960	Ο	-1.4627390	2.0407760	-0.2903310
Н	-1.9760810	-2.9603800	1.6972710	С	-1.6325990	2.8697310	0.8427320
С	-0.2038690	-1.4495260	2.8599810	Н	-2.2560480	2.3839560	1.6128320
Н	-0.1454200	-2.5071180	3.1665500	Н	-0.6328040	3.0567430	1.2529720
Η	0.8028580	-1.0145320	2.8680890	Н	-2.0976560	3.8274900	0.5597980
Η	-0.8510160	-0.9096620	3.5714780	Н	-3.3648690	0.3841680	0.6472240
				Н	-4.0704090	0.0260320	-0.9560400

Table S29.Geometric coordinates and thermal corrected single point energies for the sodium
cation with κ^2 , κ^2 , κ^2 -DME.

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-1088.730	-1087.6164	0.434608	-1088.281	0.046999	0.044596	-1088.328	-1088.3256
Atom	X	Y	Z	Atom	X	Y	Z
Na	-0.0145960	-0.0325590	-0.1256840	0 C	1.1963340	2.5252360	-1.9542150
Ο	1.8612670	-0.6650050	-1.3451520	0 O	0.7148930	2.0681630	-0.7105720
С	2.9522310	-0.2822390	-0.5258510	0 C	0.3854510	3.0980970	0.1926550
С	2.8248810	-0.8763770	0.8617590	С	-0.0059600	2.4531710	1.5101150
Н	2.7783970	-1.9818110	0.8135010	Ο	-1.0217920	1.4825930	1.3505540
Н	3.7049090	-0.6037100	1.4719850	С	-2.2991380	2.0201720	1.0891030
Ο	1.6433740	-0.3669680	1.4313160	Н	-2.3532180	2.4873670	0.0915400
С	1.3197280	-0.9199570	2.6876770	Н	-3.0232590	1.1971770	1.1238100
Н	2.1265460	-0.7378610	3.4166570	Н	-2.5712740	2.7668850	1.8532060
Н	0.4003240	-0.4293380	3.0320010	Н	0.8619800	1.9164620	1.9167390
Н	1.1377700	-2.0041630	2.6051320	Н	-0.3176540	3.2286020	2.2310550
Н	3.9084570	-0.5756540	-0.9887710	0 Н	1.2519770	3.7629090	0.3608800
Н	2.9202320	0.8140730	-0.4455720	Н 0	-0.4300700	3.7195380	-0.2218410
С	2.0908980	-1.8265390	-2.1132100	Н 0	1.4540910	1.6388190	-2.5466560
Н	1.1593780	-2.0676340	-2.6396890	Н 0	0.4312450	3.1183060	-2.4831270
Н	2.8865050	-1.6538960	-2.8557670	O 0	-0.8522770	-2.073123	0 0.6480290
Н	2.3770400	-2.6844940	-1.4819120	0 C	-2.2051680	-1.739979	0 0.8660620
Н	2.0960130	3.1495100	-1.8221890	0 C	-2.9012930	-1.316758	0 -0.4155010

С	-0.6367510	-3.3501710	0.0920950	Η	-3.9163380	-0.9505810	-0.1735460
Н	0.4466570	-3.5210470	0.0728610	Н	-3.0161420	-2.1626910	-1.1182610
Н	-1.1076120	-4.1314160	0.7110710	0	-2.1316270	-0.2972460	-1.0105990
Н	-1.0265500	-3.4257580	-0.9369290	С	-2.7390730	0.2872170	-2.1399640
Н	-2.1974010	-0.8986700	1.5753130	Н	-2.0512300	1.0454810	-2.5337640
Н	-2.7484090	-2.5805110	1.3313810	Н	-2.9323220	-0.4659990	-2.9215260
				Н	-3.6930220	0.7697030	-1.8680130

Table S30.Geometric coordinates and thermal corrected single point energies for the sodium
cation with 5 THF.

E_SPC	E	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-1324.382	-1323.0166	0.595615	-1323.7693	0.056174	0.051416	-1323.8255	-1323.8207
Atom	X	Y	Z	Atom	X	Y	Z
Na	-0.1201990	0.0299590	0.3364380	Н	1.3020460	-3.382589	-0.9385290
Ο	1.5192360	0.6582040	-1.109508	0 H	-1.5390610	-4.133175	-1.8177740
С	2.0095210	1.9668980	-1.4066140	0 H	-0.0053050	-4.801057	-2.4248960
Н	1.6183170	2.2925000	-2.3862330	0 Н	0.5509960	-2.666248	-3.5261630
Н	1.6383710	2.6571770	-0.6354810	0 H	-1.1872710	-2.814104	-3.8728810
С	3.5262880	1.8293060	-1.451005	0 O	1.4232490	-0.379315	0 1.9111000
С	3.6835060	0.4190080	-2.020521	0 C	1.9408120	-1.637720	0 2.3524800
С	2.5293920	-0.3251590	-1.3527810	0 H	1.3757260	-1.972284	0 3.2378500
Н	2.1067500	-1.1259240	-1.977040	0 H	1.8021690	-2.374272	1.5475590
Н	2.8242250	-0.7665100	-0.3838480	0 C	3.4021180	-1.372911	0 2.6941100
Н	3.5464490	0.4348490	-3.111666	0 C	3.3390920	0.0669820	3.2044780
Н	4.6591320	-0.0354680	-1.808329	0 C	2.3153050	0.6837870	2.2575340
Н	3.9510540	1.8870970	-0.4371740	0 Н	1.7372900	1.5014750) 2.7111750
Н	4.0042100	2.6046120	-2.0624420	0 Н	2.7891790	1.0593170	1.3336300
Ο	-0.1311340	-1.8863390	-0.892496	0 Н	2.9647050	0.0886650	4.2383070
С	-0.6961510	-1.5318650	-2.159909	0 Н	4.3053350	0.5856310	3.1798120
Н	-1.7750490	-1.3393550	-2.024123	0 H	4.0258760	-1.431958	1.7887400
Н	-0.2133460	-0.6047720	-2.506076	0 Н	3.8005550	-2.082851	0 3.4292240

С	-0.4473750	-2.7317910	-3.0673730	0	-2.3021520	-0.4851570	0.6390730
С	-0.4959460	-3.8873780	-2.0676810	С	-2.6990100	-1.8507960	0.8044480
С	0.2057430	-3.2733780	-0.8620370	Н	-2.9305030	-2.2785150	-0.1859850
Η	-0.1194550	-3.6983570	0.0987120	Н	-1.8597590	-2.4158420	1.2350310
0	-0.8983860	2.1393920	0.0469280	С	-3.9301520	-1.8166920	1.7045430
С	-1.0316120	3.3940720	0.7191970	С	-4.5420080	-0.4634390	1.3434290
Η	-1.7938710	3.3019820	1.5114110	С	-3.2945630	0.3939750	1.1761370
Η	-0.0707330	3.6475980	1.1891310	Н	-3.4276120	1.2393030	0.4863900
С	-1.4658840	4.3814950	-0.3567890	Н	-2.9451910	0.7891420	2.1454070
С	-2.3156480	3.4890740	-1.2620610	Н	-5.0890810	-0.5309200	0.3912670
С	-1.5192100	2.1885460	-1.2418520	Н	-5.2267760	-0.0728140	2.1061250
Η	-2.1380920	1.2857590	-1.3650980	Н	-3.6306300	-1.8275560	2.7629010
Η	-0.7343910	2.1829070	-2.0173070	Н	-4.6033390	-2.6652630	1.5315150
Η	-3.3127410	3.3384320	-0.8206240				
Η	-2.4490670	3.8873140	-2.2752590				

- Н -0.5899790 4.7584450 -0.9062010
- Н -2.0107470 5.2417190 0.0509540

Table S31.Geometric coordinates and thermal corrected single point energies for the sodium
cation with 6 THF.

	E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-	-1556.836	-1555.2078	0.713877	-1556.1021	0.063462	0.05802	-1556.1656	-1556.1602
	Atom	X	Y	Z	Atom	X	Y	Z
	Na	0.0455590	0.0002590	-0.0013920	0 C	-3.0571730	0.4681580	3.3298850
	Ο	1.3007950	1.8457170	0.3907730	С	-2.4385670	-0.281995	0 2.1498830
	С	2.4165340	1.9036730	1.2769300	Н	-2.1397550	-1.311882	0 2.4017580
	Н	2.0557450	2.0735690	2.3071920	Н	-3.1268500	-0.329992	0 1.2885690
	Н	2.9367860	0.9342740	1.2483220	Н	-2.6335250	0.1058010	4.2783110
	С	3.2564090	3.0791540	0.7912920	Н	-4.1470170	0.3541500	3.3798100
	С	2.1712960	4.0291210	0.2834740	Н	-3.2244720	2.3720550	2.2914480
	С	1.1885010	3.0554730	-0.3602640	Н 0	-2.6195040	2.5418130	3.9586520
	Н	0.1428210	3.3957990	-0.3339440	O 0	-1.2573120	-1.788750	0 -0.4826960
	Н	1.4543510	2.8498990	-1.4115580	0 C	-1.1469920	-3.045175	0 0.1806870
	Н	1.6972480	4.5493810	1.1293290	Н	-0.4161460	-3.682052	0 -0.3501520
	Н	2.5406480	4.7861930	-0.4191810	Н О	-0.7702600	-2.864539	0 1.1978260
	Н	3.9103750	2.7671840	-0.0375640	0 C	-2.5434330	-3.647950	0 0.1142730
	Н	3.8856270	3.5090890	1.5803200	С	-3.0029100	-3.169382	0 -1.2639550
	Ο	-1.2787740	1.2894300	-1.3070800	0 C	-2.4093870	-1.761782	0 -1.3229480
	С	-2.4380770	1.9907010	-0.8618460	0 Н	-2.1118580	-1.460865	0 -2.3398390
	Н	-3.1384370	1.2685660	-0.4078960	0 Н	-3.1129290	-1.003759	0 -0.9375850

Н	-2.1491400	2.7161430	-0.0849480	Н	-2.5632450	-3.8033980	-2.0481920
С	-3.0315500	2.6493800	-2.1071530	Н	-4.0921170	-3.1756110	-1.3935450
С	-2.5632210	1.7058290	-3.2161540	Н	-3.1811060	-3.2192940	0.9028300
С	-1.1658500	1.3519250	-2.7264780	Н	-2.5461500	-4.7394080	0.2241990
Н	-0.7831320	0.3849880	-3.0837660	0	1.3204520	-1.2412050	1.4032670
Н	-0.4388330	2.1358330	-3.0064140	С	1.2028760	-1.2031150	2.8261900
Н	-3.1952470	0.8048900	-3.2472680	Н	1.4462780	-0.1854310	3.1770500
Н	-2.5660990	2.1634770	-4.2131120	Н	0.1606870	-1.4189010	3.1038560
Н	-2.5970320	3.6491740	-2.2552610	С	2.2050150	-2.2289970	3.3475610
Н	-4.1215420	2.7583600	-2.0501000	С	3.2907190	-2.1719330	2.2725460
0	-1.2840250	0.4661640	1.7738190	С	2.4494640	-2.0187370	1.0111020
С	-1.1917130	1.6667330	2.5358470	Н	2.9616220	-1.4995760	0.1869620
Н	-0.4752120	1.5252930	3.3654470	Н	2.1062600	-3.0019360	0.6422290
Н	-0.8061520	2.4606140	1.8798630	Н	3.9278890	-1.2860890	2.4185330
С	-2.5987210	1.9034770	3.0667710	Н	3.9367180	-3.0582120	2.2499280
Н	2.1034390	0.9695940	-2.9266830	Н	1.7499930	-3.2305450	3.3734860
Н	3.9492150	-1.4045350	-2.3133000	Н	2.5683900	-1.9930920	4.3553370
Н	3.9524150	-0.3772340	-3.7670230	0	1.3294020	-0.5745660	-1.7811120
Н	1.7789860	-1.2913550	-4.4842480	С	1.2287770	-1.8296860	-2.4552760
Н	2.6108770	-2.7491720	-3.8945800	Н	1.4777490	-2.6372590	-1.7454900
				Н	0.1897560	-1.9756980	-2.7853420
				С	2.2353550	-1.7614220	-3.6001780
				С	3.3085050	-0.8446590	-3.0119010
				С	2.4526380	0.1644220	-2.2555870

Н 2.9554790 0.6272520 -1.3929500

Table S32.Geometric coordinates and thermal corrected single point energies for the sodium
cation with 4 MTBE.

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-1253.984	-1252.6915	0.665043	-1253.2997	0.055789	0.052752	-1253.3555	-1253.3525
Atom	X	Y	Z	Atom	X	Y	Z
Ο	1.8815750	-0.4866990	-1.241977	0 Н	-1.4072370	3.7090890	0.8877610
Ο	0.4868180	1.8814540	1.2418980	C	-3.7014520	2.0697310	-0.8820320
Ο	-1.8815880	0.4867400	-1.241972	0 Н	-3.9812190	2.1994990	-1.9361750
Ο	-0.4867890	-1.8813970	1.2419150	Н	-4.6049510	2.2488140	-0.2832980
С	-0.6722520	-3.1592610	0.5885050	Н	-2.9558020	2.8339610	-0.6192600
С	-0.4446130	-1.8816390	2.6529950	C	-2.8417750	0.5332320	0.8954780
Н	-1.1973120	-2.5557050	3.0867910	Н	-2.0870250	1.2811810	1.1894220
Н	0.5505110	-2.1676370	3.0309590	Н	-3.7423630	0.6981590	1.5014620
Н	-0.6769480	-0.8621550	2.9891840	Н	-2.4549430	-0.474298	0 1.1098400
С	-1.8819310	0.4446950	-2.653055	0 C	-4.1406070	-0.406388	0 -1.0372960
Н	-2.5557520	1.1976760	-3.086744	0 Н	-4.4117060	-0.295910	0 -2.0966480
Н	-0.8623850	0.6767050	-2.989277	0 Н	-3.7091970	-1.407289	0 -0.8879000
Н	-2.1682910	-0.5502920	-3.031102	0 Н	-5.0665060	-0.338225	0 -0.4500960
С	-3.1594040	0.6721860	-0.588463	0 C	3.7013330	-2.069843	0 -0.8821640
С	0.6722720	3.1593170	0.5884830	Н	4.6048080	-2.249042	0 -0.2834270
С	0.4446550	1.8817060	2.6529780	Н	2.9556240	-2.834043	0 -0.6194720
Н	-0.5504560	2.1677370	3.0309510	Н	3.9811130	-2.199540	0 -1.9363120
Н	0.6769630	0.8622170	2.9891700	C	2.8417560	-0.533447	0 0.8954690

Н	1.1973810	2.5557530	3.0867600	Н	3.7423300	-0.6984970	1.5014410
С	1.8819100	-0.4445620	-2.6530580	Н	2.4549920	0.4740870	1.1099230
Н	2.1683620	0.5504220	-3.0310420	Н	2.0869510	-1.2813720	1.1893380
Н	2.5556520	-1.1975810	-3.0868040	С	4.1406630	0.4062570	-1.0372130
Н	0.8623370	-0.6764490	-2.9892840	Н	5.0665400	0.3379960	-0.4499890
С	3.1593790	-0.6722860	-0.5884820	Н	4.4117890	0.2958330	-2.0965640
С	0.5334420	2.8418040	-0.8954970	Н	3.7093130	1.4071750	-0.8877630
Н	1.2814760	2.0871420	-1.1894490	С	-2.0697670	-3.7012950	0.8822290
Н	-0.4740410	2.4549160	-1.1099750	Н	-2.2488840	-4.6048600	0.2836050
Н	0.6983440	3.7424560	-1.5013930	Н	-2.1994560	-3.9809470	1.9364130
С	2.0697860	3.7013570	0.8822090	Н	-2.8340210	-2.9556780	0.6194350
Н	2.1994870	3.9809640	1.9364040	С	-0.5334230	-2.8417470	-0.8954730
Н	2.8340450	2.9557620	0.6193710	Н	0.4740880	-2.4549350	-1.1099590
Н	2.2488820	4.6049510	0.2836220	Н	-0.6983980	-3.7423830	-1.5013730
С	-0.4063470	4.1404680	1.0373190	Н	-1.2814040	-2.0870260	-1.1894100
Н	-0.2959810	4.4114340	2.0967170	С	0.4063660	-4.1404150	1.0373360
Н	-0.3381140	5.0664390	0.4502400	Н	0.3381380	-5.0663810	0.4502480
				Н	1.4072550	-3.7090310	0.8877880
				Н	0.2959950	-4.4113910	2.0967300
				Na	-0.0000060	0.0000260	-0.0001250

Table S33.Geometric coordinates and thermal corrected single point energies for the sodium
cation with κ^3 -PMDTA, κ^1 -DMEA.

	E_SPC	E	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-	-896.897	-896.0209	0.480908	-896.40437	0.041467	0.039747	-896.44583	-896.44411
	Atom	X	Y	Z	Atom	X	Y	Z
	Na	0.2618810	-0.0936250	-0.4150200) Н	0.5428160	-3.271506	0 -0.1949310
	С	2.5718950	1.6656520	1.0611830	Н	-0.8735990	-4.163663	0 -0.8160670
	С	3.1718260	0.8458500	-0.0711950	0 C	-2.2197110	-1.960346	0 -1.5601390
	Ν	2.6043290	-0.5037120	-0.1887160) Н	-2.8353760	-1.068611	0 -1.3814960
	С	3.1831870	-1.1865750	-1.3433960) Н	-1.8055440	-1.888406	0 -2.5753540
	Н	2.9973770	-0.6058130	-2.2581250) Н	-2.8819180	-2.847072	0 -1.5207980
	Н	4.2770770	-1.3181390	-1.2375710) Н	-0.8132670	-2.455366	0 1.4339280
	Н	2.7289820	-2.1802290	-1.4608720) Н	-2.4176180	-2.936480	0 0.8609590
	С	2.8309550	-1.2887560	1.0221700	Н	-3.0022090	-0.475735	0 0.6209540
	Н	2.2985880	-0.8514030	1.8777610	Н	-1.6545480	0.8879880	-2.6022420
	Н	2.4593410	-2.3123250	0.8745550	С	-1.1750110	1.8595320	-2.4116340
	Н	3.9072020	-1.3512320	1.2770890	Ν	-0.8306860	1.9857850	-0.9964700
	Н	2.9966220	1.3580800	-1.0311660	0 C	-2.0362060	1.9106920	-0.1641200
	Н	4.2720730	0.7856350	0.0547790	С	-1.7555720	1.5603990	1.2936290
	Н	2.8667020	1.2899720	2.0503260	Н	-2.6868340	1.6916280	1.8795220
	Н	1.4695010	1.6759800	1.0105220	Н	-1.0309130	2.2766060	1.7107250
	Ν	-1.2047980	0.2131630	1.4722180	Н	-2.7005820	1.1500530	-0.6028060
	С	-2.2227810	-0.8327780	1.3077080	Н	-2.5986040	2.8647790	-0.2029430

С	-1.6465600	-2.1434900	0.7841110	С	-0.1181460	3.2429190	-0.7791280
Ν	-1.1341320	-2.0539360	-0.5875400	Н	0.1110260	3.3847030	0.2845500
С	-0.3045840	-3.2172670	-0.8933390	Н	0.8309360	3.2397840	-1.3336130
Η	0.0885970	-3.1393000	-1.9165860	Н	-0.7162030	4.1098760	-1.1203480
Н	-0.1660570	-0.9289750	2.9113730	Н	-1.8679810	2.6562350	-2.7437690
Η	0.2870440	0.7901490	2.8502520	Н	-0.2652150	1.9260120	-3.0247870
Η	-1.2573320	0.2978080	3.6063630	Н	-2.7365830	-1.0273300	2.2684960
Η	2.9144880	2.7066340	0.9918080	С	-0.5562370	0.0892420	2.7755300
Table S34.Geometric coordinates and thermal corrected single point energies for the sodium
cation with κ^3 -PMDTA, κ^2 -TMEDA.

E_SPC	E E	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-1030.86	14 -1029.8352	0.556351	-1030.2913	0.043604	0.042136	-1030.3349	-1030.3335
Atom	X	Y	Z	Atom	X	Y	Z
Na	-0.1170130	0.0213390	-0.061559	0 H	-0.6249820	0.1460520	3.1761550
Ν	-1.7307860	0.9501430	1.5704990	Н	-2.3241670	0.5271030	3.5753520
С	-3.0654830	0.8526200	0.9752620	Ν	2.1326980	0.3299110	1.0027880
С	-3.2836100	-0.4186280	0.1682490	С	2.9401990	0.8953010	-0.0824350
Ν	-2.3611970	-0.5758680	-0.9577450	0 C	2.2295970	1.9721240	-0.8891850
С	-2.6309570	-1.8384110	-1.635450	0 N	1.0470740	1.5102210	-1.6205050
Н	-1.9171350	-1.9851130	-2.457829	0 C	0.4176730	2.6555500	-2.2708780
Н	-2.5335110	-2.6767900	-0.9309430	0 H	-0.4578850	2.3321770	-2.8479760
Н	-3.6547200	-1.8684170	-2.057524	0 Н	0.0909570	3.3850420	-1.5164620
С	-2.4836410	0.5249930	-1.906504	0 Н	1.1140400	3.1659560	-2.9645480
Н	-2.1402880	1.4704450	-1.462846	0 C	1.3878930	0.4957220	-2.6130780
Н	-1.8593240	0.3190830	-2.787164	0 Н	1.7420420	-0.424648	0 -2.1268650
Н	-3.5274580	0.6628260	-2.253727	0 Н	0.4933570	0.2381390	-3.1975450
Н	-3.1767610	-1.3031230	0.8166260	Н	2.1693260	0.8442870	-3.3175180
Н	-4.3346900	-0.4201990	-0.189170	0 H	1.9109240	2.7910230	-0.2257030
Н	-3.2224720	1.7297950	0.3315960	Н	2.9665760	2.4109380	-1.5938850
Н	-3.8483220	0.9095780	1.7576180	Н	3.2526110	0.0872880	-0.7562460
С	-1.4093720	2.3402750	1.8778220	Н	1.4034970	-2.796097	0 -1.9961280

Н	-0.4227450	2.3966660	2.3559910	С	0.8205560	-3.1460000	-1.1324570
Η	-1.3839360	2.9361830	0.9538090	Ν	0.9464010	-2.2050280	-0.0261350
С	-1.6520940	0.1424020	2.7833200	С	2.3474380	-2.0883220	0.3710040
Η	-1.9341100	-0.8979800	2.5738860	С	2.6204380	-0.9937050	1.3954590
Η	0.3937630	-3.6156300	1.4854380	Н	3.7112670	-0.9729250	1.5951940
Η	1.1833810	-4.1561520	-0.8587040	Н	2.1465080	-1.2540030	2.3538280
Н	-0.2310540	-3.2298860	-1.4343600	Н	2.9365240	-1.9121800	-0.5423440
Η	3.8771940	1.3281370	0.3211310	Н	2.7200440	-3.0464640	0.7899400
С	2.1552540	1.2238060	2.1559190	С	0.1037660	-2.6231600	1.0862910
Η	1.8242950	2.2302770	1.8682340	Н	0.1583060	-1.8975710	1.9102520
Η	1.4816320	0.8520440	2.9407850	Н	-0.9435730	-2.6793640	0.7531240
Η	3.1714900	1.3102930	2.5879600				
Н	-2.1487280	2.7954180	2.5653680				

Table S35.Geometric coordinates and thermal corrected single point energies for the sodium
cation with κ^2 , κ^2 -PMDTA.

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-1204.10	4 -1202.8817	0.657858	-1203.4295	0.051629	0.048457	-1203.4812	-1203.478
Atom	X	Y	Z	Atom	X	Y	Z
Na	-0.1626820	0.5699480	0.2483880	Н	-2.1956490	-0.930435	0 -1.9050230
Ν	-1.9703170	1.0293420	-1.244634	0 C	-1.1571000	1.3992110	-2.3991790
С	-2.7155820	2.1810040	-0.735875	0 Н	-0.3625380	2.1051670	-2.1119370
С	-1.8171980	3.2734840	-0.163399	0 Н	-0.6822980	0.5010510	-2.8168660
Ν	-0.8817180	2.7945140	0.8559590	Н	-1.7588760	1.8700130	-3.2009050
С	0.0854470	3.8360450	1.1877110	N	1.9860790	-0.303897	0 -0.3726800
Н	0.8103170	3.4558780	1.9210940	C	2.2220090	-1.431711	0 0.5393860
Н	0.6325000	4.1402140	0.2848520	C	0.9410990	-2.157664	0 0.9374480
Н	-0.4016120	4.7329290	1.6165480	N	-0.0223110	-1.335953	0 1.6774230
С	-1.5818830	2.3497590	2.0570180	C	-1.2708560	-2.074064	0 1.8537870
Н	-2.2244300	1.4822220	1.8394020	Н	-1.9835300	-1.458364	0 2.4222810
Н	-0.8510460	2.0494130	2.8213600	Н	-1.7216570	-2.317313	0 0.8784640
Н	-2.2195070	3.1460710	2.4886780	Н	-1.1149680	-3.016564	0 2.4146080
Н	-1.2287950	3.7391870	-0.967562	0 C	0.5062830	-0.925088	0 2.9744160
Н	-2.4670690	4.0737980	0.2458940	Н	1.3602250	-0.242355	0 2.8573860
Н	-3.4108330	1.8336670	0.0404360	Н	-0.2736710	-0.396837	0 3.5395410
Н	-3.3406980	2.6312530	-1.534242	0 Н	0.8378020	-1.792175	0 3.5793070
С	-2.8431670	-0.0962170	-1.589477	0 Н	0.4309580	-2.538140	0 0.0378880

С	-3.6905650	-0.5885580	-0.4160040	Η	1.2217600	-3.0498110	1.5345280
Ν	-3.9265260	-2.0169970	-0.4722250	Н	2.7257310	-1.0525850	1.4395680
С	-4.6715800	-2.4606350	0.6907170	Н	5.4577930	-1.2445080	-2.5103290
Н	-4.1365970	-2.1863820	1.6113720	С	5.9474840	-1.0870870	-1.5385640
Н	-5.6868760	-2.0143000	0.7393220	N	4.9753990	-0.6483340	-0.5539580
Н	-4.7799120	-3.5533730	0.6700520	С	4.3059370	0.5716060	-0.9570540
С	-4.5972960	-2.4237100	-1.6948930	С	2.9620630	0.7889020	-0.2580820
Н	-3.9875620	-2.1876460	-2.5772720	Н	2.5134230	1.7037580	-0.6864700
Н	-4.7526130	-3.5105590	-1.6819770	Н	3.1086740	0.9924990	0.8145030
Н	-5.5878840	-1.9357780	-1.8145970	Н	4.1322010	0.5211160	-2.0425850
Н	-3.1448170	-0.3765420	0.5213210	Н	4.9348350	1.4747110	-0.7918710
Н	-4.6483430	-0.0230010	-0.3636150	С	5.5818290	-0.5391930	0.7580220
Н	-3.4868900	0.1646160	-2.4541750	Н	4.8399150	-0.2371270	1.5108740
С	1.8364140	-0.7685200	-1.7484680	Н	5.9900610	-1.5120580	1.0651610
Н	0.9563050	-1.4236210	-1.8381200	Н	6.4067000	0.2036740	0.7803580
Н	1.6928210	0.0891340	-2.4223250	Н	6.7714960	-0.3573350	-1.6794140
Н	2.7184770	-1.3393330	-2.0916040	Н	6.3905440	-2.0415220	-1.2232140
				Н	2.9213500	-2.1582420	0.0927940

Table S36.Geometric coordinates and thermal corrected single point energies for the sodium
cation with κ^3 , κ^1 -PMDTA.

E_SPC	E	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-1204.105	-1202.8829	0.657707	-1203.4314	0.051249	0.048228	-1203.4827	-1203.4796
Atom	X	Y	Z	Atom	X	Y	Z
Na	1.5841300	0.3123470	-0.459679	0 C	-2.6278750	-0.219660	0 2.0547050
Ν	-2.4831610	0.6029070	0.8702880	Н	-3.4355800	-0.944900	0 1.8999610
С	-3.6732430	1.3900060	0.5803440	Н	-1.6992530	-0.787703	0 2.2200260
С	-4.9574610	0.5653720	0.5362580	Н	-2.8298560	0.3724120	2.9724890
Ν	-4.8326840	-0.6726830	-0.203717	0 N	1.8806270	-1.180901	0 1.4095600
С	-6.0539180	-1.4482570	-0.129547	0 C	3.3112460	-1.500442	0 1.3439700
Н	-5.9132550	-2.4185430	-0.625792	0 C	4.2001160	-0.282622	0 1.1164850
Н	-6.3151190	-1.6378330	0.9214710	N	3.9657830	0.3975040	-0.1601970
Н	-6.9161450	-0.9381130	-0.609490	0 C	4.6666070	1.6778830	-0.1832570
С	-4.4085950	-0.4720410	-1.570937	0 Н	4.4520520	2.2085130	-1.1216230
Н	-3.4084510	-0.0156520	-1.592993	0 Н	4.3356450	2.3030910	0.6572320
Н	-4.3463770	-1.4429690	-2.082719	0 Н	5.7635560	1.5493250	-0.1055080
Н	-5.1059480	0.1719850	-2.150601	0 C	4.3864440	-0.421745	0 -1.2934210
Н	-5.2718930	0.3152130	1.5618170	Н	3.8009520	-1.350966	0 -1.3440500
Н	-5.7564160	1.2210310	0.1216830	Н	4.2231780	0.1292000	-2.2307210
Н	-3.5319120	1.8887110	-0.390632	0 H	5.4591760	-0.691573	0 -1.2358010
Н	-3.8167650	2.1989910	1.3310090	Н	4.0364590	0.4512920	1.9199420
С	-1.2863490	1.4127780	0.9292070	Н	5.2590390	-0.603045	0 1.1976720

С	-1.0128030	2.1538600	-0.3802210	Н	3.4808540	-2.2267990	0.5388780
Ν	0.4147130	2.3914280	-0.6110140	Н	2.1766160	-2.4110090	-2.7354940
С	0.6142400	3.0064860	-1.9204350	С	1.0980350	-2.2092850	-2.6769980
Н	0.1997430	2.3592900	-2.7065180	Ν	0.7359150	-1.7681460	-1.3323750
Н	0.1208510	3.9945770	-1.9930520	С	1.0979410	-2.7964090	-0.3550000
Н	1.6880190	3.1468930	-2.1106560	С	1.0386770	-2.3411990	1.0999020
С	0.9905270	3.2335540	0.4351660	Н	1.3013100	-3.2065250	1.7416700
Н	0.9370760	2.7318250	1.4120050	Н	0.0020260	-2.0739030	1.3568780
Н	2.0471060	3.4336820	0.2084150	Н	2.1111220	-3.1486310	-0.6015290
Н	0.4656920	4.2055910	0.5163790	Н	0.4379950	-3.6819720	-0.4588150
Н	-1.3923510	1.5317440	-1.2065970	С	-0.6945160	-1.4632100	-1.2856240
Н	-1.5659720	3.1145020	-0.4122130	Н	-1.0066210	-1.0373590	-0.3203530
Н	-1.3100290	2.1273460	1.7831830	Н	-0.9352920	-0.7246640	-2.0644730
Н	-0.4367520	0.7295430	1.1229350	Н	-1.3125780	-2.3632640	-1.4732060
Н	2.1417500	0.2410810	2.9514700	Н	0.5586920	-3.1318160	-2.9663460
Н	0.4848080	-0.3714880	2.7713100	Н	0.8511940	-1.4270850	-3.4081820
Н	1.7341260	-1.3989720	3.5277380	Н	3.6382100	-2.0018580	2.2761410
				С	1.5451830	-0.6543670	2.7303550

Table S37. Geometric coordinates and thermal corrected single point energies for the sodium
cation with κ^3 , κ^2 -PMDTA.

E_SPC	E E	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-1204.116	-1202.8958	0.658911	-1203.4414	0.049722	0.047214	-1203.4911	-1203.4886
Atom	X	Y	Z	Atom	X	Y	Z
Na	0.8206810	0.2285290	0.0931070) Н	-1.7935040	0.4417630	0.3638620
Ν	-0.9336430	1.0543750	-1.420285	50 C	-0.8124050	0.7548770	-2.8388440
С	-1.2254940	2.4648510	-1.153450	0 Н	-0.0336380) 1.3873930	-3.2893980
С	-0.0168500	3.2111620	-0.602465	60 H	-0.5139480	-0.295371	0 -2.9721140
Ν	0.5034050	2.6546560	0.6486640) Н	-1.7503300	0.9216720	-3.4015830
С	1.7371290	3.3416820	1.0149550) N	1.1898180	-2.187418	0 -0.6386660
Н	2.1900270	2.8651040	1.8963410) C	1.2183210	-2.839585	0 0.6746140
Н	2.4539750	3.2983430	0.1834690) C	0.0397130	-2.484371	0 1.5694830
Н	1.5598670	4.4094200	1.2506390) N	-0.0083540	-1.080985	0 1.9821230
С	-0.4578840	2.7902420	1.7378050) C	-1.2858710	-0.820597	0 2.6389810
Н	-1.3664160	2.2048310	1.5432680) Н	-1.3584680	0.2415540	2.9127790
Н	-0.0118030	2.4230080	2.6727460) Н	-2.1130800	-1.067817	0 1.9566530
Н	-0.7550530	3.8463320	1.8955110) Н	-1.4019580	-1.421948	0 3.5620550
Н	0.7917630	3.1657070	-1.350198	30 C	1.0970110	-0.733146	0 2.8682560
Н	-0.2777440	4.2827620	-0.474398	30 H	2.0634900	-0.816146	0 2.3481320
Н	-2.0724250	2.5462490	-0.453547	ИО Н	0.9874050	0.3094150	3.1995540
Н	-1.5555730	2.9791350	-2.071460	0 Н	1.1325530	-1.377401	0 3.7692930
С	-1.7973740	0.1324060	-0.692002	20 H	-0.9058330	-2.707637	0 1.0519320

С	-3.2513510	0.0014690	-1.1504620	Н	0.0706510	-3.1467720	2.4595990
Ν	-4.0179500	-0.6732410	-0.1172470	Н	2.1516690	-2.5702970	1.1860370
С	-4.4847530	0.2498200	0.8986810	Н	4.3712660	0.2340250	1.3109350
Н	-3.6469040	0.8330740	1.3111760	С	4.2534130	0.7066490	0.3257840
Н	-5.2351610	0.9669760	0.5046290	Ν	3.2055000	0.0286140	-0.4296710
Н	-4.9434900	-0.3032060	1.7302850	С	3.5730750	-1.3743390	-0.6103160
С	-5.1137550	-1.4663450	-0.6437280	С	2.5068930	-2.2311010	-1.2781780
Н	-4.7329990	-2.2132700	-1.3536320	Н	2.8889340	-3.2719220	-1.3227110
Н	-5.6100750	-2.0012620	0.1775260	Н	2.3792370	-1.9143510	-2.3242770
Н	-5.8780770	-0.8506890	-1.1609530	Н	3.8305670	-1.7799460	0.3796940
Н	-3.6754860	0.9987490	-1.4020870	Н	4.4970550	-1.4584740	-1.2201260
Н	-3.2926350	-0.5957030	-2.0738040	С	2.9857280	0.6941490	-1.7085300
Н	-1.3443310	-0.8727000	-0.7095440	Н	2.1289850	0.2510700	-2.2390850
С	0.2280200	-2.8608060	-1.5076990	Н	2.7617120	1.7568920	-1.5359430
Н	-0.7679420	-2.8872990	-1.0475830	Н	3.8707360	0.6335620	-2.3728240
Н	0.1478670	-2.3310640	-2.4668320	Н	5.2294790	0.6644380	-0.1959220
Н	0.5331220	-3.9049630	-1.7166500	Н	3.9906040	1.7604110	0.4777280
				Н	1.2456150	-3.9415540	0.5549070

Table S38.Geometric coordinates and thermal corrected single point energies for the sodium
cation with κ^2 , κ^2 -TMEDA.

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-857.5879	-856.75533	0.451784	-857.12384	0.042891	0.040035	-857.16673	-857.16387
Atom	X	Y	Z	Atom	X	Y	Z
Na	-0.0000520	0.0013590	-0.000365	0 C	1.8195080	2.5811450	-1.1195860
Ν	-1.8766230	1.1272330	0.9933240	Н	0.9218510	2.8730250	-1.6824840
С	-3.0491270	0.7326840	0.2085520	Н	1.7709490	3.0436520	-0.1240920
С	-3.0484740	-0.7326800	-0.211040	0 Н	2.7039440	2.9865190	-1.6475110
Ν	-1.8750770	-1.1265260	-0.994813	0 C	1.8897060	0.5067540	-2.3147170
С	-1.8150260	-2.5801320	-1.122629	0 Н	1.8154680	-0.588342	0 -2.2368980
Н	-0.9160310	-2.8705480	-1.684157	0 H	1.0328320	0.8661650	-2.9013660
Н	-1.7676190	-3.0432210	-0.127353	0 H	2.8129400	0.7474850	-2.8771350
Н	-2.6980440	-2.9862590	-1.652355	0 Н	3.0921690	1.3763250	0.6831690
С	-1.8858270	-0.5050490	-2.316503	0 Н	3.9828170	0.9273190	-0.7732250
Н	-1.8132690	0.5901000	-2.237820	0 Н	3.0916320	-1.378653	0 -0.6792580
Н	-1.0274510	-0.8628540	-2.901940	0 C	1.8131110	-2.581654	0 1.1204360
Н	-2.8077510	-0.7466690	-2.880690	0 H	0.9137310	-2.872146	0 1.6813120
Н	-3.0919180	-1.3779970	0.6789420	Н	1.7658690	-3.043780	0 0.1247010
Н	-3.9808810	-0.9288620	-0.778455	0 H	3.9799560	-0.930915	0 0.7789430
Н	-3.0922440	1.3779830	-0.681457	0 C	1.8846000	-0.507798	0 2.3163740
Н	-3.9821220	0.9282760	0.7751870	Н	1.8127940	0.5874730	2.2387380

С	-1.8171000	2.5809100	1.1206020	Н	1.0257590	-0.8656280	2.9011090
Η	-2.7007760	2.9870480	1.6492240	Н	2.8061500	-0.7506030	2.8806570
Η	-0.9187870	2.8718020	1.6829790	Н	-1.7687530	3.0436330	0.1251940
С	-1.8885880	0.5062920	2.3152580	Н	2.6956920	-2.9887680	1.6501390
Н	-1.8158810	-0.5888730	2.2370490	С	3.0479320	-0.7339740	0.2111700
Η	-1.0308040	0.8643860	2.9013830	С	3.0493660	0.7316900	-0.2073400
Η	-2.8110820	0.7481090	2.8784220	N	1.8775690	1.1273620	-0.9926150
Ν	1.8739790	-1.1279630	0.9940490				

Table S39.Geometric coordinates and thermal corrected single point energies for the sodium
cation with 5 THF and 2-methyl-3-pentanone.

	E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-	-1635.469	-1633.7515	0.768039	-1634.679	0.065414	0.060394	-1634.7445	-1634.7394
	Atom	X	Y	Z	Atom	X	Y	Z
	Na	0.4678500	0.0420120	-0.1354730) O	0.0018230	-1.702975	0 -1.5007170
	Ο	0.7930030	-1.5146280	1.5198980	С	1.0538930	-2.590664	0 -1.8804020
	С	1.3925160	-1.3130550	2.7895470	Н	1.6355670	-2.138029	0 -2.7025150
	Н	2.3851100	-1.8003440	2.8154850	Н	1.7226640	-2.720748	0 -1.0179300
	Н	1.5214490	-0.2317830	2.9295010	С	0.3519830	-3.864669	0 -2.3317800
	С	0.4333440	-1.9849250	3.7710070	С	-0.9167480	-3.296281	0 -2.9697800
	С	-0.1321810	-3.1625570	2.9479150	С	-1.2497880	-2.144749	0 -2.0245170
	С	0.3075360	-2.8483520	1.5021840	Н	-1.7497960	-1.296644	0 -2.5159800
	Н	1.1157610	-3.5302600	1.1811350	Н	-1.8912570	-2.478054	0 -1.1886160
	Н	-0.5016160	-2.8969030	0.7598790	Н	-0.6943400	-2.912066	0 -3.9763860
	Н	0.2764240	-4.1253130	3.2796360	Н	-1.7328740	-4.024156	0 -3.0558690
	Н	-1.2241850	-3.2263790	3.0342350	Н	0.0971220	-4.488628	0 -1.4609920
	Н	-0.3669030	-1.2860240	4.0547560	Н	0.9589040	-4.466684	0 -3.0191960
	Н	0.9346520	-2.3074800	4.6917420	С	-4.1554020	0.6045310	0.1916980
	Ο	0.7389270	1.6105430	1.4636170	Н	-4.8350840	0.4852720	1.0494410
	С	-0.1905950	2.0773310	2.4370150	С	-2.7767660	0.1116840	0.5978940
	Н	-1.1204540	2.3905010	1.9278070	С	-2.6352710	-0.634486	0 1.9018860
	Н	-0.4342130	1.2500530	3.1220820	Н	-1.5709050	-0.878823	0 2.0353060

С	0.4943790	3.2544950	3.1256890	Н	-2.9313550	0.0662190	2.7027310
С	1.3577440	3.8116880	1.9927780	С	-3.5134730	-1.8867500	1.9788760
С	1.8202530	2.5318350	1.3058720	Н	-3.2132910	-2.6313550	1.2268700
Н	2.0238590	2.6411390	0.2305170	Н	-3.4273580	-2.3525110	2.9693700
Н	2.7208000	2.1198670	1.7946230	Н	-4.5755630	-1.6524530	1.8211440
Н	0.7425370	4.4138040	1.3070880	0	-1.8183750	0.3200580	-0.1218750
Н	2.1917560	4.4333970	2.3409080	С	-4.0837970	2.0799650	-0.2009410
Н	1.1312100	2.8966820	3.9485940	Н	-5.0756440	2.4452990	-0.4991360
Н	-0.2179140	3.9806630	3.5362960	Н	-3.7253770	2.7046740	0.6306290
0	2.6788550	-0.1219570	-0.6307100	Н	-3.3954830	2.2060620	-1.0485980
С	3.3604230	0.5658350	-1.6826020	С	-4.6628490	-0.2570490	-0.9716920
Н	3.2885590	-0.0277690	-2.6112680	Н	-3.9927030	-0.1482910	-1.8373860
Н	2.8580320	1.5287810	-1.8448260	Н	-4.7134310	-1.3228170	-0.7052730
С	4.8058830	0.6775910	-1.2154790	Н	-5.6685290	0.0665180	-1.2722880
С	4.9704210	-0.6284870	-0.4384350	0	0.4352800	1.7960040	-1.6325500
С	3.6132770	-0.7465700	0.2486160	С	-0.3546000	2.9421220	-1.3079540
Н	3.2968980	-1.7851250	0.4295640	Н	-0.9800390	2.6922040	-0.4347530
Н	3.6048650	-0.2149170	1.2161700	Н	0.3100680	3.7781280	-1.0409950
Н	5.1215170	-1.4672060	-1.1344330	С	-1.2016760	3.2372450	-2.5477850
Н	5.8060980	-0.6195810	0.2722580	С	-1.2884100	1.8597660	-3.2065850
Н	4.9233220	1.5408310	-0.5424710	С	0.1126130	1.3276670	-2.9417300
Н	5.5150450	0.7900520	-2.0448690	Н	0.1858110	0.2303510	-2.9373920
				Н	0.8363510	1.7309910	-3.6723870
				Н	-2.0229370	1.2319900	-2.6783750
				Н	-1.5440020	1.8960000	-4.2729820
				Н	-0.6801760	3.9404340	-3.2134320
				Н	-2.1776860	3.6729990	-2.2982900

Table S40.Geometric coordinates and thermal corrected single point energies for the sodium
cation with 5 THF and 2-methylcyclohexanone.

E_SPC	E	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-1673.58	38 -1671.8283	0.777339	-1672.7849	0.063705	0.058988	-1672.8486	-1672.8439
Atom	X	Y	Z	Atom	X	Y	Z
Na	-0.5724630	0.1493160	0.1712630	Ο	-1.1410290	-1.265959	0 1.8567440
Ο	-0.6679220	-1.6750450	-1.2059330	0 C	-2.4682240	-1.602243	0 2.2573080
С	-0.2048450	-1.7245140	-2.5545610	0 Н	-2.8217810	-0.879685	0 3.0155600
Н	-0.8416680	-1.0791260	-3.183313	0 Н	-3.1205970	-1.520274	0 1.3768090
Н	0.8209720	-1.3295660	-2.5866710	0 C	-2.3532670	-2.999709	0 2.8486560
С	-0.3050840	-3.1893820	-2.964609	0 C	-0.9922410	-2.914158	0 3.5420370
С	-1.5237670	-3.6443330	-2.161661	0 C	-0.1858010	-2.060741	0 2.5617080
С	-1.3177830	-2.8943240	-0.8499480	0 Н	0.5396300	-1.397939	0 3.0574270
Н	-2.2527620	-2.6553420	-0.3223420	0 Н	0.3604490	-2.680008	0 1.8295940
Н	-0.6686840	-3.4634690	-0.1601480	0 Н	-1.0939030	-2.395783	0 4.5067800
Н	-2.4492870	-3.3082580	-2.653759	0 Н	-0.5308750	-3.891414	0 3.7302510
Н	-1.5840440	-4.7311570	-2.0256840	0 Н	-2.3315960	-3.752064	0 2.0451340
Н	0.5921330	-3.7388360	-2.639141	0 Н	-3.1773940	-3.246443	0 3.5293490
Н	-0.4137230	-3.3225990	-4.0479990	0 C	4.9225860	-1.640423	0 -1.0473830
Ο	0.0849550	1.4163850	-1.614138	0 C	3.5003570	-2.064449	0 -1.4047820
С	1.3815130	1.6118930	-2.174152	0 C	2.5726660	-1.982539	0 -0.1825410
Н	2.1023710	1.8083300	-1.3597040	0 C	2.6518200	-0.625601	0 0.4786830
Н	1.6908960	0.6916180	-2.6915480	0 C	4.0447820	-0.117057	0 0.7972870

С	1.2499100	2.8113400	-3.1063720	С	4.9345490	-0.2333750	-0.4561620
С	0.1841940	3.6379090	-2.3867070	Н	4.5763770	0.4886270	-1.2116320
С	-0.7504380	2.5481180	-1.8723450	Н	5.9570930	0.0730020	-0.1921910
Н	-1.2768880	2.8106710	-0.9417960	Н	4.4458890	-0.8300500	1.5426250
Н	-1.4996580	2.2773520	-2.6365030	С	4.0265250	1.2840440	1.3863580
Н	0.6337750	4.1873800	-1.5462070	Н	3.4000020	1.3295530	2.2870070
Н	-0.3249780	4.3610470	-3.0356720	Н	5.0434510	1.6021320	1.6514860
Н	0.8829660	2.4898130	-4.0923450	Н	3.6213080	2.0043410	0.6589080
Н	2.1980750	3.3439410	-3.2503380	0	1.6564480	0.0234940	0.7373280
0	-2.7794910	0.4145680	-0.3124800	Н	1.5214910	-2.1854110	-0.4327340
С	-3.6103980	1.4192940	0.2717970	Н	2.9035780	-2.7251990	0.5649260
Н	-4.2703700	0.9578810	1.0279390	Н	3.1163110	-1.3990530	-2.1968280
Н	-2.9573010	2.1492090	0.7697650	Н	3.4821650	-3.0846270	-1.8138040
С	-4.4202220	1.9828090	-0.8879350	Н	5.3467490	-2.3502320	-0.3173410
С	-4.6377460	0.7294890	-1.7367410	Н	5.5660060	-1.6823460	-1.9374710
С	-3.3072880	-0.0063410	-1.5707520	Н	1.1929860	2.5187230	0.5590400
Н	-3.4208650	-1.1014420	-1.5721250	Н	0.0751050	3.9070160	0.7566950
Н	-2.5839310	0.2613220	-2.3593330	С	1.0805890	3.2885030	2.6134850
Н	-5.4608970	0.1308390	-1.3198760	С	0.6244530	2.0830970	3.4373030
Н	-4.8734300	0.9432690	-2.7867220	С	-0.7596160	1.8427110	2.8545380
Н	-3.8263880	2.7262590	-1.4410260	Н	-1.1313920	0.8183400	2.9860890
Н	-5.3534530	2.4608510	-0.5653210	Н	-1.4961210	2.5530420	3.2711660
0	-0.5985050	2.0722780	1.4556580	Н	1.2639170	1.2116230	3.2286710
С	0.4702350	2.9981560	1.2372110	Н	0.6136200	2.2697250	4.5185120
				Н	0.6603440	4.2125650	3.0358230
				Н	2.1710230	3.4045650	2.5703700

Table S41.Geometric coordinates and thermal corrected single point energies for NaHMDS
tetrasolvated monomer with 3x THF and 1x 2-methyl-3-pentanone bound.

E_SPC	E	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-2044.019	-2042.2783	0.756136	-2043.2394	0.067372	0.06293	-2043.3068	-2043.3024
Atom	X	Y	Z	Atom	X	Y	Z
Na	-0.1313880	-0.5642580	-0.205485	0 Н	-5.0369550	-2.081042	0 0.1318630
Ν	-1.3767380	1.3680660	0.0070210	Ο	0.7308420	-2.141405	0 -1.6613000
Si	-2.2773450	1.5820240	-1.406498	0 C	1.5243180	-3.082442	0 -0.9401460
С	-1.8881190	3.1706820	-2.383231	0 Н	1.9366170	-2.592191	0 -0.0417790
Н	-0.8525330	3.1647650	-2.759383	0 Н	0.8750160	-3.912066	0 -0.6232050
Н	-2.5580060	3.2938690	-3.249329	0 C	2.6263410	-3.505256	0 -1.9050250
Н	-2.0045210	4.0565990	-1.737939	0 C	2.8523890	-2.205235	0 -2.6760870
С	-1.8679580	0.1532120	-2.605773	0 C	1.4274040	-1.677965	0 -2.8155320
Н	-2.4931540	0.1718120	-3.512117	0 H	1.3814530	-0.579338	0 -2.8415770
Н	-0.8169040	0.2318840	-2.933482	0 Н	0.9290980	-2.070813	0 -3.7177010
Н	-1.9908610	-0.8330280	-2.127156	0 Н	3.4422020	-1.508834	0 -2.0629320
С	-4.1652080	1.6104630	-1.167661	0 Н	3.3531950	-2.342234	0 -3.6431450
Н	-4.5080360	0.7944990	-0.512247	0 Н	2.2654090	-4.295887	0 -2.5803800
Н	-4.4670440	2.5583640	-0.694522	0 Н	3.5229810	-3.872723	0 -1.3895320
Н	-4.7015770	1.5307240	-2.126969	0 O	2.0995220	0.2293040	-0.4738360
Si	-1.3789510	2.1903530	1.4839700	C	2.4940850	1.3524510	-0.7373160
С	0.2611750	3.1226810	1.7659130	C	1.5573660	2.3323720	-1.4038480

Н	0.3310400	3.5691470	2.7704570	С	3.9169360	1.7578920	-0.3759580
Н	1.1149760	2.4365770	1.6372720	С	2.0191540	3.7713110	-1.5870800
Н	0.3712310	3.9313260	1.0240550	Н	0.6048550	2.2681290	-0.8416410
С	-1.5481260	0.9827040	2.9484290	Н	1.3161200	1.8778650	-2.3828430
Н	-0.8950010	0.1103270	2.7856100	С	3.9037500	2.3637660	1.0362370
Н	-1.2865460	1.4449530	3.9139350	Н	4.2413830	2.5374850	-1.0810090
Н	-2.5827070	0.6100050	3.0225720	С	4.8649910	0.5657250	-0.4505730
С	-2.7541320	3.4810270	1.7088440	Н	2.2972030	4.2341640	-0.6296950
Н	-2.7303790	4.2312980	0.9020400	Н	1.1981000	4.3670170	-2.0086220
Н	-3.7449370	3.0005150	1.6889860	Н	3.5771560	1.6066590	1.7649030
Н	-2.6554600	4.0131230	2.6684700	Н	4.9157290	2.6931230	1.3112050
0	0.7375810	-1.4049730	1.7368270	Н	4.9363490	0.1718250	-1.4745070
С	1.6915610	-0.6850410	2.5136730	Н	5.8736280	0.8573370	-0.1262830
Н	2.6997640	-0.8708620	2.1038640	Н	4.5056950	-0.2437280	0.2003700
Н	1.4738490	0.3905960	2.4300400	Н	3.2257530	3.2237530	1.1189460
С	1.5478350	-1.2209720	3.9355940	Н	2.8761870	3.8572920	-2.2706670
С	1.1157290	-2.6650130	3.6770200	Н	2.4736440	-1.1322860	4.5183590
С	0.1865370	-2.4877100	2.4807390	0	-1.7445430	-2.1756800	0.1676820
Н	0.1242200	-3.3674520	1.8244730	С	-2.9580920	-1.6528470	0.7029140
Н	-0.8364880	-2.2254190	2.8002720	Н	-3.1456070	-2.0851290	1.7046800
Н	1.9853020	-3.2807230	3.3994340	Н	-2.8355280	-0.5633810	0.7903300
Н	0.6181550	-3.1364920	4.5341470	С	-4.0235780	-2.0945800	-0.2902630
Н	0.7502730	-0.6763760	4.4630020	С	-3.5352910	-3.4994870	-0.6553900
Н	-3.8938230	-4.2281540	0.0863470	С	-2.0059010	-3.3610070	-0.5768800
Н	-3.8734060	-3.8328760	-1.6448430	Н	-1.5444960	-4.2263680	-0.0704110
Н	-4.0069830	-1.4322540	-1.1684620	Н	-1.5312620	-3.2466410	-1.5632810

Table S42.Geometric coordinates and thermal corrected single point energies for NaHMDS
tetrasolvated monomer with 3x THF and 1x 2-methylcyclohexanone bound.

E_SPC	E	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-2082.13	4 -2080.3549	0.765046	-2081.3451	0.067836	0.062749	-2081.4129	-2081.4078
Atom	Х	Y	Z	Atom	X	Y	Z
Na	-0.4640540	-0.4962710	-0.120796	0 Н	-5.5302770	-0.334100	0 -0.9249230
Ν	-1.0516910	1.7049010	0.1451770	Ο	0.2104360	-2.006693	0 -1.7446250
Si	-1.5671150	2.4062910	-1.3008270	0 C	0.6598960	-3.211762	0 -1.1274350
С	-0.5421240	3.9034790	-1.880721	0 Н	1.1207110	-2.968354	0 -0.1557930
Н	0.5141850	3.6266640	-2.0299490	0 Н	-0.2146790	-3.854993	0 -0.9510380
Н	-0.9185930	4.3217880	-2.828058	0 C	1.6735200	-3.804604	0 -2.0995000
Н	-0.5714430	4.7037970	-1.123733	0 C	2.3129000	-2.536588	0 -2.6660820
С	-1.3935390	1.1119710	-2.694579	0 C	1.1109770	-1.600218	0 -2.7698030
Н	-1.8743520	1.4275790	-3.6338210	0 Н	1.3775610	-0.543264	0 -2.6174320
Н	-0.3242580	0.9495930	-2.911870	0 Н	0.6053280	-1.686163	0 -3.7460320
Н	-1.8233870	0.1389680	-2.400215	Н 0	3.0409300	-2.133712	0 -1.9460160
С	-3.3686890	3.0194550	-1.306819	Н 0	2.8200510	-2.685511	0 -3.6279490
Н	-4.0647170	2.2522980	-0.9327040	Н 0	1.1624640	-4.365101	0 -2.8969570
Н	-3.4648340	3.8971180	-0.648028	Н 0	2.3901480	-4.476137	0 -1.6089320
Н	-3.6974040	3.3196860	-2.3148120	0 O	1.8933030	-0.504244	0 0.0933710
Si	-0.9935070	2.2767920	1.7339840	С	2.7354850	0.2936890	-0.2698990
С	0.7961490	2.5892200	2.3117990	С	2.3604270	1.6521660	-0.8133250
Н	0.8655020	2.8092120	3.3889200	С	4.2116030	-0.081069	0 -0.2623530

Н	1.4327390	1.7137030	2.0949430	С	3.3131170	2.7680780	-0.3711790
Η	1.2129000	3.4491370	1.7623300	Н	1.3112680	1.8534870	-0.5344300
С	-1.7171510	0.9980790	2.9480140	Н	2.4036820	1.5575280	-1.9160190
Н	-1.2986310	0.0012670	2.7353560	С	5.0860840	1.0956620	0.1982940
Η	-1.5063890	1.2479570	4.0003580	Н	4.4449720	-0.2538550	-1.3327180
Н	-2.8107770	0.9290130	2.8290650	С	4.4694140	-1.3557240	0.5282180
С	-1.9329800	3.8952610	2.0615740	С	4.7747350	2.3777390	-0.5682880
Η	-1.5718340	4.7026380	1.4042300	Н	3.1395480	2.9792840	0.6953540
Н	-3.0093500	3.7639850	1.8683150	Н	3.0675270	3.6899960	-0.9173250
Н	-1.8142350	4.2298700	3.1045020	Η	4.9130060	1.2637290	1.2757240
0	-0.2178400	-1.9067480	1.6646710	Н	6.1446080	0.8146570	0.0895660
С	0.8032990	-1.7083250	2.6410530	Н	3.8477610	-2.1870430	0.1690650
Н	1.7156590	-2.2396020	2.3185750	Н	5.5264390	-1.6467280	0.4565950
Η	1.0329560	-0.6340850	2.6981830	Н	4.2259770	-1.1985830	1.5895560
С	0.2399940	-2.2812130	3.9382530	Н	4.9831960	2.2250250	-1.6417520
С	-0.6509320	-3.4081340	3.4144140	Н	5.4352720	3.1895710	-0.2303130
С	-1.2403930	-2.7646580	2.1632270	С	-3.5987640	-0.6781620	0.0655640
Η	-1.5134910	-3.4818650	1.3762960	Н	-4.1241230	-1.1273790	0.9296580
Н	-2.1335640	-2.1625090	2.4026940	Н	-3.1759870	0.2947520	0.3567560
Η	-0.0405580	-4.2838760	3.1446480	С	-4.5005330	-0.6336380	-1.1597970
Н	-1.4203680	-3.7302660	4.1277200	С	-4.3852530	-2.0715830	-1.6721070
Η	-0.3718050	-1.5224200	4.4490840	С	-2.9313760	-2.4331460	-1.3338930
Н	1.0232750	-2.6193040	4.6288000	Н	-2.8414580	-3.4648390	-0.9535750
0	-2.5126270	-1.5154180	-0.3280680	Н	-2.2519070	-2.3244370	-2.1932950
				Н	-5.0813530	-2.7236650	-1.1240620
				Η	-4.6017830	-2.1715850	-2.7434150
				Н	-4.0923420	0.0775480	-1.8933660

Table S43.Geometric coordinates and thermal corrected single point energies for NaHMDS
disolvated dimer with 1x TMEDA and 1x 2-methyl-3-pentanone bound.

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-2730.050	-2728.1131	0.855373	-2729.1664	0.074515	0.070314	-2729.2409	-2729.2367
Atom	X	Y	Z	Atom	X	Y	Z
Ν	0.8699980	1.9055090	-0.1058750) Н	0.6355680	5.2254030	0.0663660
Na	1.7681910	-0.3303540	0.0156010	Н	-1.0361860	4.6238000	0.1403980
Na	-1.0579860	0.6076720	-0.0908850) Н	-0.2700030	5.3057020	1.5935200
Ν	-0.2964390	-1.5898310	0.1719620	Ν	4.1887210	-0.175587	0 0.9382900
Si	-0.3267130	-1.9497250	1.8446730	С	4.4632560	-0.050526	0 2.3603160
С	-0.0936260	-3.7806730	2.2863880	Н	3.7923230	0.6959520	2.8055930
Н	-0.0890460	-3.9273060	3.3781350	Н	4.2925950	-1.010813	0 2.8669810
Н	-0.9100530	-4.3935800	1.8720470	Н	5.5102800	0.2642060	2.5516810
Н	0.8544720	-4.1738350	1.8870420	С	5.0326070	-1.204105	0 0.3448740
С	1.0946900	-1.0266580	2.7131360	С	4.5918530	-1.635773	0 -1.0487490
Н	2.0658980	-1.4635610	2.4296900	Ν	3.1856140	-2.001889	0 -1.1230260
Н	1.1265690	0.0483370	2.4659300	С	2.8417130	-3.081588	0 -0.2086640
Н	1.0109250	-1.1063600	3.8078930	Н	1.7799810	-3.331235	0 -0.3305060
С	-1.9534510	-1.4298460	2.6948770	Н	3.4555310	-3.989322	0 -0.3902630
Н	-2.3377840	-0.4762040	2.2955180	Н	2.9841470	-2.767913	0 0.8357830
Н	-2.7256550	-2.1958260	2.5201330	С	2.8150960	-2.357992	0 -2.4823550

Η	-1.8341500	-1.3155220	3.7839130	Н	1.7245760	-2.4796090	-2.5466550
Si	-1.2270890	-2.4713310	-0.9577170	Н	3.1118460	-1.5611970	-3.1771760
С	-1.4586670	-1.4640640	-2.5555770	Н	3.2954150	-3.3046100	-2.8070850
Н	-1.9031820	-0.4714870	-2.3662770	Н	5.2433000	-2.4814040	-1.3621970
Н	-0.4985500	-1.3032230	-3.0709600	Н	4.7684730	-0.8253740	-1.7747130
Н	-2.1248890	-1.9871910	-3.2605810	Н	6.0908270	-0.8690130	0.2875370
С	-0.5345210	-4.1610120	-1.4854550	Н	5.0246030	-2.0760340	1.0157320
Н	-0.3251870	-4.7829040	-0.6005490	С	4.3660150	1.1128660	0.2833300
Н	-1.2745410	-4.6958790	-2.1019680	Н	4.1616210	1.0318110	-0.7925080
Н	0.3936670	-4.0916700	-2.0714130	Н	3.6540090	1.8406820	0.6957880
С	-2.9780880	-2.8816930	-0.3221240	Н	5.3992650	1.4996970	0.4094650
Н	-3.6227940	-3.2871120	-1.1191600	0	-3.2571740	0.8516650	-0.2441110
Н	-2.9311880	-3.6369120	0.4795570	С	-4.4178080	0.5230390	-0.4003340
Н	-3.4632620	-1.9898430	0.1038900	С	-5.4362950	0.6799790	0.7080160
Si	1.2745700	2.4249270	-1.6831020	С	-4.8699720	-0.0517160	-1.7249460
С	-0.2128270	3.0980620	-2.6554180	Н	-6.3362850	1.1096880	0.2330160
Н	-1.0126460	2.3398500	-2.7125500	С	-5.8014540	-0.7148720	1.2430860
Н	-0.6324460	3.9912030	-2.1679820	С	-4.9371060	1.5945080	1.8174130
Н	0.0602280	3.3703300	-3.6870960	Н	-4.2806780	-0.9676640	-1.8921420
С	1.8834980	0.9320660	-2.6942240	Н	-5.9301820	-0.3361010	-1.6764720
Н	2.8605400	0.5596290	-2.3468510	С	-4.6184440	0.9418550	-2.8614000
Н	1.1680680	0.0947310	-2.6304180	Н	-6.6266470	-0.6312500	1.9634490
Н	1.9931620	1.1902710	-3.7589560	Н	-6.1118050	-1.4038320	0.4445050
С	2.6399770	3.7383940	-1.7984690	Н	-4.9374940	-1.1562860	1.7615680
Н	2.8812020	3.9624100	-2.8496720	Н	-4.0509940	1.1609950	2.3026800
Н	2.3333170	4.6809070	-1.3201830	Н	-4.6555240	2.5828910	1.4290660
Н	3.5644220	3.4029030	-1.3035400	Н	-5.7164620	1.7269320	2.5802740
Si	0.5158250	2.9590280	1.1957630	Н	-3.5584610	1.2267360	-2.8946060
С	-0.9183840	2.2557650	2.2401030	Н	-4.8867390	0.4967330	-3.8279400
Н	-1.8646440	2.2424350	1.6703380	Н	-5.2128900	1.8572170	-2.7289420
Н	-1.0959740	2.8896700	3.1228400	Н	1.6775250	3.8757760	3.2291440

Н	-0.7247010	1.2363920	2.6113330	Η	2.3054210	2.2645800	2.8140230
С	1.9643010	3.2224030	2.3905330	Н	2.8173910	3.6915010	1.8745930
				С	-0.0887870	4.6897310	0.6984570

Table S44.Geometric coordinates and thermal corrected single point energies for NaHMDS
disolvated monomer with $1x \kappa^2$ -TMEDA and 1x 2-methyl-3-pentanone bound.

E_SP	PC E	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-1694.4	-1693.0613	0.625409	-1693.7601 0.056116 0.053313 -1693.8162 -1693		-1693.8134		
Ator	n X	Y	Z	Atom	X	Y	Z
С	2.7390840	-1.8777160	-1.880231	0 C	3.1177210	2.2768320	2.1386240
Si	0.9559680	-2.2488670	-1.309819	0 Н	2.7048920	1.9976840	3.1179930
Ν	0.4452790	-1.2982320	0.0008130) Н	4.2086470	2.4462380	2.2584920
Si	-0.2564150	-1.8082830	1.4568870) Н	2.6505800	3.2259500	1.8411230
С	0.6209380	-3.2230070	2.3683130) C	0.9405020	-4.124351	0 -0.9990740
Н	0.2110820	-3.3565560	3.3820880) Н	-0.0496100	-4.465849	0 -0.6555210
Н	0.5074800	-4.1763300	1.8312780) Н	1.1853350	-4.676165	0 -1.9205100
Н	1.6997200	-3.0182630	2.4586020) Н	1.6764410	-4.406753	0 -0.2302920
С	-2.0868890	-2.3223580	1.3133060) C	-0.1009520	-2.004446	0 -2.8773440
Н	-2.2167240	-3.0946080	0.5375850) Н	0.3172530	-2.568445	0 -3.7261540
Н	-2.4814840	-2.7213360	2.2614310) Н	-1.1292920	-2.364684	0 -2.7107620
Н	-2.7147390	-1.4602070	1.0304710) Н	-0.1606990	-0.944476	0 -3.1743610
С	-0.2902100	-0.3635170	2.7201000) Н	2.8478510	-0.883535	0 -2.3433460
Н	0.7184110	0.0297020	2.9334860) Н	3.4533510	-1.942669	0 -1.0439400
Н	-0.9307900	0.4750320	2.3973680) Н	3.0490390	-2.614730	0 -2.6383150
Н	-0.7019300	-0.7188950	3.6774560) ()	-1.6751850	1.5389830	0.2229190
Na	0.5144300	0.9366710	0.4554000) C	-2.6404720	0.9172890	-0.1874300

Ν	2.8285000	1.2291440	1.1756030	С	-3.9899720	1.0736350	0.4886540
С	3.3870830	1.5093400	-0.1436530	С	-2.4948110	0.0485400	-1.4161490
С	2.7830910	2.7295590	-0.8322840	Η	-4.5338630	0.1219750	0.3908580
Ν	1.3469930	2.6100750	-1.0582880	С	-3.8422590	1.4381890	1.9600090
С	0.6921160	3.9001710	-1.1801130	С	-4.7590190	2.1532190	-0.2916420
Н	-0.3935030	3.7517100	-1.2657600	Η	-2.2463860	0.7364350	-2.2435690
Н	0.8831000	4.5059660	-0.2831780	Η	-1.5746260	-0.5373310	-1.2288410
Н	1.0406610	4.4679990	-2.0673640	С	-3.6568040	-0.8564990	-1.8019340
С	1.0405890	1.7637180	-2.2025750	Η	-4.8297320	1.5909210	2.4172100
Н	-0.0480830	1.6275480	-2.2757640	Η	-3.3240190	0.6422210	2.5136720
Н	1.4089800	2.2003250	-3.1536350	Η	-3.2569720	2.3617860	2.0666550
Н	1.4858470	0.7662040	-2.0807480	Η	-4.2388170	3.1186800	-0.2045700
Н	3.3259850	2.8978250	-1.7857340	Η	-4.8507920	1.9076680	-1.3595780
Н	2.9602130	3.6253470	-0.2191480	Η	-5.7711720	2.2685680	0.1201360
Н	3.2262570	0.6123720	-0.7616430	Η	-4.5849070	-0.2971680	-1.9893620
Н	4.4878220	1.6545950	-0.0817590	Η	-3.4075590	-1.4019940	-2.7219490
С	3.3062170	-0.0653160	1.6473070	Η	-3.8563000	-1.6035460	-1.0207610
Н	4.4140770	-0.0999780	1.6998070				
Н	2.9090400	-0.2661860	2.6520680				

Н 2.9378130 -0.8547980 0.9768820

 Table S45.
 Geometric coordinates and single point energies for THF.

G = -232.060313 Hartrees

G_{SP} = -232.329161 Hartrees

Atom	X	Y	Z	Atom	Χ	Y	Z
С	-1.1561140	-0.4302150	-0.1364250				
Н	-1.5191120	-0.4680640	-1.1798190				
Н	-1.9521560	-0.8248280	0.5124330				
С	-0.7265970	0.9879550	0.2364880				
Н	-0.7694920	1.1264360	1.3276930				
Н	-1.3464000	1.7629510	-0.2329060				
С	0.7269230	0.9876820	-0.2366390				
Н	0.7698960	1.1257440	-1.3278950				
Н	1.3469340	1.7626540	0.2325220				
С	1.1559260	-0.4304830	0.1367540				
Н	1.9523400	-0.8254160	-0.5114370				
Н	1.5181460	-0.4681940	1.1804400				
0	-0.0001230	-1.2351150	-0.0002630				

Table S46.Geometric coordinates and thermal corrected single point energies for NaHMDS-
mediated enolization of 2-methyl-3-pentanone via a monosolvated triethylamine
closed dimer transition structure poised to generate the *E* enolate.

E_SPC	E	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-2674.6735	-2672.8041	0.832028	-2673.813	0.074402	0.069974	-2673.8874	-2673.883018

Imaginary frequency: -1073.49 cm⁻¹

Atom	X	Y	Z	Atom	Χ	Y	Z
Н	-2.8207080	0.9839920	-2.5105820	Н	1.0518420	3.0282430	-1.4375630
С	-1.8138710	1.4209100	-2.6357460	Н	0.1099550	3.9851720	-2.6017910
Si	-1.4422810	2.5873070	-1.1759090	Н	-1.0826990	0.5968690	-2.7042460
Ν	-1.2713020	1.6097390	0.2207200	Н	-1.8091630	1.9398890	-3.6061960
Na	-2.0115760	-0.5024810	-0.2607390	Ν	-4.1261350	-1.6407870	-0.5448400
Ν	3.0396030	-0.0546350	-0.1397780	С	-4.6534590	-2.0513370	0.7687930
Na	0.8181450	0.5528670	-0.0088170	Н	-5.7410250	-1.8548970	0.8202830
Si	3.5119620	0.3772780	-1.7428360	Н	-4.5366210	-3.1404120	0.8685550
С	4.3083450	2.0886740	-1.8586290	С	-3.9419580	-1.3766870	1.9361070
Н	3.6284670	2.8680430	-1.4805400	Н	-3.9686560	-0.2819190	1.8549690
Н	5.2363600	2.1407520	-1.2684540	Н	-4.4057340	-1.6554540	2.8926790
Н	4.5601640	2.3355740	-2.9018970	Н	-2.8884880	-1.6905540	1.9849860
С	4.7081910	-0.8687760	-2.5161530	С	-3.9337100	-2.7617000	-1.4771300
Н	4.2647820	-1.8759650	-2.5565780	Н	-3.6439580	-3.6446310	-0.8915820

Н	4.9806920	-0.5788500	-3.5429730	Н	-4.8891370	-3.0147920	-1.9792520
Н	5.6339330	-0.9341270	-1.9242540	С	-2.8496150	-2.4880350	-2.5120030
С	1.9624450	0.4108040	-2.8490670	Н	-2.7746330	-3.3273120	-3.2173060
Н	1.3213830	1.2828620	-2.6398380	Н	-3.0539920	-1.5831170	-3.1024640
Н	2.2435090	0.4793100	-3.9114480	Н	-1.8643740	-2.3720460	-2.0304890
Н	1.3472990	-0.4962880	-2.7275850	С	-4.9652960	-0.6070120	-1.1676810
Si	4.0086850	0.1988680	1.2635370	Н	-5.9863740	-1.0116140	-1.3299080
С	3.4471550	-0.9952130	2.6187030	Н	-4.5544150	-0.4009050	-2.1674330
Н	2.3827890	-0.8518690	2.8641160	С	-5.0530040	0.6965080	-0.3876980
Н	3.5855120	-2.0381300	2.2908110	Н	-4.0586200	1.1227090	-0.1698440
Н	4.0254990	-0.8524540	3.5444210	Н	-5.6098780	1.4384080	-0.9766930
С	5.8550130	-0.1195190	0.9870140	Н	-5.5848160	0.5700140	0.5660630
Н	6.4276760	0.0424670	1.9134920	0	-0.0818260	-1.5953490	-0.3027820
Н	6.0215640	-1.1589520	0.6628830	С	0.6944260	-2.5489610	-0.0521820
Н	6.2744740	0.5435840	0.2143750	С	0.2094780	-3.6188050	0.9213590
С	3.8142620	1.9571660	1.9367410	С	2.0245500	-2.5896060	-0.5995580
Н	4.1091490	2.6996100	1.1789940	Н	0.8264140	-4.5166430	0.7770440
Н	2.7640130	2.1554900	2.2076700	С	0.3928190	-3.1371970	2.3633620
Н	4.4272240	2.1252550	2.8359080	С	-1.2440960	-3.9800020	0.6233830
Si	-1.3784600	2.2083760	1.8237680	Н	2.5286310	-1.4596990	-0.2409870
С	-0.7237850	0.8751160	3.0069810	Н	-0.0085780	-3.8791960	3.0688170
Н	-0.7865620	1.1913580	4.0594820	Н	1.4532400	-2.9767930	2.6001840
Н	-1.3061900	-0.0554970	2.9057560	Н	-0.1323720	-2.1846470	2.5310890
Н	0.3337930	0.6318120	2.8065600	Н	-1.8968370	-3.1050060	0.7635410
С	-3.1415420	2.6330730	2.3845860	Н	-1.3639150	-4.3318840	-0.4122070
Н	-3.7970240	1.7490840	2.4130080	Н	-1.5891570	-4.7737420	1.3014060
Н	-3.1366060	3.0735720	3.3940830	Н	1.9956080	-2.3018060	-1.6607900
Н	-3.5990510	3.3639950	1.6999540	С	2.9579060	-3.7460490	-0.2991800
С	-0.3527190	3.7761280	2.1114090	Н	3.0305000	-3.9371580	0.7822870
Н	0.6914120	3.6375970	1.7882090	Н	2.6647220	-4.6901910	-0.7869430
Н	-0.7651180	4.6224420	1.5384230				

Н	-0.3439630	4.0669660	3.1734550	Н	3.9732540	-3.4997560	-0.6429330
С	-2.8478260	3.8580390	-1.1270470	Н	-2.6787750	4.5948860	-0.3256900
С	0.1179580	3.5978090	-1.5707580	Н	-2.9058240	4.4103620	-2.0782500
Н	0.1734630	4.4606500	-0.8885550	Н	-3.8255320	3.3860880	-0.9470690

Table S47.Geometric coordinates and thermal corrected single point energies for NaHMDS-
mediated enolization of 2-methyl-3-pentanone via a monosolvated triethylamine
closed dimer transition structure poised to generate the Z enolate.

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-2674.6704	-2672.8002	0.833173	-2673.8093	0.07242	0.068649	-2673.8817	-2673.877914

Imaginary frequency: -1296.43 cm⁻¹

Atom	Χ	Y	Z	Atom	X	Y	Z
Symbo	ol X	Y Z		Н	-5.6464080	-2.5549800	0.1749400
Н	-3.0458500	0.7964240	-2.1311280	Н	-4.1710920	-3.0887220	0.9692070
С	-2.2471910	1.4999310	-2.4234340	С	-4.7553690	-1.1001420	1.5228460
Si	-1.7772870	2.6723610	-0.9960640	Н	-5.1359900	-0.1671230	1.0883040
Ν	-1.0960910	1.7375640	0.2663720	Н	-5.4330530	-1.3957970	2.3360990
Na	-2.1163390	-0.3084000	0.0166220	Н	-3.7794920	-0.8858300	1.9846130
Ν	3.0217390	-0.3244990	-0.3520890	С	-2.9923290	-2.9857790	-1.1100860
Na	0.8654430	0.5253260	-0.0486230	Н	-2.3749530	-3.2662180	-0.2428220
Si	3.1527580	0.0386140	-2.0405460	Н	-3.6272200	-3.8633160	-1.3536150
С	4.0416140	1.6786820	-2.3755820	С	-2.0660540	-2.6847900	-2.2793480
Н	3.5671790	2.5073070	-1.8268880	Н	-1.3476870	-3.5080760	-2.3916840
Н	5.1028080	1.6455990	-2.0844090	Н	-2.6025580	-2.5806150	-3.2313880
Н	3.9989790	1.9153600	-3.4505770	Н	-1.4779160	-1.7709510	-2.1017210

С	4.0259660	-1.2567780	-3.1083800	С	-4.6866260	-1.4107860	-1.8078170
Н	3.3978180	-2.1375740	-3.3001280	Н	-5.2985290	-2.2665880	-2.1661820
Н	4.2955010	-0.8174020	-4.0816200	Н	-4.0276660	-1.1253060	-2.6388900
Н	4.9530960	-1.5979740	-2.6230300	С	-5.6019320	-0.2376670	-1.4938620
С	1.4044640	0.2957270	-2.7620830	Н	-5.0356200	0.6306680	-1.1238080
Н	0.9753850	1.2640710	-2.4492530	Н	-6.1198370	0.0711450	-2.4119830
Н	1.4449210	0.3224900	-3.8617270	Н	-6.3703820	-0.4934250	-0.7516200
Н	0.6970640	-0.5026800	-2.4824850	0	-0.2649660	-1.5217280	0.1681690
Si	4.3278680	0.0219310	0.7353870	С	0.4903930	-2.2842940	0.8152540
С	4.0149800	-0.8268480	2.3918630	С	0.0196560	-2.7782260	2.1866400
Н	3.0665490	-0.4909870	2.8383320	С	1.7591710	-2.7041940	0.2869410
Н	3.9729970	-1.9204130	2.2760760	Н	-0.1000840	-3.8677660	2.0373640
Н	4.8237720	-0.5903740	3.1003720	С	1.0433400	-2.5885770	3.3090200
С	5.9941930	-0.6134550	0.0955320	С	-1.3358680	-2.1952970	2.5696780
Н	6.8006420	-0.4196280	0.8198710	Н	2.4160370	-1.5639480	0.0998360
Н	5.9477820	-1.6999000	-0.0797930	Н	2.2982190	-3.3887180	0.9524490
Н	6.2767390	-0.1333480	-0.8546700	С	1.7554060	-3.1715910	-1.1629850
С	4.5415240	1.8697000	1.0979990	Н	0.6977160	-3.1040500	4.2162890
Н	4.8974280	2.4208400	0.2158970	Н	2.0294930	-2.9893590	3.0456170
Н	3.5962690	2.3334350	1.4220630	Н	1.1668760	-1.5244880	3.5549660
Н	5.2776190	2.0157880	1.9044170	Н	-1.2777190	-1.1002310	2.6800980
Si	-0.8571310	2.2763140	1.8737100	Н	-2.0978620	-2.4272940	1.8119170
С	0.5988710	1.2957750	2.6222100	Н	-1.6785400	-2.6086800	3.5286200
Н	0.6805980	1.4439980	3.7099020	Н	1.2589950	-2.4347840	-1.8096540
Н	0.4842530	0.2109740	2.4537890	Н	2.7860300	-3.2891610	-1.5229700
Н	1.5662740	1.6046450	2.1897390	Н	1.2378470	-4.1366610	-1.2918740
С	-2.3596650	1.9599330	2.9889130	С	-3.3822910	3.5568350	-0.4996940
Н	-2.5938960	0.8846760	3.0567820	Н	-3.2000620	4.2945900	0.2977330
Н	-2.1983410	2.3277970	4.0141290	Н	-3.8377850	4.0893910	-1.3492500
Η	-3.2470350	2.4689840	2.5799490	Н	-4.1219660	2.8360310	-0.1136740
С	-0.4057060	4.1055270	2.0486140	С	-0.6158150	3.9847850	-1.7079180

Н	-0.3684170	4.7328930	-0.9391710
Н	0.3306430	3.5400810	-2.0540920
Н	-1.0729990	4.5126670	-2.5592770
Н	-1.3802220	0.9105050	-2.7630740
Н	-2.6292090	2.0581960	-3.2920530
Ν	-3.8387190	-1.8539860	-0.6928570
С	-4.6408200	-2.2161340	0.4900790

Η	0.5174220	4.3295380	1.4912400
Η	-1.2003600	4.7593060	1.6563640
Н	-0.2395060	4.3759340	3.1029800

Table S48.Geometric coordinates and thermal corrected single point energies for NaHMDS-
mediated enolization of 2-methyl-3-pentanone via a disolvated triethylamine open
dimer transition structure poised to generate the *E* enolate.

E_SPC	E	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-2927.7321	-2925.5772	1.014317	-2926.6858	0.080544	0.076158	-2926.7664	-2926.761978

Imaginary frequency: -1257.63 cm⁻¹

Atom	Χ	Y	Z	Atom	X	Y	Z
С	-1.1753710	-2.1613450	1.5146220	Н	2.1940880	-1.5416810	-4.4050450
С	-1.0153320	-2.9902440	0.3537980	Н	2.8230010	-0.4264080	-3.1756830
Н	-1.4932130	-2.5226300	-0.5202270	Н	3.3747350	-2.1185190	-3.2059320
Na	-1.9971310	0.5591900	-0.0356450	С	0.4817200	-3.6542030	-2.8687450
Na	1.2216670	0.3305130	0.2470370	Н	0.3342800	-3.6384210	-3.9599750
Ν	-0.3515160	2.1826740	0.1598620	Н	-0.4699100	-3.9527500	-2.4038590
Ν	1.3962510	-1.9518960	-0.5410980	Н	1.2255350	-4.4349380	-2.6414190
0	-1.2951770	-0.9218330	1.4134680	С	-0.3608450	-0.7472930	-2.5460240
Н	0.2026500	-2.5568960	0.0162610	Н	-1.3039970	-1.1600120	-2.1531570
С	-1.1864800	-4.4967120	0.3841680	Н	-0.1817990	0.2252060	-2.0574890
Н	-0.8034870	-4.9481680	1.3092350	Н	-0.5146290	-0.5467390	-3.6179870

Н	-0.6362530	-4.9673810	-0.4436120	С	0.6301590	4.3156540	2.1018760
Н	-2.2430060	-4.7993310	0.2854630	Η	0.8036710	4.4846580	3.1763250
С	-1.1591580	-2.7803990	2.9093880	Η	0.0067790	5.1433640	1.7305580
Н	-0.4843960	-3.6503700	2.8936570	Н	1.6005270	4.3870820	1.5863580
С	-2.5824900	-3.2813930	3.1986500	С	0.8140150	1.3289060	2.7579440
Н	-2.6243380	-3.7723970	4.1814740	Η	0.3235310	0.3499890	2.6415320
Н	-2.9284200	-3.9987030	2.4410240	Η	0.8308660	1.5573060	3.8347300
Н	-3.2813440	-2.4303640	3.2123490	Η	1.8636030	1.2548700	2.4341360
С	-0.6994700	-1.8043410	3.9841630	С	-1.8606200	2.6852530	2.7318040
Н	-0.7797100	-2.2680750	4.9777110	Η	-1.7237240	2.9317160	3.7966480
Н	-1.3187120	-0.8964620	3.9677030	Η	-2.5322520	3.4413130	2.2956400
Н	0.3451190	-1.4982170	3.8363420	Н	-2.3615800	1.7027990	2.6854620
Si	-0.1964340	2.6310250	1.8169250	С	-1.1832580	2.7077690	-2.6883590
Si	-0.6704770	3.4058820	-0.9977450	Η	-0.3661230	2.1921960	-3.2119660
Н	0.4981220	4.3148800	-1.2740370	Η	-2.0191310	1.9916230	-2.6006000
Si	2.6751670	-2.7333980	0.3160900	Н	-1.5272630	3.5333660	-3.3309150
Si	1.0646220	-1.9687650	-2.2324010	С	-2.0874080	4.5821100	-0.5276390
С	2.1743300	-4.4431970	0.9568370	Н	-1.9103710	5.0851050	0.4350020
Н	1.8378290	-5.0977130	0.1379990	Н	-3.0403370	4.0364160	-0.4441820
Н	1.3539560	-4.3689370	1.6864770	Η	-2.2110810	5.3622780	-1.2950360
Н	3.0247710	-4.9322210	1.4573980	Ν	-4.2920220	0.2120670	-0.8295400
С	4.2616920	-3.0288720	-0.6751730	С	-5.0727430	-0.6012720	0.1125330
Н	5.0332570	-3.4622490	-0.0191500	Н	-4.9687210	-0.1453920	1.1076630
Н	4.0691540	-3.7560350	-1.4806590	Η	-6.1529740	-0.5550160	-0.1404030
Н	4.6758100	-2.1206990	-1.1349590	С	-4.8442900	1.5675400	-0.9460790
С	3.0459110	-1.7103540	1.8670370	Η	-4.1916680	2.1289190	-1.6358600
Н	2.1381930	-1.6727500	2.4928550	Н	-5.8504410	1.5431230	-1.4098710
Н	3.8532300	-2.1430380	2.4775260	С	-4.1407740	-0.4149520	-2.1506040
Н	3.3255070	-0.6725380	1.6289400	Η	-3.5622120	-1.3421190	-2.0221090
С	2.5035750	-1.4628900	-3.3508570	Η	-3.5107810	0.2536460	-2.7596200
Н	3.2285460	2.7900240	1.6623090	С	-5.4307440	-0.7298340	-2.9074530

Н	4.0691120	1.2756140	1.9881610	Н	-6.0740190	-1.4234370	-2.3465480
С	3.0863630	2.6689290	-0.8960630	Н	-6.0142130	0.1743380	-3.1288680
Η	2.3507250	3.2752660	-0.3455190	Н	-5.1850660	-1.2069380	-3.8660590
Η	3.9270590	3.3413260	-1.1607570	С	-4.9369150	2.3119680	0.3778200
С	5.5525570	1.0863280	-1.4864170	Н	-3.9802710	2.2977990	0.9229700
Η	6.2792740	1.6799070	-0.9188300	Н	-5.1927370	3.3637300	0.1912440
Η	6.0808560	0.2148500	-1.9004000	Н	-5.7122720	1.8971310	1.0353440
Η	5.2133540	1.6956900	-2.3354910	С	-4.6242180	-2.0509070	0.2026230
С	2.4382800	2.1742230	-2.1782630	Н	-4.8374380	-2.6173470	-0.7147180
Η	2.0181010	3.0275550	-2.7272980	Н	-5.1534880	-2.5467800	1.0276170
Η	3.1493030	1.6637720	-2.8416010	Н	-3.5457970	-2.1174270	0.4080190
Η	1.6062720	1.4828850	-1.9719070	N	3.5145740	1.5946960	0.0007370
С	5.3493430	2.8549110	1.2853630	С	4.3837750	0.5938400	-0.6278800
Η	5.3920920	3.6456190	0.5225510	Н	4.7729500	-0.0495910	0.1766980
Η	6.1943580	2.1718110	1.1252200	Н	3.7503230	-0.0619810	-1.2486780
Η	5.4941290	3.3313910	2.2653300	С	4.0088540	2.1159160	1.2768510

Table S49.Geometric coordinates and thermal corrected single point energies for NaHMDS-
mediated enolization of 2-methyl-3-pentanone via a disolvated triethylamine open
dimer transition structure poised to generate the Z enolate.

E_SPC	E	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-2927.735	-2925.5809	1.01481	-2926.6885	0.079136	0.0754	-2926.7677	-2926.763944

Imaginary frequency: -1170.34 cm⁻¹

_

Atom	X	Y	Z	Atom	Χ	Y	Z
С	1.0755370	-2.1497740	-0.6261320	Н	3.6053600	1.1377390	2.4390090
С	0.6541130	-2.5443820	0.6936440	Н	5.1888800	1.2391820	3.2105530
Na	2.3263810	0.5364100	0.3160330	Н	4.9817160	1.8635410	1.5670810
Na	-0.9233260	0.4363850	-0.2687820	С	4.7072570	-0.1432720	-2.0662400
Ν	0.6868870	2.1588730	0.3209280	Н	4.9883210	-1.1412580	-2.4316670
Ν	-1.9921260	-1.6627680	0.5155790	Н	5.1194670	0.5963020	-2.7654450
0	1.2448200	-0.9426960	-0.8969010	Н	3.6074640	-0.0746070	-2.1035220
Н	-0.6169140	-2.2525220	0.5853690	Ν	-3.0066710	1.9306360	-0.8263540
С	1.1718580	-3.1656380	-1.7662730	С	-4.1312970	0.9902640	-0.7468370
Н	0.1244320	-3.3839970	-2.0349010	Н	-4.2456560	0.5421900	-1.7467700
С	1.8239870	-4.4863350	-1.3506430	Н	-3.8363280	0.1640670	-0.0806250
Н	1.9111010	-5.1502710	-2.2223130	С	-2.9174210	2.6443930	-2.1001920

Η	1.2409360	-5.0188940	-0.5879900	Η	-1.9866140	3.2300560	-2.0738250
Н	2.8371870	-4.3212110	-0.9511820	Н	-2.7848450	1.8925800	-2.8966120
С	1.8451370	-2.5649730	-2.9971250	С	-2.8994370	2.8242490	0.3266430
Н	1.7861990	-3.2682840	-3.8393190	Н	-2.0014530	3.4440520	0.1800080
Н	2.9093570	-2.3569800	-2.8064900	Н	-3.7639010	3.5146310	0.3926680
Н	1.3706480	-1.6207050	-3.2934360	С	-5.4858010	1.5272550	-0.2766190
Si	1.0479500	2.9285670	-1.1696410	Η	-5.8644470	2.3473600	-0.8997000
Si	0.6824000	3.0276920	1.7963040	Η	-6.2222200	0.7105030	-0.3070590
Н	-0.4943100	3.9532170	1.9566630	Η	-5.4448570	1.8866990	0.7616160
Si	-2.5803520	-2.3956280	-0.9385370	С	-2.7586610	2.0791520	1.6435050
Si	-2.7723450	-1.9557110	2.0372510	Η	-2.6739290	2.7931240	2.4741520
С	-2.0510480	-4.2216690	-1.0953190	Н	-3.6109920	1.4159390	1.8477490
Н	-2.8114150	-4.8617220	-0.6218820	Н	-1.8465740	1.4643510	1.6608980
Н	-1.0964660	-4.4311820	-0.5914660	С	-4.0739930	3.5688440	-2.4871630
Н	-1.9661880	-4.5385640	-2.1475100	Η	-4.3067700	4.2917150	-1.6917040
С	-4.4588370	-2.4944990	-1.1835660	Η	-4.9875770	3.0059670	-2.7226530
Η	-4.6560610	-2.8202410	-2.2181090	Η	-3.7989270	4.1406190	-3.3849250
Η	-4.8926520	-3.2544330	-0.5158450	С	1.0555870	-1.6203590	1.8331060
Η	-4.9943980	-1.5506360	-1.0147030	Η	0.5231830	-0.6544390	1.7891380
С	-1.8935450	-1.4128700	-2.4157620	Η	0.7974630	-2.0690340	2.8009390
Н	-0.8014020	-1.2741610	-2.3719540	Η	2.1425640	-1.4137810	1.8620720
Η	-2.1271040	-1.9036790	-3.3732640	Η	0.7498010	-3.6114370	0.9143210
Η	-2.3540370	-0.4104310	-2.4452470	С	2.1952750	4.1504410	2.0545610
С	-4.6204280	-1.5215020	2.0843890	Η	2.2601700	4.9256570	1.2753020
Н	-4.9946650	-1.6767100	3.1090090	Н	3.1364930	3.5775990	2.0328460
Н	-4.8112140	-0.4691060	1.8215720	Н	2.1347320	4.6619750	3.0278970
Η	-5.2219500	-2.1481260	1.4117830	Ν	4.4915030	-0.5898830	0.3855520
С	-2.6428190	-3.7874760	2.5153220	С	5.2379490	0.1175940	-0.6629860
Н	-3.0670980	-3.9812050	3.5127860	Н	5.1754920	1.1955440	-0.4493470
Н	-1.5901290	-4.1140980	2.5236840	Η	6.3160940	-0.1390300	-0.6170030
Н	-3.1787570	-4.4227000	1.7923590	С	5.0588360	-0.3210820	1.7107610

С	-2.0379720	-0.9790050	3.4833800	Η	4.6792110	-1.0910630	2.4008200
Η	-2.5291730	-1.3198890	4.4088290	Н	6.1617020	-0.4275910	1.6952790
Η	-0.9568820	-1.1183450	3.6131500	С	4.3555650	-2.0269660	0.1174210
Η	-2.2346470	0.0986990	3.3899860	Н	3.7817310	-2.1406760	-0.8137390
С	0.3471350	4.6783950	-1.3779540	Н	3.7216860	-2.4537620	0.9110510
Η	0.4911620	5.0394520	-2.4084860	С	5.6607960	-2.8138780	0.0237180
Η	0.8705280	5.3759940	-0.7051360	Н	6.2946560	-2.4612420	-0.8030520
Η	-0.7244910	4.7450190	-1.1394430	Н	6.2442470	-2.7482400	0.9535940
С	0.5025140	1.8229920	-2.6132880	Н	5.4424340	-3.8757610	-0.1567160
Η	1.0399550	0.8615300	-2.5649060	С	4.6878420	1.0541480	2.2508150
Η	0.7280180	2.2911800	-3.5840790	С	0.6410980	1.8600140	3.2887820
Η	-0.5750290	1.5973850	-2.6053380	Н	-0.2378340	1.1990810	3.2779750
С	2.9309280	3.1252410	-1.4247350	Н	1.5346790	1.2137790	3.3295300
Н	3.1589110	3.7046960	-2.3334900	Н	0.6135180	2.4365430	4.2264930
Η	3.3930900	3.6418010	-0.5682380				
Н	3.4279310	2.1483340	-1.5481400				
Table S50.Geometric coordinates and thermal corrected single point energies for NaHMDS-
mediated enolization of 2-methyl-3-pentanone via a free ion transition structure
poised to generate the E enolate. Only the anionic fragment is present at the
transition state.

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-1184.3703	-1183.4607	0.391309	-1183.9657	0.042754	0.041213	-1184.0084	-1184.006902

Imaginary frequency: -1212.13 cm⁻¹

Atom	Χ	Y	Z	Atom	Х	Y	Z
0	-2.6692270	-0.3840580	-1.8489370	С	2.2540920	-2.5166140	-1.0245760
С	-2.3381210	-0.7121990	-0.7100130	Н	3.1618890	-3.1383310	-0.9622240
С	-3.2198240	-0.2036460	0.4525650	Н	1.4066720	-3.1051080	-0.6411500
Н	-2.6562670	-0.2561950	1.3961730	Н	2.0506490	-2.3019770	-2.0852700
С	-3.6739440	1.2291050	0.1963780	С	4.0174420	-0.0672650	-0.7894540
Н	-4.3950360	1.5626820	0.9598550	Н	4.8683520	-0.7685400	-0.7941860
Н	-2.8193980	1.9217670	0.1978990	Н	3.8323450	0.2573050	-1.8256790
Н	-4.1420530	1.2810440	-0.7966660	Н	4.3115890	0.8197980	-0.2076110
С	-4.4234770	-1.1475090	0.5522390	С	2.2001070	2.8142970	0.1828870
Н	-4.9735550	-1.1316780	-0.4012690	Н	2.8508700	2.5216410	1.0230850
Н	-4.1071940	-2.1840490	0.7432560	Н	2.7989040	2.7683950	-0.7401240
Н	-5.1090700	-0.8402230	1.3582130	Н	1.8925370	3.8612430	0.3407550
С	-1.1800020	-1.5213100	-0.4014220	С	-0.2694170	1.9433530	1.6947830
Н	-0.1037180	-0.6719080	-0.3616320	Н	0.3837850	1.6899250	2.5456770

Ν	1.0509830	0.0397450	-0.1792610	Н	-0.6195550	2.9810890	1.8210420
Si	0.6774440	1.6773440	0.0653990	Н	-1.1449460	1.2776980	1.7434020
Si	2.4594790	-0.8910690	-0.0663900	С	-0.3858950	2.3513200	-1.3497040
С	2.9279840	-1.3642100	1.7193620	Н	-1.1952450	1.6487040	-1.6051220
Н	3.8181780	-2.0129010	1.7668030	Н	-0.8278320	3.3336470	-1.1146100
Н	3.1345770	-0.4545190	2.3069340	Н	0.2402870	2.4635930	-2.2496470
Н	2.0898140	-1.8872470	2.2060880	С	-1.0465970	-2.2207190	0.9409880
				Н	-0.9407430	-1.4979370	1.7675660
				Н	-1.8763990	-2.9049670	1.2003680
				Η	-0.1235480	-2.8219990	0.9552710
				Н	-0.8999590	-2.1321670	-1.2711890

Table S51.Geometric coordinates and thermal corrected single point energies for NaHMDS-
mediated enolization of 2-methyl-3-pentanone via a free ion transition structure
poised to generate the Z enolate. Only the anionic fragment is present at the
transition state.

E_SPC	E	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-1184.3781	-1183.4696	0.391429	-1183.9734	0.042845	0.041199	-1184.0163	-1184.01461

Imaginary frequency: -1207.91 cm⁻¹

Atom	Χ	Y	Z	Atom	Χ	Y	Z
0	-3.0383570	1.2420940	-0.3473620	Н	0.2125120	-2.9194430	-1.4639300
С	-2.5540880	0.1186560	-0.4938390	С	3.1407210	-1.5383560	-1.4117810
С	-2.8676280	-0.9379350	0.5830240	Н	3.6759020	-2.5007730	-1.3575190
Н	-2.5412540	-1.9245090	0.2158960	Н	2.7353040	-1.4236000	-2.4294180
С	-2.0639040	-0.5852470	1.8375060	Н	3.8708940	-0.7290120	-1.2527850
Н	-2.2504090	-1.3052870	2.6508680	С	2.5572970	-1.6950680	1.5593170
Н	-0.9866060	-0.5644090	1.6109240	Н	3.1057070	-2.6503960	1.6038170
Н	-2.3575460	0.4190470	2.1812050	Н	3.2715360	-0.8842950	1.7778430
С	-4.3657960	-0.9585310	0.8706290	Н	1.7980780	-1.6930250	2.3576850
Н	-4.6886410	0.0612060	1.1252160	С	2.9941440	2.0807560	-0.1401110
Н	-4.9397840	-1.2821860	-0.0113400	Н	3.1484470	2.0019950	-1.2280270
Н	-4.6057180	-1.6334490	1.7075690	Н	3.2098520	3.1177230	0.1657710
С	-1.5898440	-0.2505070	-1.5013630	Н	3.7318870	1.4242690	0.3506430
Н	-0.4192720	-0.1326120	-0.8061670	С	1.1037040	1.7640430	2.2035650
Н	-1.5819620	-1.3272010	-1.7195300	Н	1.3964870	2.7773570	2.5247340

	0.0000700	-2./012030	п	0.0/23960	1.5815800	2.5433570
-1.7594520	1.6742430	-2.4247630	Н	1.7583340	1.0389130	2.7127680
-0.3864670	0.7156240	-3.0336160	С	0.0487560	2.8491510	-0.4368080
-2.0469460	0.3436700	-3.5663660	Н	-1.0034460	2.5556480	-0.2835030
0.8195420	0.0002470	-0.2313670	Н	0.2102480	3.8412090	0.0157810
1.2138210	1.5662490	0.3120890	Н	0.2153420	2.9343640	-1.5221400
1.7307660	-1.4272140	-0.1367870				
0.6241860	-2.9376410	-0.4430650				
1.1842210	-3.8779430	-0.3147440				
	-1.7594520 -0.3864670 -2.0469460 0.8195420 1.2138210 1.7307660 0.6241860 1.1842210	-1.75945201.6742430-0.38646700.7156240-2.04694600.34367000.81954200.00024701.21382101.56624901.7307660-1.42721400.6241860-2.93764101.1842210-3.8779430	-1.75945201.6742430-2.4247630-0.38646700.7156240-3.0336160-2.04694600.3436700-3.56636600.81954200.0002470-0.23136701.21382101.56624900.31208901.7307660-1.4272140-0.13678700.6241860-2.9376410-0.44306501.1842210-3.8779430-0.3147440	-1.75945201.6742430-2.4247630H-0.38646700.7156240-3.0336160C-2.04694600.3436700-3.5663660H0.81954200.0002470-0.2313670H1.21382101.56624900.3120890H1.7307660-1.4272140-0.13678700.6241860-2.9376410-0.44306501.1842210-3.8779430-0.3147440	-1.75945201.6742430-2.4247630H1.7583340-0.38646700.7156240-3.0336160C0.0487560-2.04694600.3436700-3.5663660H-1.00344600.81954200.0002470-0.2313670H0.21024801.21382101.56624900.3120890H0.21534201.7307660-1.4272140-0.1367870-0.44306501.1842210-3.8779430-0.3147440	-1.75945201.6742430-2.4247630H1.75833401.0389130-0.38646700.7156240-3.0336160C0.04875602.8491510-2.04694600.3436700-3.5663660H-1.00344602.55564800.81954200.0002470-0.2313670H0.21024803.84120901.21382101.56624900.3120890H0.21534202.93436401.7307660-1.4272140-0.1367870-0.4430650-1.1842210-3.87794301.1842210-3.8779430-0.3147440-0.3147440-0.3147440

Н -0.2247500 -2.9400370 0.2591490

Table S52. Geometric coordinates and thermal corrected single point energies for NaHMDSmediated enolization of 2-methyl-3-pentanone via a free ion transition structure poised to generate the *E* enolate. Only the anionic fragment is present at the transition state. The latest functionals from Head-Gordon (ω B97X-D), which include dispersion corrections and Dunning's diffuse function augmented basis set (aug-cc-pVTZ) were used to see if the standard conditions were inadequate.

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-1184.5288	-1184.3313	0.39061	-1184.1248	0.04394	0.041839	-1184.1687	-1184.166639

Imaginary frequency: -1304.95 cm⁻¹

Atom	X	Y	Z	Atom	X	Y	Z
0	-2.6847570	-0.4272820	-1.8830680	Н	3.7318390	-2.0015490	1.8121640
С	-2.3471490	-0.7248860	-0.7255050	Н	3.0604360	-0.4283470	2.3113680
С	-3.1980100	-0.1560720	0.4291190	Н	2.0003370	-1.8482320	2.2150500
Н	-2.5995720	-0.1529630	1.3492450	С	2.2337980	-2.5502540	-1.0000790
С	-3.6659300	1.2681200	0.1424910	Н	3.1424450	-3.1662750	-0.9150230
Н	-4.3286450	1.6253240	0.9457170	Н	1.3877580	-3.1363520	-0.6154200
Н	-2.8149310	1.9566370	0.0696300	Н	2.0433770	-2.3602740	-2.0664400
Н	-4.2075730	1.2999530	-0.8112220	С	4.0083720	-0.1077340	-0.7775750
С	-4.3898410	-1.0976240	0.6468560	Н	4.8477580	-0.8208030	-0.7513540
Н	-5.0027750	-1.1386990	-0.2648590	Н	3.8523530	0.1981760	-1.8227240
Н	-4.0555820	-2.1176100	0.8803920	Н	4.3069030	0.7840560	-0.2087770
Н	-5.0223890	-0.7452520	1.4759560	С	2.2634620	2.7718300	0.1860650

С	-1.1975900	-1.5336570	-0.4103500	Н	2.9156830	2.4497040	1.0118480
Н	-0.1230460	-0.6695910	-0.3693660	Н	2.8526690	2.7394830	-0.7415550
Ν	1.0155710	0.0301060	-0.2446520	Н	1.9784240	3.8194130	0.3718290
Si	0.7059120	1.6837340	0.0587370	С	-0.2145420	1.9458650	1.7044900
Si	2.4294820	-0.9061790	-0.0721530	Н	0.4229350	1.6352130	2.5461500
С	2.8518650	-1.3432490	1.7351760	Н	-0.5034410	2.9969810	1.8597820
С	-1.0832320	-2.2514470	0.9272650	Н	-1.1264700	1.3344510	1.7402080
Н	-1.1158420	-1.5504740	1.7748540	С	-0.3591600	2.4209270	-1.3231870
Н	-1.8540190	-3.0225500	1.1021050	Н	-1.1831170	1.7423080	-1.5859610
Н	-0.1076110	-2.7543200	0.9938600	Н	-0.7811850	3.4014510	-1.0518520
Н	-0.9071430	-2.1500360	-1.2700610	Н	0.2517180	2.5510040	-2.2292160

Table S53. Geometric coordinates and thermal corrected single point energies for NaHMDSmediated enolization of 2-methyl-3-pentanone via a free ion transition structure poised to generate the Z enolate. Only the anionic fragment is present at the transition state. The latest functionals from Head-Gordon (ω B97X-D), which include dispersion corrections and Dunning's diffuse function augmented basis set (aug-cc-pVTZ) were used to see if the standard conditions were inadequate.

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	$G(T)_SPC$	qh-G(T)_SPC
-1184.5364	-1184.3393	0.390864	-1184.1323	0.042722	0.041132	-1184.175	-1184.173438

Imaginary frequency: -1265.9 cm⁻¹

Atom	Χ	Y	Z	Atom	X	Y	Z
0	-3.0106390	1.3486510	-0.1855460	Si	1.6353750	-1.4584140	-0.2174580
С	-2.5360060	0.2297280	-0.4434200	С	0.4662970	-2.9010470	-0.6061060
С	-2.8018250	-0.9135950	0.5535780	Н	0.9915900	-3.8661140	-0.5406530
Н	-2.4501720	-1.8525640	0.1018850	Н	-0.3743940	-2.9195410	0.1024430
С	-1.9967140	-0.6660780	1.8334210	Н	0.0470960	-2.8082070	-1.6180110
Н	-2.1680550	-1.4703240	2.5651770	С	3.0889550	-1.5977490	-1.4399800
Н	-0.9239150	-0.6131570	1.6083060	Н	3.5802790	-2.5825930	-1.3885240
Н	-2.3008920	0.2880800	2.2857460	Н	2.7359350	-1.4425110	-2.4704840
С	-4.2976570	-1.0304960	0.8451970	Н	3.8463270	-0.8275730	-1.2304490
Н	-4.6723140	-0.0790160	1.2458950	С	2.3823430	-1.8199440	1.4983910
Н	-4.8643030	-1.2587220	-0.0693120	Н	2.8727510	-2.8057150	1.5251120
Н	-4.4922460	-1.8274980	1.5793180	Н	3.1341210	-1.0635080	1.7704710
С	-1.6320270	-0.0587210	-1.5230890	Н	1.6002680	-1.8040150	2.2718880

Н	-0.4335860	-0.0199200	-0.8611080	С	3.1099040	1.9405210	-0.0387010
Н	-1.6437670	-1.1122270	-1.8271760	Н	3.7889260	1.2044340	0.4189160
С	-1.5222360	0.9301220	-2.6663030	Н	3.2869310	1.9272090	-1.1244430
Н	-1.7070200	1.9468570	-2.2979580	Н	3.3878540	2.9354160	0.3433510
Н	-0.5141070	0.9063850	-3.1097330	С	1.1457420	1.6199140	2.2452980
Н	-2.2503450	0.7352000	-3.4721920	Н	1.7506320	0.8386970	2.7289360
Ν	0.7937860	0.0227080	-0.3061080	Н	1.4819770	2.5971040	2.6266200
Si	1.2885190	1.5268600	0.3478920	Н	0.1011190	1.4754010	2.5565010
Η	0.4823490	3.8857750	0.1360970	С	0.2232840	2.9261940	-0.3376760
Н	0.3634230	3.0306420	-1.4232700	Н	-0.8427220	2.7225030	-0.1559530

Table S54.Geometric coordinates and thermal corrected single point energies for NaHMDS-
mediated enolization of 2-methylcyclohexanone via a trisolvated THF monomer
transition structure.

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-2082.1135	-2080.3391	0.762245	-2081.3286	0.063087	0.059787	-2081.3917	-2081.388427

Imaginary frequency: -1281.14 cm⁻¹

Atom	Χ	Y	Z	Atom	Χ	Y	Z
Na	-0.6589340	-0.4534900	-0.2032840	С	-4.1475860	2.1001920	-0.4460120
Ν	0.4843790	1.6520360	0.0610110	С	-4.6379610	0.9082670	-1.3017430
Si	-0.0040090	2.7943910	-1.1357840	С	-3.9792520	-0.3105490	-0.6382570
С	1.4600730	3.5494100	-2.0677880	Н	-4.6603580	-0.7709440	0.1029240
Н	2.0152910	2.7805860	-2.6256660	Н	-3.6305830	-1.0762150	-1.3416470
Н	1.1221990	4.3112700	-2.7880250	Н	-5.7317800	0.8191780	-1.3195820
Н	2.1636920	4.0277130	-1.3684360	Н	-4.2938620	1.0099290	-2.3396070
С	-1.0636340	1.9065900	-2.4354830	Н	-3.5808050	2.8133710	-1.0596750
Н	-1.4966810	2.6080500	-3.1660050	Н	-4.9705540	2.6487950	0.0297320
Н	-0.4417170	1.1901940	-2.9972170	0	-1.4561080	-1.8906690	-1.8406110
Н	-1.8845550	1.3396400	-1.9695210	С	-1.4766570	-3.2006650	-1.2750790
С	-0.9746260	4.2733150	-0.4492810	Н	-0.7028440	-3.2712090	-0.4941240
Н	-1.8825490	3.9910120	0.1034440	Н	-2.4655110	-3.3640570	-0.8227010
Н	-0.3390780	4.8596170	0.2339400	С	-1.1483320	-4.1293810	-2.4350110
Н	-1.2745490	4.9403560	-1.2732010	С	-0.0952010	-3.2972450	-3.1677850

Si	0.9398650	2.0200110	1.6799500	С	-0.6473430	-1.8791750	-3.0191740
С	2.3091570	3.3233460	1.7996800	Н	0.1566270	-1.1379920	-2.9001950
Н	2.6241240	3.4884320	2.8419820	Н	-1.2808870	-1.5854490	-3.8718800
Н	3.1937760	3.0146470	1.2210420	Н	0.8653380	-3.3694420	-2.6383600
Н	1.9682950	4.2901990	1.3955660	Н	0.0502090	-3.5870950	-4.2163170
С	1.5833870	0.4184660	2.4501390	Н	-2.0352980	-4.2848970	-3.0683800
Н	2.5086620	0.1085880	1.9398030	Н	-0.7793580	-5.1086360	-2.1036470
Н	1.8020650	0.5165210	3.5247010	0	1.2154960	-1.7281290	-0.5325890
Н	0.8443080	-0.3877070	2.3097380	С	2.2995200	-1.1237470	-0.6390650
С	-0.4763840	2.6536470	2.7727890	С	2.3885580	0.1698910	-1.2706280
Н	-0.9337130	3.5632510	2.3542160	С	3.5566990	-1.7914570	-0.0745360
Н	-1.2718350	1.9028590	2.8957090	С	3.7232750	0.9006590	-1.4117730
Н	-0.0944060	2.9019910	3.7758190	Н	1.5269930	0.8891010	-0.5307810
0	-1.2095240	-1.7517660	1.6068400	Н	1.7383560	0.2132060	-2.1571640
С	-0.4242880	-2.8184230	2.1325290	С	4.7019790	-0.8037100	0.1502500
Н	-0.8623710	-3.7861340	1.8252150	Н	3.8696420	-2.4491700	-0.9098670
Н	0.5820440	-2.7339770	1.7023950	С	3.2678800	-2.6839580	1.1264640
С	-0.4953250	-2.6515040	3.6447140	С	4.9398800	0.0283860	-1.1044430
С	-1.9323090	-2.1558940	3.8181680	Н	3.7374830	1.7719680	-0.7306580
С	-2.1092220	-1.2538790	2.5951040	Н	3.8220200	1.3222910	-2.4233030
Н	-3.1321900	-1.2604810	2.1911710	Н	4.4652090	-0.1377510	0.9995920
Н	-1.8368040	-0.2085110	2.8192320	Н	5.6089250	-1.3605460	0.4335620
Н	-2.6315910	-3.0043950	3.7728780	Н	2.5122620	-3.4370620	0.8694990
Н	-2.1045240	-1.6223410	4.7616170	Н	4.1832490	-3.2017580	1.4474500
Н	0.2209170	-1.8836420	3.9738590	Н	2.8921060	-2.0949440	1.9766610
Н	-0.2825750	-3.5815250	4.1873240	Н	5.1310810	-0.6570160	-1.9483120
0	-2.8422700	0.2072580	0.0270440	Н	5.8379930	0.6546470	-0.9939140
С	-3.2311670	1.4425120	0.5976680	Η	-3.7766640	1.2561940	1.5429040
				Н	-2.3170710	2.0076940	0.8227930

Table S55.Geometric coordinates and thermal corrected single point energies for NaHMDS-
mediated enolization of 2-methyl-3-pentanone via a pentasolvated THF contact
ion pair transition structure that is poised to form the Z enolate.

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	G(T)_SPC	qh-G(T)_SPC
-2508.8846	-2506.6152	0.991016	-2507.8643	0.078435	0.073061	-2507.9427	-2507.937319

Imaginary frequency: -1088.66 cm⁻¹

Atom	Χ	Y	Z	Atom	X	Y	Z
Na	1.5389930	-0.1563480	0.0709410	Н	3.0537980	4.1065820	2.1593560
0	1.7352720	-2.4285440	-0.3751670	Н	1.7476770	5.2458360	1.7447100
С	1.4437420	-3.5977650	0.3688250	0	3.1114090	-0.0988130	-1.6006950
Н	2.3664980	-4.1903730	0.5276210	С	4.4175920	-0.6151040	-1.3747110
Н	1.0515910	-3.2815920	1.3441660	Н	4.9529860	0.0585060	-0.6838640
С	0.4503730	-4.3631980	-0.4944910	Н	4.3287240	-1.5984180	-0.8868310
С	0.9841260	-4.0881680	-1.9070170	С	5.0866620	-0.6696760	-2.7489130
С	1.7071400	-2.7338640	-1.7676750	С	4.3615420	0.4530130	-3.4927390
Н	2.7395260	-2.7819040	-2.1579580	С	2.9446460	0.2844630	-2.9598780
Н	1.1833620	-1.9077720	-2.2684430	Н	2.3228870	1.1890860	-2.9926970
Н	1.6909470	-4.8739510	-2.2095590	Н	2.4044940	-0.5086780	-3.5072550
Н	0.1823400	-4.0515320	-2.6554740	Н	4.7654030	1.4332120	-3.1948660
Н	-0.5566660	-3.9396490	-0.3683550	Н	4.4225370	0.3709530	-4.5854300

Н	0.4053430	-5.4323300	-0.2501240	Η	4.8819240	-1.6346320	-3.2376300
0	0.4381440	-0.9677590	1.8946510	Η	6.1750890	-0.5386210	-2.6963830
С	-0.9338400	-1.3084670	1.6186380	0	0.1993820	0.4565520	-1.6091180
Н	-1.2841150	-0.7618320	0.7274150	С	-0.9203330	0.7050000	-2.0841980
Н	-0.9991360	-2.3883990	1.4169830	С	-1.2161670	2.1172710	-2.5933580
С	-1.7268820	-0.8757960	2.8461530	Η	-2.2085850	2.3890960	-2.1951740
С	-0.8780880	0.2858230	3.3674820	С	-0.1787300	3.1238450	-2.1128990
С	0.5304860	-0.2339000	3.1067720	Η	-0.5109010	4.1522450	-2.3192170
Н	1.2874690	0.5545240	2.9712760	Η	0.0059540	3.0138470	-1.0357680
Н	0.8633980	-0.9019140	3.9245680	Η	0.7787280	2.9659580	-2.6346020
Н	-1.0633810	1.1839480	2.7586570	С	-1.2996610	2.1130310	-4.1253550
Н	-1.0583600	0.5313300	4.4224380	Η	-0.3453600	1.7729620	-4.5584910
Н	-1.7730190	-1.6825420	3.5943970	Η	-2.0952810	1.4513610	-4.4919820
Н	-2.7461270	-0.5867370	2.5593730	Η	-1.4978370	3.1276900	-4.5010800
0	3.4043380	-0.3506060	1.4989290	С	-1.9932610	-0.2577120	-2.1435290
С	4.0646690	0.6198360	2.3001580	Η	-2.6958920	-0.0742600	-1.0693430
Н	5.0027510	0.9339760	1.8050530	Η	-2.7436860	-0.0087660	-2.9067630
Н	3.4088680	1.4972260	2.3916980	С	-1.5847900	-1.7164900	-2.1219870
С	4.3582810	-0.0760910	3.6243980	Η	-0.9210030	-1.9123240	-1.2650750
С	4.6237140	-1.5054350	3.1531390	Η	-2.4619000	-2.3718610	-2.0237360
С	3.5858410	-1.6580920	2.0437890	Η	-1.0441330	-2.0153740	-3.0371650
Н	3.8978190	-2.3393800	1.2389920	Ν	-3.6137430	-0.0495820	0.0993600
Н	2.6162530	-2.0096800	2.4317040	Si	-3.9071600	1.5618460	0.5509860
Н	5.6421860	-1.5852350	2.7434280	Si	-4.6736660	-1.3842890	0.0811020
Н	4.5119830	-2.2593100	3.9428010	С	-5.3953440	-1.7090700	-1.6464890
Н	3.4681400	-0.0479710	4.2712710	Η	-6.0454880	-2.5983260	-1.6596090
Н	5.1971210	0.3760900	4.1689000	Η	-5.9973630	-0.8418590	-1.9619850
0	1.7043040	2.0916850	0.7866490	Н	-4.6079000	-1.8523130	-2.4024450
С	1.1925520	3.1256680	1.6239320	С	-3.7957940	-2.9811280	0.6305060
Н	0.1904540	3.4224570	1.2732840	Н	-4.4479950	-3.8597590	0.5031710
Н	1.0961420	2.7340220	2.6479700	Н	-2.8757780	-3.1532150	0.0507220

С	2.1889870	4.2719800	1.4974950	Н	-3.5176400	-2.9202640	1.6952490
С	2.6048280	4.1401740	0.0319260	С	-6.1728260	-1.2173370	1.2345310
С	2.6412760	2.6240860	-0.1514270	Н	-6.7994220	-2.1223850	1.1872100
Н	2.3490650	2.2966840	-1.1576970	Н	-5.8606210	-1.0741730	2.2809230
Н	3.6387510	2.2045990	0.0713980	Н	-6.8013580	-0.3582410	0.9498790
Н	1.8354080	4.5813090	-0.6191320	С	-4.7084750	1.8003060	2.2574990
Н	3.5663400	4.6165410	-0.1987950	Η	-5.7272770	1.3885500	2.2992110
С	-2.2471800	2.5115190	0.6520370	Н	-4.1148780	1.3119020	3.0474540
Н	-1.4003510	1.8537530	0.3894570	Н	-4.7676710	2.8745050	2.4979910
Н	-2.2185330	3.3882320	-0.0146580	С	-5.0117170	2.5059870	-0.6742380
Н	-2.0865970	2.8805420	1.6782340	Η	-6.0185670	2.0584500	-0.6974120
				Н	-5.1187810	3.5710200	-0.4128420
				Н	-4.6045450	2.4413150	-1.6964480

Table S56.Geometric coordinates and thermal corrected single point energies for NaHMDS-
mediated enolization of 2-methyl-3-pentanone via a disolvated $\kappa^1 \kappa^2$ -TMEDA
dimer-based transition structure that is poised to form the Z enolate.

E_SPC	Е	ZPE	H_SPC	T.S	T.qh-S	$G(T)_SPC$	qh-G(T)_SPC
-3038.4127	-3036.1308	1.049042	-3037.331	0.081583	0.077246	-3037.4126	-3037.4083

Imaginary frequency: -1238.1 cm⁻¹

Atom	Χ	Y	Z	Atom	X	Y	Z
С	-1.3102580	2.6207540	-0.1840600	Н	-2.4822090	-3.6376690	2.2938810
С	-0.7955020	2.7337610	1.1539650	Н	-4.0911970	-3.6173990	1.5399430
Na	-2.3121720	-0.4959070	0.1217880	С	-4.9307560	0.2200520	1.9272290
Na	0.8169290	0.2342140	-0.8426060	Н	-5.9805010	0.5413350	2.1025960
Ν	-0.6702920	-1.6001640	-1.1811750	Н	-4.3032910	0.8606960	2.5661040
Ν	1.8001400	1.8893180	0.6499980	Ν	2.8787920	-0.9765140	-1.7549400
0	-1.5106300	1.5009980	-0.6971850	С	4.0218210	-0.0964690	-1.9106640
Н	0.4698130	2.4241570	0.9070660	Н	3.9078750	0.5072740	-2.8233360
С	-1.5087750	3.8827770	-1.0287100	Н	4.0717900	0.5851320	-1.0488340
Н	-0.5208200	4.3738830	-1.0638810	С	2.7253760	-1.8863990	-2.8769660
С	-2.4820040	4.8663710	-0.3657660	Н	1.8124180	-2.4829080	-2.7347000
Н	-2.5394230	5.7905910	-0.9582020	Н	2.6263490	-1.3149910	-3.8115480
Н	-2.1740150	5.1375010	0.6523820	С	2.8790290	-1.6772670	-0.4762530
Н	-3.4966810	4.4424660	-0.3163990	Н	2.0139600	-2.3537800	-0.4771410

С	-1.9506330	3.5606110	-2.4511900	Η	3.5850140	-2.5756380	-2.9961340
Н	-2.0794000	4.4877740	-3.0270880	Н	4.9837990	-0.6425620	-1.9887240
Н	-2.9090370	3.0198770	-2.4497870	Н	2.7145570	-0.9483910	0.3341560
Н	-1.2239390	2.9290910	-2.9768440	С	4.1328900	-2.4731080	-0.1008670
Si	-1.1251630	-1.2498400	-2.8011800	Н	4.4919700	-3.0880560	-0.9543850
Si	-0.5737110	-3.2093290	-0.6254440	Н	4.9494020	-1.7764130	0.1437460
Н	0.4256080	-4.0675270	-1.3669870	Ν	3.8556220	-3.2915020	1.0682750
Si	2.4922230	3.2057680	-0.2355440	С	5.0055180	-3.4670030	1.9274450
Si	2.4447210	1.2651290	2.1301940	Н	4.7146690	-4.0337200	2.8237780
С	1.9168620	4.8986940	0.4053860	Н	5.8349950	-4.0179920	1.4324650
Н	2.2667530	5.0398730	1.4403420	Н	5.3863230	-2.4884360	2.2529290
Н	0.8243940	5.0198640	0.4137300	С	3.2605510	-4.5626440	0.7119120
Н	2.3441460	5.7092290	-0.2061770	Н	3.9803390	-5.2292120	0.1878380
С	4.3811450	3.3533500	-0.1991250	Н	2.9060180	-5.0807540	1.6149780
Н	4.6871360	4.1287140	-0.9198050	Н	2.3943810	-4.4149430	0.0510460
Н	4.7233670	3.6780800	0.7958900	Н	-3.9458250	-3.5683000	3.3233080
Н	4.9156460	2.4274160	-0.4526800	Н	-1.6155250	-1.6196370	3.3506940
С	1.9554240	3.0416560	-2.0441500	Ν	-4.5532150	0.4568060	0.5379840
Н	0.8602600	2.9576460	-2.1279450	С	-4.5381540	1.8854300	0.2582180
Н	2.2690970	3.9032250	-2.6535070	Н	-3.8464280	2.3958950	0.9447170
Н	2.3881040	2.1351350	-2.4967450	Н	-4.1816580	2.0587890	-0.7666200
С	4.2876170	0.8154700	2.0717940	Н	-5.5439110	2.3404040	0.3720090
Н	4.5606130	0.3201510	3.0179260	С	-5.4526610	-0.2258140	-0.3843610
Н	4.5163420	0.1149200	1.2534660	Н	-6.5146060	0.0238310	-0.1798050
Н	4.9347560	1.6956280	1.9546950	Н	-5.2166560	0.0711130	-1.4135880
С	2.2710600	2.5073350	3.5516030	Н	-5.3324880	-1.3167490	-0.3207580
Н	2.5554590	2.0626360	4.5181970	С	-1.1874380	1.6159460	2.0996340
Н	1.2383180	2.8807340	3.6355440	Η	-2.2825740	1.4943470	2.1681410
Н	2.9228360	3.3786840	3.3784250	Н	-0.7596820	0.6504020	1.7840410
С	1.5475820	-0.3410680	2.6287970	Н	-0.8082600	1.7958620	3.1155480
Н	0.9119220	-0.1977090	3.5168160	Н	-0.8293990	3.7387890	1.5864560

Η	0.9052580	-0.7227890	1.8197500	Н	0.9993450	-3.0080680	1.3539800
Н	2.2721170	-1.1405520	2.8522360	Н	-0.6647710	-2.6063940	1.7962360
С	-0.9452660	-2.6800030	-4.0347110	Η	-0.1870600	-4.3132890	1.5955340
Н	-1.2300930	-2.3417650	-5.0435140	С	-2.2297760	-4.1345810	-0.7824900
Н	-1.5910800	-3.5324320	-3.7751110	Н	-2.4548170	-4.3493360	-1.8379990
Η	0.0888180	-3.0524720	-4.0847900	Η	-3.0498200	-3.5058700	-0.3974500
С	-0.1290850	0.2081650	-3.4953050	Н	-2.2418970	-5.0896370	-0.2339630
Н	-0.3528740	1.1076890	-2.9026610	Ν	-3.4458840	-1.7638210	2.3099070
Н	-0.4178030	0.4255670	-4.5351500	С	-2.6534170	-1.2671890	3.4299710
Н	0.9572180	0.0303740	-3.4778930	Н	-2.6344730	-0.1710790	3.4429470
С	-2.9392130	-0.6832110	-2.8908870	Н	-3.0655070	-1.6175740	4.3990430
Н	-3.2640840	-0.4788690	-3.9231070	С	-4.8051940	-1.2312210	2.3643850
Н	-3.6089070	-1.4540400	-2.4741440	Н	-5.4439590	-1.8600710	1.7275730
Η	-3.0536540	0.2518480	-2.3154680	Н	-5.2174230	-1.3212310	3.3920930
С	-0.0512680	-3.2956160	1.1947200	С	-3.4941140	-3.2205780	2.3711850

Table S57. Geometric coordinates and thermal corrected single point energies for NaHMDS-
mediated enolization of 2-methyl-3-pentanone via a disolvated $\kappa^1 \kappa^2$ -TMEDA
dimer-based transition structure that is poised to form the *E* enolate.

E_SPC	Ε	ZPE	H_SPC	T.S	T.qh-S	$G(T)_SPC$	qh-G(T)_SPC
-3038.4124	-3036.1297	1.048201	-3037.331	0.08246	0.077811	-3037.4137	-3037.4091

Imaginary frequency: -1018.02 cm⁻¹

Atom	X	Y	Z	Atom	X	Y	Z
С	-1.1260670	2.5614690	0.0400920	Н	-2.5338230	0.8158680	3.9062110
С	-0.2915030	2.9783850	1.1355590	С	-4.7077880	-0.0602360	2.5370200
Н	-0.2977590	2.2259710	1.9384200	Н	-5.3956290	-0.9144580	2.6115550
Na	-2.5138840	-0.4974610	0.0973670	Н	-4.8777140	0.5492500	3.4492180
Na	0.7516160	0.0402010	-0.7359970	С	-3.2232240	-1.7112410	3.4162130
Ν	-0.7912180	-1.7919840	-0.8703390	Н	-2.2011620	-2.1080010	3.3953780
Ν	2.0954320	1.8667570	0.2034470	Н	-3.9068800	-2.5147630	3.1075780
0	-1.3029610	1.3492740	-0.2098100	С	-5.0875620	0.7784650	1.3264540
Н	0.8237070	2.5728840	0.6324420	Н	-6.1384610	1.1120010	1.4711900
С	-0.2475610	4.4109570	1.6345750	Н	-4.4739100	1.6933080	1.2835090
Н	-0.3398700	5.1432850	0.8212230	Ν	2.7370340	-1.4426270	-1.6744750
Н	0.7128060	4.6152260	2.1279930	С	3.9183310	-0.6701920	-2.0102720
Н	-1.0428110	4.6267020	2.3667500	Н	3.8015070	-0.2212460	-3.0077150
С	-1.7368800	3.5982930	-0.8988420	Н	4.0372230	0.1420060	-1.2788370

Η	-0.9945110	4.4007470	-1.0355110	С	2.4870820	-2.5081700	-2.6276580
С	-2.9688740	4.2045360	-0.2120220	Η	1.5700080	-3.0404700	-2.3368410
Н	-3.4305700	4.9675770	-0.8547800	Η	2.3404750	-2.0873750	-3.6335030
Н	-2.7194180	4.6707520	0.7501140	С	2.7537370	-1.9307160	-0.3024070
Н	-3.7213600	3.4225850	-0.0259420	Η	1.8452520	-2.5315150	-0.1625110
С	-2.0961770	3.0118730	-2.2574000	Η	3.3176390	-3.2397640	-2.6889720
Н	-2.5701520	3.7755830	-2.8900980	Η	4.8457190	-1.2786730	-2.0245580
Н	-2.7920440	2.1680210	-2.1456950	Η	2.6815870	-1.0729960	0.3867720
Н	-1.2082930	2.6371840	-2.7842080	С	3.9651040	-2.7525930	0.1493470
Si	-1.2524870	-1.7539160	-2.5174340	Η	4.2209370	-3.5369540	-0.5950330
Si	-0.7888220	-3.2091160	0.0735040	Η	4.8470860	-2.0987110	0.2245930
Н	0.0063830	-4.3495850	-0.5163410	Ν	3.6993380	-3.3260840	1.4594220
Si	2.7547380	2.9131120	-0.9953120	С	4.8798060	-3.4274940	2.2888670
Si	2.8112220	1.4607250	1.7183130	Η	4.6009990	-3.7990670	3.2855340
С	2.2298270	4.7211820	-0.7509510	Η	5.6435580	-4.1189060	1.8704470
Н	2.4932590	5.0843320	0.2546200	Η	5.3403230	-2.4370090	2.4120040
Н	1.1431030	4.8428500	-0.8761510	С	3.0051750	-4.5934400	1.3666260
Н	2.7236360	5.3725450	-1.4892300	Η	3.6506580	-5.3941330	0.9434690
С	4.6472310	2.9791570	-1.0804190	Η	2.6673310	-4.9136310	2.3631580
Н	4.9565690	3.6023720	-1.9344650	Η	2.1153620	-4.5030800	0.7272650
Н	5.0489930	3.4480160	-0.1676980	Η	-3.4668720	-1.4247890	4.4597180
Н	5.1254780	1.9952440	-1.1882800	Η	-1.3562310	0.0771510	2.7771480
С	2.0588940	2.4179090	-2.6845180	N	-4.9448770	0.0836100	0.0496510
Н	0.9634300	2.5470850	-2.6743590	С	-5.4193870	0.9438340	-1.0248510
Н	2.4549580	3.0399370	-3.5018850	Η	-4.8490830	1.8828990	-1.0343480
Н	2.2658340	1.3641360	-2.9250350	Η	-5.2815140	0.4465460	-1.9938310
С	4.5783620	0.7773600	1.6285230	Η	-6.4940130	1.1925570	-0.9050760
Н	4.8810140	0.4345470	2.6315060	С	-5.6627770	-1.1838720	0.0311160
Н	4.6632610	-0.0792720	0.9435590	Н	-6.7261060	-1.0629370	0.3268150
Н	5.2978710	1.5427880	1.3032030	Η	-5.6360010	-1.5996510	-0.9843970
С	2.9164990	2.9241990	2.9219110	Η	-5.1912260	-1.9144150	0.7033370

Н	3.4871630	2.6451820	3.8220150	Н	0.8074870	-0.5698700	-3.3862870
Η	1.9162500	3.2450360	3.2502800	С	-3.0681880	-1.1952620	-2.7037730
Η	3.4174280	3.7903970	2.4603350	Н	-3.3961320	-1.2017730	-3.7550290
С	1.7372450	0.1324840	2.5659210	Н	-3.7447040	-1.8552010	-2.1351670
Η	0.8087710	-0.0388220	1.9947960	Н	-3.1879010	-0.1623110	-2.3352780
Η	2.2573720	-0.8362530	2.6399230	С	-0.0876530	-2.9043060	1.8073210
Η	1.4464910	0.4347120	3.5848570	Н	1.0031080	-2.7605790	1.8261450
С	-1.1438820	-3.3995330	-3.4506910	Н	-0.5307190	-1.9856870	2.2239060
Η	-1.4810380	-3.2735050	-4.4914990	Н	-0.3323190	-3.7390150	2.4841320
Η	-1.7920300	-4.1547650	-2.9777640	С	-2.5454950	-3.8942140	0.3497520
Η	-0.1246650	-3.8109740	-3.4728570	Н	-3.0465040	-4.1067730	-0.6081940
С	-0.2809490	-0.4237840	-3.4545750	Н	-3.1548970	-3.1472320	0.8895770
Η	-0.5231690	0.5638570	-3.0270130	Н	-2.5476010	-4.8181500	0.9487630
Η	-0.5550020	-0.3886880	-4.5200950	Ν	-3.3432140	-0.5776730	2.5078950
				С	-2.3833320	0.4610170	2.8660270
				Н	-2.4718490	1.3238530	2.1905560